Sr-doping of perovskite quantum dots (QDs) is a promising strategy to reduce Pb content and improve optical performance and stability. However, excessive Sr introduces new defects that degrade photoluminescence quantum yield (PLQY). Therefore, it is a challenge to balance high optical performance with high doping concentration for the preparation of environmentally friendly perovskite QDs. In this study, we report the highest Sr/Pb ratios Sr-doped CsPbI3 QDs (15.13%) with a near-unity PLQY. The balance between high PLQY and high Sr-doping rate is achieved through the introduction of oleylammonium iodide (OAmI) ligand compensation during the anti-solvent purification process, which can form an iodine-enriched environment and effectively passivates the surface defects of QDs caused by excessive Sr-doping. Moreover, the Sr-doped CsPbI3 QDs exhibit superior stability in environments with high temperature and humidity or direct contact with water. This strategy provides a novel approach for the preparation of lead-less and lead-free QDs with superior optical performance and stability, offering a potential solution for environmentally friendly applications.
Kim, J.; Roh, J.; Park, M.; Lee, C. Recent advances and challenges of colloidal quantum dot light-emitting diodes for display applications. Adv. Mater. 2024, 36, 2212220.
Shan, Q. S.; Dong, Y. H.; Xiang, H. Y.; Yan, D. N.; Hu, T. J.; Yuan, B. C.; Zhu, H.; Wang, Y. F.; Zeng, H. B. Perovskite quantum dots for the next-generation displays: Progress and prospect. Adv. Funct. Mater. 2024, 34, 2401284.
Swarnkar, A.; Chulliyil, R.; Ravi, V. K.; Irfanullah, M.; Chowdhury, A.; Nag, A. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angew. Chem. 2015, 54, 15644–15648.
Tang, Y. Q.; Tang, S. Z.; Luo, M.; Guo, Y. M.; Zheng, Y. P.; Lou, Y. B.; Zhao, Y. X. All-inorganic lead-free metal halide perovskite quantum dots: Progress and prospects. Chem. Commun. 2021, 57, 7465–7479.
Lu, Y.; Alam, F.; Shamsi, J.; Abdi-Jalebi, M. Doping up the light: A review of A/B-site doping in metal halide perovskite nanocrystals for next-generation LEDs. J. Phys. Chem. C 2024, 128, 10084–10107.
Litvin, A. P.; Margaryan, I. V.; Yin, W. X.; Zhang, X. Y.; Zheng, W. T.; Rogach, A. L. B-site doping of metal halide perovskite nanoplatelets influences their optical properties. Adv. Opt. Mater. 2024, 12, 2301001.
Bian, L. K.; Cao, F. R.; Li, L. Performance improvement of lead-based halide perovskites through B-site ion-doping strategies. Small 2023, 19, 2302700.
Zou, S. H.; Liu, Y. S.; Li, J. H.; Liu, C. P.; Feng, R.; Jiang, F. L.; Li, Y. X.; Song, J. Z.; Zeng, H. B.; Hong, M. C. et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J. Am. Chem. Soc. 2017, 139, 11443–11450.
Chen, Q. H.; Cao, S.; Xing, K.; Ning, M. J.; Zeng, R. S.; Wang, Y. J.; Zhao, J. L. Mg2+-assisted passivation of defects in CsPbI3 perovskite nanocrystals for high-efficiency photoluminescence. J. Phys. Chem. Lett. 2021, 12, 11090–11097.
Das, S.; De, A.; Samanta, A. Ambient condition Mg2+ doping producing highly luminescent green- and violet-emitting perovskite nanocrystals with reduced toxicity and enhanced stability. J. Phys. Chem. Lett. 2020, 11, 1178–1188.
Yan, D. D.; Mo, Q. H.; Zhao, S. Y.; Cai, W. S.; Zang, Z. G. Room temperature synthesis of Sn2+ doped highly luminescent CsPbBr3 quantum dots for high CRI white light-emitting diodes. Nanoscale 2021, 13, 9740–9746.
Ji, X.; Lu, R.; Yu, A. C. Insight into the structures and photophysics of Zn-alloyed lead bromide perovskite nanocrystals synthesized by a post-ion-exchange method and a one-pot hot injection method. J. Phys. Chem. C 2024, 128, 6735–6747.
Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G. On the application of the tolerance factor to inorganic and hybrid halide perovskites: A revised system. Chem. Sci. 2016, 7, 4548–4556.
Zhang, M.; Xiang, G. B.; Wu, Y. W.; Liu, J.; Leng, J. C.; Cheng, C.; Ma, H. Influence of Sr doping on the photoelectronic properties of CsPbX3 (X = Cl, Br, or I): A DFT investigation. Phys. Chem. Chem. Phys. 2023, 25, 9592–9598.
Lu, M.; Zhang, X. Y.; Zhang, Y.; Guo, J.; Shen, X. Y.; Yu, W. W.; Rogach, A. L. Simultaneous strontium doping and chlorine surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals enabling efficient light-emitting devices. Adv. Mater. 2018, 30, 1804691.
Yao, J. S.; Ge, J.; Wang, K. H.; Zhang, G. Z.; Zhu, B. S.; Chen, C.; Zhang, Q.; Luo, Y.; Yu, S. H.; Yao, H. B. Few-nanometer-sized α-CsPbI3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes. J. Am. Chem. Soc. 2019, 141, 2069–2079.
Chen, C.; Xuan, T. T.; Bai, W. H.; Zhou, T. L.; Huang, F.; Xie, A.; Wang, L.; Xie, R. J. Highly stable CsPbI3:Sr2+ nanocrystals with near-unity quantum yield enabling perovskite light-emitting diodes with an external quantum efficiency of 17.1%. Nano Energy 2021, 85, 106033.
Gualdrón-Reyes, A. F.; Macias-Pinilla, D. F.; Masi, S.; Echeverría-Arrondo, C.; Agouram, S.; Muñoz-Sanjosé, V.; Rodríguez-Pereira, J.; Macak, J. M.; Mora-Seró, I. Engineering Sr-doping for enabling long-term stable FAPb1− x Sr x I3 quantum dots with 100% photoluminescence quantum yield. J. Mater. Chem. C 2021, 9, 1555–1566.
De, A.; Mondal, N.; Samanta, A. Luminescence tuning and exciton dynamics of Mn-doped CsPbCl3 nanocrystals. Nanoscale 2017, 9, 16722–16727.
van der Stam, W.; Geuchies, J. J.; Altantzis, T.; van den Bos, K. H. W.; Meeldijk, J. D.; Van Aert, S.; Bals, S.; Vanmaekelbergh, D.; de Mello Donega, C. Highly emissive divalent-ion-doped colloidal CsPb1− x M x Br3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 2017, 139, 4087–4097.
Dong, Y. T.; Qiao, T.; Kim, D.; Parobek, D.; Rossi, D.; Son, D. H. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 2018, 18, 3716–3722.
Ma, S.; Kim, S. H.; Jeong, B.; Kwon, H. C.; Yun, S. C.; Jang, G.; Yang, H.; Park, C.; Lee, D.; Moon, J. Strain-mediated phase stabilization: A new strategy for ultrastable α-CsPbI3 perovskite by nanoconfined growth. Small 2019, 15, 1900219.
Yin, Y. F.; Cheng, H.; Tian, W. M.; Wang, M. H.; Yin, Z. X.; Jin, S. Y.; Bian, J. M. Self-assembled δ-CsPbI3 nanowires for stable white light emission. ACS Appl. Nano Mater. 2022, 5, 18879–18884.
Han, B. N.; Cai, B.; Shan, Q. S.; Song, J. Z.; Li, J. H.; Zhang, F. J.; Chen, J. W.; Fang, T.; Ji, Q. M.; Xu, X. B. et al. Stable, efficient red perovskite light-emitting diodes by (α, δ)-CsPbI3 phase engineering. Adv. Funct. Mater. 2018, 28, 1804285.
Wylie, Z. R.; Al Katrib, M.; Campagna, R.; Outen, J. E.; Smith, S.; Ruffolo, P.; Bérenguier, B.; Bouttemy, M.; Schulz, P.; Christians, J. A. Surface iodide defects control the kinetics of the CsPbI3 perovskite phase transformation. ACS Energy Lett. 2024, 9, 4378–4385.
Swarnkar, A.; Mir, W. J.; Nag, A. Can B-site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (X = Cl, Br, I) perovskites. ACS Energy Lett. 2018, 3, 286–289.
De, A.; Das, S.; Mondal, N.; Samanta, A. Highly luminescent violet- and blue-emitting stable perovskite nanocrystals. ACS Mater. Lett. 2019, 1, 116–122.
Park, Y. R.; Kim, H. H.; Eom, S.; Choi, W. K.; Choi, H.; Lee, B. R.; Kang, Y. Luminance efficiency roll-off mechanism in CsPbBr3- x Cl x mixed-halide perovskite quantum dot blue light-emitting diodes. J. Mater. Chem. C 2021, 9, 3608–3619.
Chen, J.; Lv, J.; Liu, X. L.; Lin, J.; Chen, X. F. A study on theoretical models for investigating time-resolved photoluminescence in halide perovskites. Phys. Chem. Chem. Phys. 2023, 25, 7574–7588.
Zeiske, S.; Sandberg, O. J.; Zarrabi, N.; Wolff, C. M.; Raoufi, M.; Peña-Camargo, F.; Gutierrez-Partida, E.; Meredith, P.; Stolterfoht, M.; Armin, A. Static disorder in lead halide perovskites. J. Phys. Chem. Lett. 2022, 13, 7280–7285.
Li, J. H.; Chen, J. W.; Xu, L. M.; Liu, S. N.; Lan, S.; Li, X. S.; Song, J. Z. A zinc non-halide dopant strategy enables efficient perovskite CsPbI3 quantum dot-based light-emitting diodes. Mater. Chem. Front. 2020, 4, 1444–1453.
Tang, Z. G.; Tanaka, S.; Ito, S.; Ikeda, S.; Taguchi, K.; Minemoto, T. Investigating relation of photovoltaic factors with properties of perovskite films based on various solvents. Nano Energy 2016, 21, 51–61.
Liu, F.; Zhang, Y. H.; Ding, C.; Kobayashi, S.; Izuishi, T.; Nakazawa, N.; Toyoda, T.; Ohta, T.; Hayase, S.; Minemoto, T. et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 2017, 11, 10373–10383.
Zhang, W. C.; Ye, Y.; Liu, C.; Zhao, Z. Y.; Wang, J.; Han, J. J.; Zhao, X. J. Revealing the effects of defects on ultrafast carrier dynamics of CsPbI3 nanocrystals in glass. J. Phys. Chem. C 2019, 123, 15851–15858.
Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y. J.; Ohisa, S.; Kido, J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 2018, 12, 681–687.
Bai, Y.; Hao, M. M.; Ding, S. S.; Chen, P.; Wang, L. Z. Surface chemistry engineering of perovskite quantum dots: Strategies, applications, and perspectives. Adv. Mater. 2022, 34, 2105958.
Ji, Y. Q.; Wang, M. Q.; Yang, Z.; Wang, H.; Padhiar, M. A.; Qiu, H. W.; Dang, J. L.; Miao, Y. R.; Zhou, Y.; Bhatti, A. S. Strong violet emission from ultra-stable strontium-doped CsPbCl3 superlattices. Nanoscale 2022, 14, 2359–2366.
Yao, Z.; Zhao, W. G.; Liu, S. Z. Stability of the CsPbI3 perovskite: From fundamentals to improvements. J. Mater. Chem. A 2021, 9, 11124–11144.