PDF (40.3 MB)
Collect
Submit Manuscript
Research Article | Open Access

15.13% Sr-doped CsPbI3 quantum dots with near-unity quantum yield via surface ligand compensation

Yi PengWanzhong GuYuhui Dong ()Yucong JiDanni YanZiyun LinLi ZhangYousheng Zou ()Haibo Zeng ()
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics and Nanomaterials, Nanjing University of Science and Technology, Nanjing 210094, China
Show Author Information

Graphical Abstract

View original image Download original image
In this work, we developed a fine purification strategy to resolve the contradiction between environmental friendliness and optical performance. This strategy enabled the synthesis of CsPbI3 quantum dots (QDs) with near-unity photoluminescence quantum yield (PLQY) at Sr/Pb ratios up to 15.13%. The enhancement of PLQY is due to the I ions provided by the oleylammonium iodide (OAmI) ligand effectively compensating for the I vacancies on the surface of QDs. Furthermore, fine purification strategy enhances the stability of the doped QDs. This will further promote the preparation and application of low-lead or lead-free QDs with superior properties.

Abstract

Sr-doping of perovskite quantum dots (QDs) is a promising strategy to reduce Pb content and improve optical performance and stability. However, excessive Sr introduces new defects that degrade photoluminescence quantum yield (PLQY). Therefore, it is a challenge to balance high optical performance with high doping concentration for the preparation of environmentally friendly perovskite QDs. In this study, we report the highest Sr/Pb ratios Sr-doped CsPbI3 QDs (15.13%) with a near-unity PLQY. The balance between high PLQY and high Sr-doping rate is achieved through the introduction of oleylammonium iodide (OAmI) ligand compensation during the anti-solvent purification process, which can form an iodine-enriched environment and effectively passivates the surface defects of QDs caused by excessive Sr-doping. Moreover, the Sr-doped CsPbI3 QDs exhibit superior stability in environments with high temperature and humidity or direct contact with water. This strategy provides a novel approach for the preparation of lead-less and lead-free QDs with superior optical performance and stability, offering a potential solution for environmentally friendly applications.

Electronic Supplementary Material

Download File(s)
7257_ESM.pdf (6.7 MB)

References

[1]

Kim, J.; Roh, J.; Park, M.; Lee, C. Recent advances and challenges of colloidal quantum dot light-emitting diodes for display applications. Adv. Mater. 2024, 36, 2212220.

[2]

Shan, Q. S.; Dong, Y. H.; Xiang, H. Y.; Yan, D. N.; Hu, T. J.; Yuan, B. C.; Zhu, H.; Wang, Y. F.; Zeng, H. B. Perovskite quantum dots for the next-generation displays: Progress and prospect. Adv. Funct. Mater. 2024, 34, 2401284.

[3]

Swarnkar, A.; Chulliyil, R.; Ravi, V. K.; Irfanullah, M.; Chowdhury, A.; Nag, A. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angew. Chem. 2015, 54, 15644–15648.

[4]

Tang, Y. Q.; Tang, S. Z.; Luo, M.; Guo, Y. M.; Zheng, Y. P.; Lou, Y. B.; Zhao, Y. X. All-inorganic lead-free metal halide perovskite quantum dots: Progress and prospects. Chem. Commun. 2021, 57, 7465–7479.

[5]

Lu, Y.; Alam, F.; Shamsi, J.; Abdi-Jalebi, M. Doping up the light: A review of A/B-site doping in metal halide perovskite nanocrystals for next-generation LEDs. J. Phys. Chem. C 2024, 128, 10084–10107.

[6]

Litvin, A. P.; Margaryan, I. V.; Yin, W. X.; Zhang, X. Y.; Zheng, W. T.; Rogach, A. L. B-site doping of metal halide perovskite nanoplatelets influences their optical properties. Adv. Opt. Mater. 2024, 12, 2301001.

[7]

Bian, L. K.; Cao, F. R.; Li, L. Performance improvement of lead-based halide perovskites through B-site ion-doping strategies. Small 2023, 19, 2302700.

[8]

Zou, S. H.; Liu, Y. S.; Li, J. H.; Liu, C. P.; Feng, R.; Jiang, F. L.; Li, Y. X.; Song, J. Z.; Zeng, H. B.; Hong, M. C. et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J. Am. Chem. Soc. 2017, 139, 11443–11450.

[9]

Chen, Q. H.; Cao, S.; Xing, K.; Ning, M. J.; Zeng, R. S.; Wang, Y. J.; Zhao, J. L. Mg2+-assisted passivation of defects in CsPbI3 perovskite nanocrystals for high-efficiency photoluminescence. J. Phys. Chem. Lett. 2021, 12, 11090–11097.

[10]

Das, S.; De, A.; Samanta, A. Ambient condition Mg2+ doping producing highly luminescent green- and violet-emitting perovskite nanocrystals with reduced toxicity and enhanced stability. J. Phys. Chem. Lett. 2020, 11, 1178–1188.

[11]

Yan, D. D.; Mo, Q. H.; Zhao, S. Y.; Cai, W. S.; Zang, Z. G. Room temperature synthesis of Sn2+ doped highly luminescent CsPbBr3 quantum dots for high CRI white light-emitting diodes. Nanoscale 2021, 13, 9740–9746.

[12]

Ji, X.; Lu, R.; Yu, A. C. Insight into the structures and photophysics of Zn-alloyed lead bromide perovskite nanocrystals synthesized by a post-ion-exchange method and a one-pot hot injection method. J. Phys. Chem. C 2024, 128, 6735–6747.

[13]

Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G. On the application of the tolerance factor to inorganic and hybrid halide perovskites: A revised system. Chem. Sci. 2016, 7, 4548–4556.

[14]

Zhang, M.; Xiang, G. B.; Wu, Y. W.; Liu, J.; Leng, J. C.; Cheng, C.; Ma, H. Influence of Sr doping on the photoelectronic properties of CsPbX3 (X = Cl, Br, or I): A DFT investigation. Phys. Chem. Chem. Phys. 2023, 25, 9592–9598.

[15]

Lu, M.; Zhang, X. Y.; Zhang, Y.; Guo, J.; Shen, X. Y.; Yu, W. W.; Rogach, A. L. Simultaneous strontium doping and chlorine surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals enabling efficient light-emitting devices. Adv. Mater. 2018, 30, 1804691.

[16]

Yao, J. S.; Ge, J.; Wang, K. H.; Zhang, G. Z.; Zhu, B. S.; Chen, C.; Zhang, Q.; Luo, Y.; Yu, S. H.; Yao, H. B. Few-nanometer-sized α-CsPbI3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes. J. Am. Chem. Soc. 2019, 141, 2069–2079.

[17]

Chen, C.; Xuan, T. T.; Bai, W. H.; Zhou, T. L.; Huang, F.; Xie, A.; Wang, L.; Xie, R. J. Highly stable CsPbI3:Sr2+ nanocrystals with near-unity quantum yield enabling perovskite light-emitting diodes with an external quantum efficiency of 17.1%. Nano Energy 2021, 85, 106033.

[18]

Gualdrón-Reyes, A. F.; Macias-Pinilla, D. F.; Masi, S.; Echeverría-Arrondo, C.; Agouram, S.; Muñoz-Sanjosé, V.; Rodríguez-Pereira, J.; Macak, J. M.; Mora-Seró, I. Engineering Sr-doping for enabling long-term stable FAPb1− x Sr x I3 quantum dots with 100% photoluminescence quantum yield. J. Mater. Chem. C 2021, 9, 1555–1566.

[19]

De, A.; Mondal, N.; Samanta, A. Luminescence tuning and exciton dynamics of Mn-doped CsPbCl3 nanocrystals. Nanoscale 2017, 9, 16722–16727.

[20]

van der Stam, W.; Geuchies, J. J.; Altantzis, T.; van den Bos, K. H. W.; Meeldijk, J. D.; Van Aert, S.; Bals, S.; Vanmaekelbergh, D.; de Mello Donega, C. Highly emissive divalent-ion-doped colloidal CsPb1− x M x Br3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 2017, 139, 4087–4097.

[21]

Dong, Y. T.; Qiao, T.; Kim, D.; Parobek, D.; Rossi, D.; Son, D. H. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 2018, 18, 3716–3722.

[22]

Ma, S.; Kim, S. H.; Jeong, B.; Kwon, H. C.; Yun, S. C.; Jang, G.; Yang, H.; Park, C.; Lee, D.; Moon, J. Strain-mediated phase stabilization: A new strategy for ultrastable α-CsPbI3 perovskite by nanoconfined growth. Small 2019, 15, 1900219.

[23]

Yin, Y. F.; Cheng, H.; Tian, W. M.; Wang, M. H.; Yin, Z. X.; Jin, S. Y.; Bian, J. M. Self-assembled δ-CsPbI3 nanowires for stable white light emission. ACS Appl. Nano Mater. 2022, 5, 18879–18884.

[24]

Han, B. N.; Cai, B.; Shan, Q. S.; Song, J. Z.; Li, J. H.; Zhang, F. J.; Chen, J. W.; Fang, T.; Ji, Q. M.; Xu, X. B. et al. Stable, efficient red perovskite light-emitting diodes by (α, δ)-CsPbI3 phase engineering. Adv. Funct. Mater. 2018, 28, 1804285.

[25]

Wylie, Z. R.; Al Katrib, M.; Campagna, R.; Outen, J. E.; Smith, S.; Ruffolo, P.; Bérenguier, B.; Bouttemy, M.; Schulz, P.; Christians, J. A. Surface iodide defects control the kinetics of the CsPbI3 perovskite phase transformation. ACS Energy Lett. 2024, 9, 4378–4385.

[26]

Swarnkar, A.; Mir, W. J.; Nag, A. Can B-site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (X = Cl, Br, I) perovskites. ACS Energy Lett. 2018, 3, 286–289.

[27]

De, A.; Das, S.; Mondal, N.; Samanta, A. Highly luminescent violet- and blue-emitting stable perovskite nanocrystals. ACS Mater. Lett. 2019, 1, 116–122.

[28]

Park, Y. R.; Kim, H. H.; Eom, S.; Choi, W. K.; Choi, H.; Lee, B. R.; Kang, Y. Luminance efficiency roll-off mechanism in CsPbBr3- x Cl x mixed-halide perovskite quantum dot blue light-emitting diodes. J. Mater. Chem. C 2021, 9, 3608–3619.

[29]

Chen, J.; Lv, J.; Liu, X. L.; Lin, J.; Chen, X. F. A study on theoretical models for investigating time-resolved photoluminescence in halide perovskites. Phys. Chem. Chem. Phys. 2023, 25, 7574–7588.

[30]

Zeiske, S.; Sandberg, O. J.; Zarrabi, N.; Wolff, C. M.; Raoufi, M.; Peña-Camargo, F.; Gutierrez-Partida, E.; Meredith, P.; Stolterfoht, M.; Armin, A. Static disorder in lead halide perovskites. J. Phys. Chem. Lett. 2022, 13, 7280–7285.

[31]

Li, J. H.; Chen, J. W.; Xu, L. M.; Liu, S. N.; Lan, S.; Li, X. S.; Song, J. Z. A zinc non-halide dopant strategy enables efficient perovskite CsPbI3 quantum dot-based light-emitting diodes. Mater. Chem. Front. 2020, 4, 1444–1453.

[32]

Tang, Z. G.; Tanaka, S.; Ito, S.; Ikeda, S.; Taguchi, K.; Minemoto, T. Investigating relation of photovoltaic factors with properties of perovskite films based on various solvents. Nano Energy 2016, 21, 51–61.

[33]

Liu, F.; Zhang, Y. H.; Ding, C.; Kobayashi, S.; Izuishi, T.; Nakazawa, N.; Toyoda, T.; Ohta, T.; Hayase, S.; Minemoto, T. et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 2017, 11, 10373–10383.

[34]

Zhang, W. C.; Ye, Y.; Liu, C.; Zhao, Z. Y.; Wang, J.; Han, J. J.; Zhao, X. J. Revealing the effects of defects on ultrafast carrier dynamics of CsPbI3 nanocrystals in glass. J. Phys. Chem. C 2019, 123, 15851–15858.

[35]

Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y. J.; Ohisa, S.; Kido, J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 2018, 12, 681–687.

[36]

Bai, Y.; Hao, M. M.; Ding, S. S.; Chen, P.; Wang, L. Z. Surface chemistry engineering of perovskite quantum dots: Strategies, applications, and perspectives. Adv. Mater. 2022, 34, 2105958.

[37]

Ji, Y. Q.; Wang, M. Q.; Yang, Z.; Wang, H.; Padhiar, M. A.; Qiu, H. W.; Dang, J. L.; Miao, Y. R.; Zhou, Y.; Bhatti, A. S. Strong violet emission from ultra-stable strontium-doped CsPbCl3 superlattices. Nanoscale 2022, 14, 2359–2366.

[38]

Yao, Z.; Zhao, W. G.; Liu, S. Z. Stability of the CsPbI3 perovskite: From fundamentals to improvements. J. Mater. Chem. A 2021, 9, 11124–11144.

Nano Research
Article number: 94907257
Cite this article:
Peng Y, Gu W, Dong Y, et al. 15.13% Sr-doped CsPbI3 quantum dots with near-unity quantum yield via surface ligand compensation. Nano Research, 2025, 18(4): 94907257. https://doi.org/10.26599/NR.2025.94907257
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return