PDF (12.8 MB)
Collect
Submit Manuscript
Research Article | Open Access | Online First

High dielectric composite polymer electrolyte for lithium-ion batteries

Yu Tat Tse1,2Shengbo Lu1Xinying Sun1Dechao Zhang2Kin Chung Hui1Chenmin Liu1 ()Chunyi Zhi2 ()
Nano and Advanced Materials Institute, Hong Kong University of Science and Technology, Hong Kong 999077, China
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
Show Author Information

Graphical Abstract

View original image Download original image
A highly ion-conducting composite polymer electrolyte was made from poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene (P(VDF-TrFE-CTFE)) and Li1.5Al0.5Ti1.5(PO4)3 (LATP). Its flexibility was demonstrated in flexible battery and winding-type battery.

Abstract

Poly(vinylidene fluoride) (PVDF)-based solid polymer electrolytes (SPEs) with “lithium salt in polymer” configurations typically exhibit poor lithium salt dissociation and mechanical strength. In this study, we proposed a composite polymer electrolyte (CPE) for solid-state lithium-ion batteries (LIBs) as a novel approach to address the challenges. The CPE incorporates a high dielectric polymer poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) (P(VDF-TrFE-CTFE)) as the polymer matrix, and sodium super ionic conductor (NASICON)-type ceramic Li1.5Al0.5Ti1.5(PO4)3 (LATP) as fillers. The optimized CPE demonstrates enhanced dissociation of lithium salts, leading to high ionic conductivity (1.1 mS·cm−1) and improved lithium transference numbers (tLi+ = 0.51). Meanwhile, the interaction between LATP inorganic filler and P(VDF-TrFE-CTFE) enhances the elasticity and tensile strength (1.09 MPa) of the CPE. The graphite|CPE|NCM811 (NCM stands for lithium nickel manganese cobalt oxide. Chemical formula of NCM811 is “LiNi0.8Co0.1Mn0.1O2”) cell achieves a high specific capacity of 160 mAh·g−1 with excellent cycles stably for 300 cycles at 1 C. In addition, the flexible graphite|CPE|NCM811 pouch cell demonstrates exceptional capacity stability under dynamic bending for 10,000 times. Furthermore, the CPE can fulfil the fabrication process needs of flexible stacking-type and winding-type cells, highlighting its versatility and suitability for various LIB configurations in real applications.

Electronic Supplementary Material

Video
7260_Video S1.mp4
7260_Video S2.mp4
Download File(s)
7260_ESM.pdf (806.1 KB)

References

[1]

Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2018, 3, 16–21.

[2]

Zhu, Z. X.; Jiang, T. L.; Ali, M.; Meng, Y. H.; Jin, Y.; Cui, Y.; Chen, W. Rechargeable batteries for grid scale energy storage. Chem. Rev. 2022, 122, 16610–16751.

[3]

Zhang, K.; Liu, Z. C.; Khan, N. A.; Ma, Y. R.; Xie, Z. H.; Xu, J. W.; Jiang, T. L.; Liu, H. X.; Zhu, Z. X.; Liu, S. et al. An all-climate nonaqueous hydrogen gas-proton battery. Nano Lett. 2024, 24, 1729–1737.

[4]
Liu, Z. C.; Ma, Y. R.; Ali Khan, N.; Jiang, T. L.; Zhu, Z. X.; Li, K.; Zhang, K.; Liu, S.; Xie, Z. H.; Yuan, Y. et al. Rechargeable lithium-hydrogen gas batteries. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.202419663.
[5]

Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

[6]

Ma, Y. X.; Wan, J. Y.; Yang, Y. F.; Ye, Y. S.; Xiao, X.; Boyle, D. T.; Burke, W.; Huang, Z. J.; Chen, H.; Cui, Y. et al. Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries. Adv. Energy Mater. 2022, 12, 2103720.

[7]

Yang, Q.; Wang, A.; Luo, J.; Tang, W. Improving ionic conductivity of polymer-based solid electrolytes for lithium metal batteries. Chin. J. Chem. Eng. 2022, 43, 202–215.

[8]

Huang, Y. F.; Rui, G. C.; Li, Q.; Allahyarov, E.; Li, R. P.; Fukuto, M.; Zhong, G. J.; Xu, J. Z.; Li, Z. M.; Taylor, P. L. et al. Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure β crystals. Nat. Commun. 2021, 12, 675.

[9]

Kumar, M.; Sekhon, S. S. Role of plasticizer’s dielectric constant on conductivity modification of PEO-NH4F polymer electrolytes. Eur. Polym. J. 2002, 38, 1297–1304.

[10]

Gross, S.; Camozzo, D.; Di Noto, V.; Armelao, L.; Tondello, E. PMMA: A key macromolecular component for dielectric low- κ hybrid inorganic–organic polymer films. Eur. Polym. J. 2007, 43, 673–696.

[11]

Khan, W. S.; Asmatulu, R.; Eltabey, M. M. Dielectric properties of electrospun PVP and PAN nanocomposite fibers at various temperatures. J. Nanotechnol. Eng. Med. 2010, 1, 041017.

[12]

Yang, L. Y.; Tyburski, B. A.; Dos Santos, F. D.; Endoh, M. K.; Koga, T.; Huang, D.; Wang, Y. J.; Zhu, L. Relaxor ferroelectric behavior from strong physical pinning in a poly(vinylidene fluoride- co-trifluoroethylene- co-chlorotrifluoroethylene) random terpolymer. Macromolecules 2014, 47, 8119–8125.

[13]

Gudla, H.; Edström, K.; Zhang, C. Salt effects on the mechanical properties of ionic conductive polymer: A molecular dynamics study. ACS Mater Au. 2024, 4, 300–307.

[14]

Yadav, P.; Hosen, M. S.; Dammala, P. K.; Ivanchenko, P.; Van Mierlo, J.; Berecibar, M. Development of composite solid polymer electrolyte for solid-state lithium battery: Incorporating LLZTO in PVDF-HFP/LiTFSI. Solid State Ionics 2023, 399, 116308.

[15]

Merrill, L. C.; Chen, X. C.; Zhang, Y. M.; Ford, H. O.; Lou, K.; Zhang, Y. B.; Yang, G.; Wang, Y. Y.; Wang, Y.; Schaefer, J. L. et al. Polymer-ceramic composite electrolytes for lithium batteries: A comparison between the single-ion-conducting polymer matrix and its counterpart. ACS Appl. Energy Mater. 2020, 3, 8871–8881.

[16]

Shi, X. J.; Ma, N. Y.; Wu, Y. X.; Lu, Y. H.; Xiao, Q. Z.; Li, Z. H.; Lei, G. T. Fabrication and electrochemical properties of LATP/PVDF composite electrolytes for rechargeable lithium-ion battery. Solid State Ionics 2018, 325, 112–119.

[17]

Isaac, J. A.; Devaux, D.; Bouchet, R. Dense inorganic electrolyte particles as a lever to promote composite electrolyte conductivity. Nat. Mater 2022, 21, 1412–1418.

[18]

Zugmann, S.; Fleischmann, M.; Amereller, M.; Gschwind, R. M.; Wiemhöfer, H. D.; Gores, H. J. Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochim. Acta 2011, 56, 3926–3933.

[19]

Bormashenko, Y.; Pogreb, R.; Stanevsky, O.; Bormashenko, E. Vibrational spectrum of PVDF and its interpretation. Polym. Test. 2004, 23, 791–796.

[20]

Gong, H. H.; Wang, X.; Sun, M. D.; Zhang, Y.; Ji, Q. L.; Zhang, Z. C. Tuning the ferroelectric phase transition of P(VDF-TrFE) through a simple approach of modification by introducing double bonds. ACS Omega 2022, 7, 42949–42959.

[21]

Hsu, S. T.; Tran, B. T.; Subramani, R.; Nguyen, H. T. T.; Rajamani, A.; Lee, M. Y.; Hou, S. S.; Lee, Y. L.; Teng, H. Free-standing polymer electrolyte for all-solid-state lithium batteries operated at room temperature. J. Power Sources 2020, 449, 227518.

[22]

Loaiza, L. C.; Johansson, P. Li-salt doped single-ion conducting polymer electrolytes for lithium battery application. Macromol. Chem. Phys. 2022, 223, 2100419.

[23]

Cai, X. M.; Lei, T. P.; Sun, D. H.; Lin, L. W. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017, 7, 15382–15389.

[24]

Dirican, M.; Yan, C. Y.; Zhu, P.; Zhang, X. W. Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng.: R: Rep. 2019, 136, 27–46.

[25]

Zheng, J.; Hu, Y. Y. New Insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes. ACS Appl. Mater. Interfaces 2018, 10, 4113–4120.

[26]

Yu, J.; Kwok, S. C. T.; Lu, Z. H.; Effat, M. B.; Lyu, Y. Q.; Yuen, M. M. F.; Ciucci, F. A ceramic-PVDF composite membrane with modified interfaces as an ion-conducting electrolyte for solid-state lithium-ion batteries operating at room temperature. ChemElectroChem 2018, 5, 2873–2881.

[27]

Yuan, Y.; Liu, X. Y.; Dong, X. Y.; Kong, Y. X.; Liu, H.; Ma, Y. T.; Lu, H. Stabilizing the bilateral interfaces by a PVDF-based double-layer solid composite electrolyte with a relieved dehydrofluorination effect for solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 2024, 16, 59547–59555.

[28]

Wang, Y. P.; Yuan, P. C.; Liu, X. X.; Feng, S. F.; Cao, M. F.; Ding, J. X.; Liu, J. C.; Kure-Chu, S. Z.; Hihara, T.; Pan, L. et al. Sacrificial NH4HCO3 inhibits fluoropolymer/garnet interfacial reactions toward 1 mS·cm−1 and 5 V-level composite solid electrolyte. Adv. Funct. Mater. 2024, 34, 2405060.

[29]

Villa, A.; Verduzco, J. C.; Libera, J. A.; Marinero, E. E. Ionic conductivity optimization of composite polymer electrolytes through filler particle chemical modification. Ionics 2021, 27, 2483–2493.

[30]

Xue, X. L.; Zhang, X. X.; Liu, Y. C.; Chen, S. J.; Chen, Y. Q.; Lin, J. H.; Zhang, Y. N. Boosting the performance of solid-state lithium battery based on hybridizing micron-sized LATP in a PEO/PVDF-HFP heterogeneous polymer matrix. Energy Technol. 2020, 8, 2000444.

[31]

Boaretto, N.; Ghorbanzade, P.; Perez-Furundarena, H.; Meabe, L.; López del Amo, J. M.; Gunathilaka, I. E.; Forsyth, M.; Schuhmacher, J.; Roters, A.; Krachkovskiy, S. et al. Transport properties and local ions dynamics in LATP-based hybrid solid electrolytes. Small 2024, 20, 2305769.

[32]

Rong, Y.; Lu, Z. Y.; Jin, C.; Xu, Y. D.; Peng, L.; Shi, R. H.; Gu, T. Y.; Lu, C. Y.; Yang, R. Z. Tailoring of Li/LATP-PEO interface via a functional organic layer for high-performance solid lithium metal batteries. ACS Sustain. Chem. Eng. 2023, 11, 785–795.

[33]

Shehzad, M.; Wang, Y. J. Flexible and transparent flexoelectric microphone. Adv. Mater. Technol. 2023, 8, 2200908.

Nano Research
Cite this article:
Tse YT, Lu S, Sun X, et al. High dielectric composite polymer electrolyte for lithium-ion batteries. Nano Research, 2025, https://doi.org/10.26599/NR.2025.94907260
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return