Poly(vinylidene fluoride) (PVDF)-based solid polymer electrolytes (SPEs) with “lithium salt in polymer” configurations typically exhibit poor lithium salt dissociation and mechanical strength. In this study, we proposed a composite polymer electrolyte (CPE) for solid-state lithium-ion batteries (LIBs) as a novel approach to address the challenges. The CPE incorporates a high dielectric polymer poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) (P(VDF-TrFE-CTFE)) as the polymer matrix, and sodium super ionic conductor (NASICON)-type ceramic Li1.5Al0.5Ti1.5(PO4)3 (LATP) as fillers. The optimized CPE demonstrates enhanced dissociation of lithium salts, leading to high ionic conductivity (1.1 mS·cm−1) and improved lithium transference numbers (
Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2018, 3, 16–21.
Zhu, Z. X.; Jiang, T. L.; Ali, M.; Meng, Y. H.; Jin, Y.; Cui, Y.; Chen, W. Rechargeable batteries for grid scale energy storage. Chem. Rev. 2022, 122, 16610–16751.
Zhang, K.; Liu, Z. C.; Khan, N. A.; Ma, Y. R.; Xie, Z. H.; Xu, J. W.; Jiang, T. L.; Liu, H. X.; Zhu, Z. X.; Liu, S. et al. An all-climate nonaqueous hydrogen gas-proton battery. Nano Lett. 2024, 24, 1729–1737.
Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.
Ma, Y. X.; Wan, J. Y.; Yang, Y. F.; Ye, Y. S.; Xiao, X.; Boyle, D. T.; Burke, W.; Huang, Z. J.; Chen, H.; Cui, Y. et al. Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries. Adv. Energy Mater. 2022, 12, 2103720.
Yang, Q.; Wang, A.; Luo, J.; Tang, W. Improving ionic conductivity of polymer-based solid electrolytes for lithium metal batteries. Chin. J. Chem. Eng. 2022, 43, 202–215.
Huang, Y. F.; Rui, G. C.; Li, Q.; Allahyarov, E.; Li, R. P.; Fukuto, M.; Zhong, G. J.; Xu, J. Z.; Li, Z. M.; Taylor, P. L. et al. Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure β crystals. Nat. Commun. 2021, 12, 675.
Kumar, M.; Sekhon, S. S. Role of plasticizer’s dielectric constant on conductivity modification of PEO-NH4F polymer electrolytes. Eur. Polym. J. 2002, 38, 1297–1304.
Gross, S.; Camozzo, D.; Di Noto, V.; Armelao, L.; Tondello, E. PMMA: A key macromolecular component for dielectric low- κ hybrid inorganic–organic polymer films. Eur. Polym. J. 2007, 43, 673–696.
Khan, W. S.; Asmatulu, R.; Eltabey, M. M. Dielectric properties of electrospun PVP and PAN nanocomposite fibers at various temperatures. J. Nanotechnol. Eng. Med. 2010, 1, 041017.
Yang, L. Y.; Tyburski, B. A.; Dos Santos, F. D.; Endoh, M. K.; Koga, T.; Huang, D.; Wang, Y. J.; Zhu, L. Relaxor ferroelectric behavior from strong physical pinning in a poly(vinylidene fluoride- co-trifluoroethylene- co-chlorotrifluoroethylene) random terpolymer. Macromolecules 2014, 47, 8119–8125.
Gudla, H.; Edström, K.; Zhang, C. Salt effects on the mechanical properties of ionic conductive polymer: A molecular dynamics study. ACS Mater Au. 2024, 4, 300–307.
Yadav, P.; Hosen, M. S.; Dammala, P. K.; Ivanchenko, P.; Van Mierlo, J.; Berecibar, M. Development of composite solid polymer electrolyte for solid-state lithium battery: Incorporating LLZTO in PVDF-HFP/LiTFSI. Solid State Ionics 2023, 399, 116308.
Merrill, L. C.; Chen, X. C.; Zhang, Y. M.; Ford, H. O.; Lou, K.; Zhang, Y. B.; Yang, G.; Wang, Y. Y.; Wang, Y.; Schaefer, J. L. et al. Polymer-ceramic composite electrolytes for lithium batteries: A comparison between the single-ion-conducting polymer matrix and its counterpart. ACS Appl. Energy Mater. 2020, 3, 8871–8881.
Shi, X. J.; Ma, N. Y.; Wu, Y. X.; Lu, Y. H.; Xiao, Q. Z.; Li, Z. H.; Lei, G. T. Fabrication and electrochemical properties of LATP/PVDF composite electrolytes for rechargeable lithium-ion battery. Solid State Ionics 2018, 325, 112–119.
Isaac, J. A.; Devaux, D.; Bouchet, R. Dense inorganic electrolyte particles as a lever to promote composite electrolyte conductivity. Nat. Mater 2022, 21, 1412–1418.
Zugmann, S.; Fleischmann, M.; Amereller, M.; Gschwind, R. M.; Wiemhöfer, H. D.; Gores, H. J. Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochim. Acta 2011, 56, 3926–3933.
Bormashenko, Y.; Pogreb, R.; Stanevsky, O.; Bormashenko, E. Vibrational spectrum of PVDF and its interpretation. Polym. Test. 2004, 23, 791–796.
Gong, H. H.; Wang, X.; Sun, M. D.; Zhang, Y.; Ji, Q. L.; Zhang, Z. C. Tuning the ferroelectric phase transition of P(VDF-TrFE) through a simple approach of modification by introducing double bonds. ACS Omega 2022, 7, 42949–42959.
Hsu, S. T.; Tran, B. T.; Subramani, R.; Nguyen, H. T. T.; Rajamani, A.; Lee, M. Y.; Hou, S. S.; Lee, Y. L.; Teng, H. Free-standing polymer electrolyte for all-solid-state lithium batteries operated at room temperature. J. Power Sources 2020, 449, 227518.
Loaiza, L. C.; Johansson, P. Li-salt doped single-ion conducting polymer electrolytes for lithium battery application. Macromol. Chem. Phys. 2022, 223, 2100419.
Cai, X. M.; Lei, T. P.; Sun, D. H.; Lin, L. W. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017, 7, 15382–15389.
Dirican, M.; Yan, C. Y.; Zhu, P.; Zhang, X. W. Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng.: R: Rep. 2019, 136, 27–46.
Zheng, J.; Hu, Y. Y. New Insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes. ACS Appl. Mater. Interfaces 2018, 10, 4113–4120.
Yu, J.; Kwok, S. C. T.; Lu, Z. H.; Effat, M. B.; Lyu, Y. Q.; Yuen, M. M. F.; Ciucci, F. A ceramic-PVDF composite membrane with modified interfaces as an ion-conducting electrolyte for solid-state lithium-ion batteries operating at room temperature. ChemElectroChem 2018, 5, 2873–2881.
Yuan, Y.; Liu, X. Y.; Dong, X. Y.; Kong, Y. X.; Liu, H.; Ma, Y. T.; Lu, H. Stabilizing the bilateral interfaces by a PVDF-based double-layer solid composite electrolyte with a relieved dehydrofluorination effect for solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 2024, 16, 59547–59555.
Wang, Y. P.; Yuan, P. C.; Liu, X. X.; Feng, S. F.; Cao, M. F.; Ding, J. X.; Liu, J. C.; Kure-Chu, S. Z.; Hihara, T.; Pan, L. et al. Sacrificial NH4HCO3 inhibits fluoropolymer/garnet interfacial reactions toward 1 mS·cm−1 and 5 V-level composite solid electrolyte. Adv. Funct. Mater. 2024, 34, 2405060.
Villa, A.; Verduzco, J. C.; Libera, J. A.; Marinero, E. E. Ionic conductivity optimization of composite polymer electrolytes through filler particle chemical modification. Ionics 2021, 27, 2483–2493.
Xue, X. L.; Zhang, X. X.; Liu, Y. C.; Chen, S. J.; Chen, Y. Q.; Lin, J. H.; Zhang, Y. N. Boosting the performance of solid-state lithium battery based on hybridizing micron-sized LATP in a PEO/PVDF-HFP heterogeneous polymer matrix. Energy Technol. 2020, 8, 2000444.
Boaretto, N.; Ghorbanzade, P.; Perez-Furundarena, H.; Meabe, L.; López del Amo, J. M.; Gunathilaka, I. E.; Forsyth, M.; Schuhmacher, J.; Roters, A.; Krachkovskiy, S. et al. Transport properties and local ions dynamics in LATP-based hybrid solid electrolytes. Small 2024, 20, 2305769.
Rong, Y.; Lu, Z. Y.; Jin, C.; Xu, Y. D.; Peng, L.; Shi, R. H.; Gu, T. Y.; Lu, C. Y.; Yang, R. Z. Tailoring of Li/LATP-PEO interface via a functional organic layer for high-performance solid lithium metal batteries. ACS Sustain. Chem. Eng. 2023, 11, 785–795.
Shehzad, M.; Wang, Y. J. Flexible and transparent flexoelectric microphone. Adv. Mater. Technol. 2023, 8, 2200908.