H2TiO3 (HTO) emerges as a highly promising lithium-ion sieve (LIS) material for selectively and efficiently extracting lithium from liquid-phase systems. However, the practical use of conventional powdered HTO adsorbents is hindered by difficulties in recovery and titanium leaching, which limits their reusability. Herein, we design a novel HTO/MXene/polysulfone (HTO/MXene/PSF) hybrid membrane, where two-dimensional (2D) MXene nanosheets bridge PSF and HTO via enhanced hydrogen bonding and enable the in-situ self-assembly of HTO into spindle-like nanostructures. As anticipated, the hybrid membrane exhibits selective lithium adsorption, achieving a capacity of 25.80 mg·g−1 from shale gas wastewater (SGW). Moreover, it maintains remarkable cyclic stability with a negligible decrease in adsorption capacity of merely 0.25% after ten consecutive adsorption–desorption cycles. Besides, filtration studies demonstrate that a membrane with a surface area of 12.56 cm² can effectively process 230 mL of SGW. Theoretical calculations reveal that hydrogen bonding and electronic interactions drive the self-assembly of HTO on MXene and further elucidate the adsorption strength and spatial hindrance mechanisms for selective lithium ion adsorption. This study introduces an innovative concept of in-situ self-assembled LIS in a hybrid membrane for lithium recovery from SGW, which is expected to inspire further research on self-assembled sieve-based adsorbents.
Castelvecchi, D. Electric cars and batteries: How will the world produce enough. Nature 2021, 596, 336–339.
Lu, Q. C.; Liu, P.; Zhou, T. Y.; Huang, R. L.; Zhang, K. X.; Hu, L.; Liu, R.; Ren, Z. B.; Wang, J. Y.; Wang, X. L. Recent progress on electro-sorption technology for lithium recovery from aqueous sources. Nano Res. 2024, 17, 2563–2573.
Olivetti, E. A.; Ceder, G.; Gaustad, G. G.; Fu, X. K. Lithium-ion battery supply chain considerations: Analysis of potential bottlenecks in critical metals. Joule 2017, 1, 229–243.
Razmjou, A.; Asadnia, M.; Hosseini, E.; Habibnejad Korayem, A.; Chen, V. Design principles of ion selective nanostructured membranes for the extraction of lithium ions. Nat. Commun. 2019, 10, 5793.
Song, Y.; Fang, S. Q.; Xu, N.; Wang, M. N.; Chen, S. Y.; Chen, J.; Mi, B. X.; Zhu, J. Solar transpiration-powered lithium extraction and storage. Science 2024, 385, 1444–1449.
Kumar, A.; Fukuda, H.; Hatton, T. A.; Lienhard, J. H. Lithium recovery from oil and gas produced water: A need for a growing energy industry. ACS Energy Lett. 2019, 4, 1471–1474.
Tian, L.; Liu, Y. H.; Tang, P.; Yang, Y. S.; Wang, X. R.; Chen, T. X.; Bai, Y. H.; Tiraferri, A.; Liu, B. C. Lithium extraction from shale gas flowback and produced water using H1.33Mn1.67O4 adsorbent. Resour., Conserv., Recycl., 2022, 185, 106476.
Xie, W. C.; Tian, L.; Tang, P.; Cui, J. Y.; Wang, T. J.; Zhu, Y. M.; Bai, Y. H.; Tiraferri, A.; Crittenden, J. C.; Liu, B. C. Shale gas wastewater characterization: Comprehensive detection, evaluation of valuable metals, and environmental risks of heavy metals and radionuclides. Water Res. 2022, 220, 118703.
Haddad, A. Z.; Hackl, L.; Akuzum, B.; Pohlman, G.; Magnan, J. F.; Kostecki, R. How to make lithium extraction cleaner, faster and cheaper-in six steps. Nature 2023, 616, 245–248.
Bai, X.; Dai, J. D.; Ma, Y.; Bian, W. B.; Pan, J. M. 2-(Allyloxy) methylol-12-crown-4 ether functionalized polymer brushes from porous PolyHIPE using UV-initiated surface polymerization for recognition and recovery of lithium. Chem. Eng. J. 2020, 380, 122386.
Xu, P.; Hong, J.; Qian, X. M.; Xu, Z. W.; Xia, H.; Tao, X. C.; Xu, Z. Z.; Ni, Q. Q. Materials for lithium recovery from salt lake brine. J. Mater. Sci 2021, 56, 16–63.
Li, Z.; Chen, I. C.; Cao, L.; Liu, X. W.; Huang, K. W.; Lai, Z. P. Lithium extraction from brine through a decoupled and membrane-free electrochemical cell design. Science 2024, 385, 1438–1444.
Sun, J.; Li, X. W.; Huang, Y. H.; Luo, G. L.; Tao, D. J.; Yu, J. T.; Chen, L. L.; Chao, Y. H.; Zhu, W. S. Preparation of high hydrophilic H2TiO3 ion sieve for lithium recovery from liquid lithium resources. Chem. Eng. J. 2023, 453, 139485.
Khalil, A.; Mohammed, S.; Hashaikeh, R.; Hilal, N. Lithium recovery from brine: Recent developments and challenges. Desalination 2022, 528, 115611.
Zhong, J.; Lin, S.; Yu, J. G. Effects of excessive lithium deintercalation on Li+ adsorption performance and structural stability of lithium/aluminum layered double hydroxides. J. Colloid Interface Sci. 2020, 572, 107–113.
Zhang, L. J.; Zhang, T. T.; Zhao, Y. L.; Dong, G. F.; Lv, S. K.; Ma, S. L.; Song, S. X.; Quintana, M. Doping engineering of lithium-aluminum layered double hydroxides for high-efficiency lithium extraction from salt lake brines. Nano Res. 2024, 17, 1646–1654.
Paranthaman, M. P.; Li, L.; Luo, J. Q.; Hoke, T.; Ucar, H.; Moyer, B. A.; Harrison, S. Recovery of lithium from geothermal brine with lithium-aluminum layered double hydroxide chloride sorbents. Environ. Sci. Technol. 2017, 51, 13481–13486.
Zhang, G. T.; Hai, C. X.; Zhou, Y.; Tang, W. P.; Zhang, J. Z.; Zeng, J. B.; Liu, Y. H.; Dong, S. D.; Peng, G. P. Al and F ions co-modified Li1.6Mn1.6O4 with obviously enhanced Li+ adsorption performances. Chem. Eng. J. 2022, 450, 137912.
Ding, K. Y.; Zhu, G. R.; Song, C. H.; Wang, Q.; Wang, L.; Wang, Z. Q.; Meng, C. X.; Gao, C. J. Fabrication of polyacrylonitrile-Li1.6Mn1.6O4 composite nanofiber flat-sheet membranes via electrospinning method as effective adsorbents for Li+ recovery from salt-lake brine. Sep. Purif. Technol. 2022, 284, 120242.
Li, X. W.; Chao, Y. H.; Chen, L. L.; Chen, W.; Luo, J.; Wang, C.; Wu, P. W.; Li, H. M.; Zhu, W. S. Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources. Chem. Eng. J. 2020, 392, 123731.
Li, X. W.; Chen, L. L.; Chao, Y. H.; Zhu, L. H.; Luo, G. L.; Sun, J.; Jiang, L.; Zhu, W. S.; Liu, Z. C.; Xu, C. M. Highly selective separation of lithium with hierarchical porous lithium-ion sieve microsphere derived from MXene. Desalination 2022, 537, 115847.
Zhao, B.; Qiao, Y. J.; Qian, Z. Q.; Wei, W. F.; Li, J.; Wu, Z. J.; Liu, Z. Unraveling the Li+ desorption behavior and mechanism of Li4Ti5O12 with different facets to enhance lithium extraction. J. Mater. Chem. A 2023, 11, 7094–7104.
Zhong, J.; Lin, S.; Yu, J. G. Li+ adsorption performance and mechanism using lithium/aluminum layered double hydroxides in low grade brines. Desalination 2021, 505, 114983.
Qian, F. R.; Zhao, B.; Guo, M.; Wu, Z. J.; Zhou, W. Z.; Liu, Z. Surface trace doping of Na enhancing structure stability and adsorption properties of Li1.6Mn1.6O4 for Li+ recovery. Sep. Purif. Technol 2021, 256, 117583.
Zhang, L. Y.; Zhou, D. L.; Yao, Q. Q.; Zhou, J. B. Preparation of H2TiO3-lithium adsorbent by the sol–gel process and its adsorption performance. Appl. Surf. Sci. 2016, 368, 82–87.
Zhao, K. Y.; Li, J.; Yuan, J. Y.; Yu, X. P.; Guo, Y. F.; Jiang, Z. Z.; Li, M. L.; Duo, J.; Deng, T. L. A novel Co-doped H2TiO3 spinning composite for efficient lithium recovery from alkaline lithium precipitation mother liquor. Chem. Eng. J. 2024, 482, 148989.
Zhang, L. J.; Zhang, T. T.; Lv, S. K.; Song, S. X.; Galván, H. J. O.; Quintana, M.; Zhao, Y. L. Adsorbents for lithium extraction from salt lake brine with high magnesium/lithium ratio: From structure-performance relationship to industrial applications. Desalination 2024, 579, 117480.
Miao, J.; Zhao, K. Y.; Guo, F.; Xu, L. N.; Xie, Y. C.; Deng, T. L. Novel LIS-doped mixed matrix membrane absorbent with high structural stability for sustainable lithium recovery from geothermal water. Desalination 2022, 527, 115570.
Lin, H. Y.; Yu, X. P.; Li, M. L.; Duo, J.; Guo, Y. F.; Deng, T. L. Synthesis of polyporous ion-sieve and its application for selective recovery of lithium from geothermal water. ACS Appl. Mater. Interfaces 2019, 11, 26364–26372.
Cheng, X. X.; Pan, F. S.; Wang, M. R.; Li, W. D.; Song, Y. M.; Liu, G. H.; Yang, H.; Gao, B. X.; Wu, H.; Jiang, Z. Y. Hybrid membranes for pervaporation separations. J. Memb. Sci. 2017, 541, 329–346.
Zhang, B.; Dai, X. Y.; Wei, N. N.; Cui, X. C.; Fan, F. Q.; Zhang, J. D.; Zhang, D. L.; Meng, F. B.; Qi, W.; Fu, Y. Fabrication of oriented MOF-based mixed matrix membrane via ion-induced synchronous synthesis. Small 2024, 20, 2305688.
Yu, L. T.; Hao, L. Q.; Feng, Y.; Pang, J.; Guo, M. W.; Li, L. J.; Fan, W. D.; Fan, L. L.; Wang, R. M.; Kang, Z. X. et al. Assembling ionic liquid into porous molecular filler of mixed matrix membrane to trigger high gas permeability, selectivity, and stability for CO2/CH4 separation. Nano Res. 2024, 17, 4535–4543.
Goh, S. H.; Lau, H. S.; Yong, W. F. Metal-organic frameworks (MOFs)-based mixed matrix membranes (MMMs) for gas separation: A review on advanced materials in harsh environmental applications. Small 2022, 18, 2107536.
Yang, P. F.; Xu, L. L.; Trogadas, P.; Coppens, M. O.; Lan, Y. Bioinspired supramolecular macrocycle hybrid membranes with enhanced proton conductivity. Nano Res. 2024, 17, 797–805.
Miller, D. J.; Dreyer, D. R.; Bielawski, C. W.; Paul, D. R.; Freeman, B. D. Surface modification of water purification membranes. Angew. Chem., Int. Ed. 2017, 56, 4662–4711.
Zhang, N. N.; Huang, S.; Yuan, Z. S.; Zhu, J. C.; Zhao, Z. F.; Niu, Z. Q. Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 2861–2865.
Wei, C. L.; Tao, Y.; An, Y. L.; Tian, Y.; Zhang, Y. C.; Feng, J. K.; Qian, Y. T. Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv. Funct. Mater. 2020, 30, 2004613.
Kang, Y.; Hu, T.; Wang, Y. Q.; He, K. Q.; Wang, Z. Y.; Hora, Y.; Zhao, W.; Xu, R. M.; Chen, Y.; Xie, Z. L. et al. Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving. Nat. Commun. 2023, 14, 4075.
Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 2018, 12, 4583–4593.
Wan, S. J.; Li, X.; Chen, Y.; Liu, N. N.; Du, Y.; Dou, S. X.; Jiang, L.; Cheng, Q. F. High-strength scalable MXene films through bridging-induced densification. Science 2021, 374, 96–99.
Li, W.; Zhou, T. Z.; Zhang, Z. J.; Li, L.; Lian, W. W.; Wang, Y. L.; Lu, J. F.; Yan, J.; Wang, H. G.; Wei, L. et al. Ultrastrong MXene film induced by sequential bridging with liquid metal. Science 2024, 385, 62–68.
Yang, J.; Li, M. Z.; Fang, S. L.; Wang, Y. L.; He, H. Y.; Wang, C. L.; Zhang, Z. J.; Yuan, B. C.; Jiang, L.; Baughman, R. H. et al. Water-induced strong isotropic MXene-bridged graphene sheets for electrochemical energy storage. Science 2024, 383, 771–777.
Zhang, Q. X.; Lai, H. R.; Fan, R. Z.; Ji, P. Y.; Fu, X. L.; Li, H. High concentration of Ti3C2T x MXene in organic solvent. ACS Nano. 2021, 15, 5249–5262.
Liu, Y. T.; Zhang, P.; Sun, N.; Anasori, B.; Zhu, Q. Z.; Liu, H.; Gogotsi, Y.; Xu, B. Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 2018, 30, 1707334.
Mu, Y. F.; Feng, H.; Zhang, S. L.; Zhang, C. Y.; Lu, N.; Luan, J. S.; Wang, G. B. Development of highly permeable and antifouling ultrafiltration membranes based on the synergistic effect of carboxylated polysulfone and bio-inspired co-deposition modified hydroxyapatite nanotubes. J. Colloid Interface Sci. 2020, 572, 48–61.
Rana, D.; Matsuura, T. Surface modifications for antifouling membranes. Chem. Rev. 2010, 110, 2448–2471.
Ho, C. D.; Chang, H.; Chang, C. L.; Huang, C. H. Theoretical and experimental studies of flux enhancement with roughened surface in direct contact membrane distillation desalination. J. Memb. Sci. 2013, 433, 160–166.
Sing, K. S. W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619.
Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994.
Wang, Q. H.; Yang, X. Y.; Li, C. W.; Zhao, C. Y.; Huang, Y. J.; Qiu, S. Q.; Qin, Y. R.; Shi, C. L. Titanium-based lithium ion sieve adsorbent H2TiO3 with enhanced Li+ adsorption properties by magnetic Fe doping. Sep. Purif. Technol 2024, 346, 127455.
Qu, W.; Fu, Y. C.; Zhang, Y. S.; Wang, W. C.; Xu, C.; Liu, C.; Zhang, Y.; Wang, Q.; Liu, B. C. Structural/surficial dual regulated granular H2TiO3 lithium-ion sieves for lithium extraction from salt lake brine. J. Clean. Prod. 2024, 449, 141789.
Liu, Q.; Xing, H. F.; Zhang, Y.; Zhao, Y. Z.; Rong, M.; Liu, H. Z.; Yang, L. R. Highly hydrophilic H2TiO3 ion sieve with neodymium (Nd) doping enables fast and high-efficiency Li extraction. Sep. Purif. Technol. 2024, 345, 127263.
Song, Y. C.; Tan, H. H.; Qin, S. L.; Liu, Z.; Liu, C. T.; Shen, C. Y.; Yang, P. P.; Li, S. W. Assembly of a core-shell MOF with stability into polyacrylamide hydrogel for boosting extraction of uranium from seawater. Nano Res. 2024, 17, 3398–3406.
Nassar, N. N.; Hassan, A.; Pereira-Almao, P. Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation. J. Colloid Interface Sci. 2011, 360, 233–238.
Cai, Z. W.; Zhao, D. L.; Fan, X. Y.; Zhang, L. C.; Liang, J.; Li, Z. X.; Li, J.; Luo, Y. S.; Zheng, D. D.; Wang, Y. et al. Rational construction of heterostructured Cu3P@TiO2 nanoarray for high-efficiency electrochemical nitrite reduction to ammonia. Small 2023, 19, 2300620.
Deng, Z. Q.; Li, L.; Ren, Y. C.; Ma, C. Q.; Liang, J.; Dong, K.; Liu, Q.; Luo, Y. L.; Li, T. S.; Tang, B. et al. Highly efficient two-electron electroreduction of oxygen into hydrogen peroxide over Cu-doped TiO2. Nano Res. 2022, 15, 3880–3885.
Wu, T. W.; Zhu, X. J.; Xing, Z.; Mou, S. Y.; Li, C. B.; Qiao, Y. X.; Liu, Q.; Luo, Y. L.; Shi, X. F.; Zhang, Y. N. et al. Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping. Angew. Chem., Int. Ed. 2019, 58, 18449–18453.
Wei, S. D.; Wei, Y. F.; Chen, T.; Liu, C. B.; Tang, Y. H. Porous lithium ion sieves nanofibers: General synthesis strategy and highly selective recovery of lithium from brine water. Chem. Eng. J. 2020, 379, 122407.
Li, C. B.; Yu, J. L.; Yang, L.; Zhao, J. X.; Kong, W. H.; Wang, T.; Asiri, A. M.; Li, Q.; Sun, X. P. Spinel LiMn2O4 nanofiber: An efficient electrocatalyst for N2 reduction to NH3 under ambient conditions. Inorg. Chem. 2019, 58, 9597–9601.
Li, L.; Chen, H. J.; Li, L.; Li, B. H.; Wu, Q. B.; Cui, C. H.; Deng, B.; Luo, Y. L.; Liu, Q.; Li, T. S. et al. La-doped TiO2 nanorods toward boosted electrocatalytic N2-to-NH3 conversion at ambient conditions. Chin. J. Catal. 2021, 42, 1755–1762.
Yu, Y.; Yu, L.; Wang, C. H.; Chen, J. P. An innovative yttrium nanoparticles/PVA modified PSF membrane aiming at decontamination of arsenate. J. Colloid Interface Sci. 2018, 530, 658–666.
Wang, L. W.; Fang, F.; Liu, Y.; Li, J.; Huang, X. J. Facile preparation of heparinized polysulfone membrane assisted by polydopamine/polyethyleneimine co-deposition for simultaneous LDL selectivity and biocompatibility. Appl. Surf. Sci. 2016, 385, 308–317.
Casetta, J.; Ortiz, D. G.; Pochat-Bohatier, C.; Bechelany, M.; Miele, P. Atomic layer deposition of TiO2 on porous polysulfone hollow fibers membranes for water treatment. Sep. Purif. Technol. 2023, 312, 123377.
He, J. S.; Song, Y. H.; Chen, J. P. Development of a novel biochar/PSF mixed matrix membrane and study of key parameters in treatment of copper and lead contaminated water. Chemosphere 2017, 186, 1033–1045.
Yue, L. C.; Wu, D. H.; Wu, Z. G.; Zhao, W. X.; Wang, D.; Zhong, B. H.; Liu, Q.; Liu, Y.; Gao, S. Y.; Asiri, A. M. et al. A MnS/FeS2 heterostructure with a high degree of lattice matching anchored into carbon skeleton for ultra-stable sodium-ion storage. J. Mater. Chem. A 2021, 9, 24024–24035.
Xia, L.; Wu, X. F.; Wang, Y.; Niu, Z. G.; Liu, Q.; Li, T. S.; Shi, X. F.; Asiri, A. M.; Sun, X. P. S-doped carbon nanospheres: An efficient electrocatalyst toward artificial N2 fixation to NH3. Small Methods 2019, 3, 1800251.
Shi, Q.; Ni, L.; Zhang, Y. F.; Feng, X. S.; Chang, Q. H.; Meng, J. Q. Poly(p-phenylene terephthamide) embedded in a polysulfone as the substrate for improving compaction resistance and adhesion of a thin film composite polyamide membrane. J. Mater. Chem. A 2017, 5, 13610–13624.
Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.