Phase change materials (PCM) have evolved over time and gradually adapted to the emerging needs of society. Their excellent properties, such as high latent heat storage capacity and fast response time, have aroused tremendous interest in applications such as thermal management systems, building energy efficiency, communications, and power. However, drawbacks such as low thermal conductivity, susceptibility to leakage, and small latent heat of phase transition limit the practical application of PCM. In this work, an innovative wood derived carbon-carbon nanotubes-paraffin wax (WDC-CNTs-PW) phase change energy storage composite is prepared by the high-temperature carbonization process, injection chemical vapor deposition, and vacuum impregnation method. The enhanced thermal conductivity of WDC-CNTs-PW is mainly due to the three-dimensional porous structure of WDC and the homogeneous introduction of the thermally enhanced filler CNTs. The axial and radial thermal conductivities of WDC-CNTs-PW are 0.35 and 0.29 W·m−1·K−1, respectively. The enthalpies of melting and crystallization of WDC-CNTs-PW are 142.02 and 136.14 J·g−1, respectively, with impregnation efficiency of 70.95% and loading ratio of 73.01%. With excellent thermal conductivity, latent heat of phase transition, and encapsulation property, WDC-CNTs-PW opens up a surprising strategy for PCM applications in areas such as high technology microelectronics and energy-saving in houses.
Achakulwisut, P.; Erickson, P.; Guivarch, C.; Schaeffer, R.; Brutschin, E.; Pye, S. Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions. Nat. Commun. 2023, 14, 5425.
Dubey, A. K.; Sun, J. Y.; Choudhary, T.; Dash, M.; Rakshit, D.; Ansari, M. Z.; Ramakrishna, S.; Liu, Y.; Nanda, H. S. Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: An approach towards net zero. Renew. Sustain. Energy Rev. 2023, 182, 113421.
Bogdanov, D.; Ram, M.; Aghahosseini, A.; Gulagi, A.; Oyewo, A. S.; Child, M.; Caldera, U.; Sadovskaia, K.; Farfan, J.; De Souza Noel Simas Barbosa, L. et al. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy 2021, 227, 120467.
Yao, Z. P.; Lum, Y. W.; Johnston, A.; Mejia-Mendoza, L. M.; Zhou, X.; Wen, Y. G.; Aspuru-Guzik, A.; Sargent, E. H.; Seh, Z. W. Machine learning for a sustainable energy future. Nat. Rev. Mater. 2023, 8, 202–215.
Han, Y. X.; Ruan, K. P.; He, X. Y.; Tang, Y. S.; Guo, H.; Guo, Y. Q.; Qiu, H.; Gu, J. W. Highly thermally conductive aramid nanofiber composite films with synchronous visible/infrared camouflages and information encryption. Angew. Chem., Int. Ed. 2024, 63, e202401538.
Zhong, X.; He, M. K.; Zhang, C. Y.; Guo, Y. Q.; Hu, J. W.; Gu, J. W. Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 2024, 34, 2313544.
Yu, H. T.; Feng, Y. Y.; Chen, C.; Zhang, H.; Peng, L. Q.; Qin, M. M.; Feng, W. Highly thermally conductive adhesion elastomer enhanced by vertically aligned folded graphene. Adv. Sci. 2022, 9, 2201331.
Zhang, H.; He, Q. X.; Yu, H. T.; Qin, M. M.; Feng, Y. Y.; Feng, W. A bioinspired polymer-based composite displaying both strong adhesion and anisotropic thermal conductivity. Adv. Funct. Mater. 2023, 33, 2211985.
Zhang, H.; He, Q. X.; Yu, H. T.; Qin, M. M.; Feng, Y. Y.; Feng, W. Mussel-inspired polymer-based composites for efficient thermal management in dry and underwater environments. ACS Nano 2024, 18, 21399–21410.
Nazir, H.; Batool, M.; Osorio, F. J. B.; Isaza-Ruiz, M.; Xu, X. H.; Vignarooban, K.; Phelan, P.; Inamuddin; Kannan, A. M. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Transf. 2019, 129, 491–523.
Yang, Z. L.; Walvekar, R.; Wong, W. P.; Sharma, R. K.; Dharaskar, S.; Khalid, M. Advances in phase change materials, heat transfer enhancement techniques, and their applications in thermal energy storage: A comprehensive review. J. Energy Storage 2024, 87, 111329.
Liu, C. H.; Xiao, T.; Zhao, J. T.; Liu, Q. Y.; Sun, W. J.; Guo, C. L.; Ali, H. M.; Chen, X.; Rao, Z. H.; Gu, Y. L. Polymer engineering in phase change thermal storage materials. Renew. Sustain. Energy Rev. 2023, 188, 113814.
Jiang, Y. X.; Chai, L. Y.; Zhang, D. H.; Ouyang, F. P.; Zhou, X. Y.; Alhassan, S. I.; Liu, S. L.; He, Y. J.; Yan, L. J.; Wang, H. Y. et al. Facet-controlled LiMn2O4/C as deionization electrode with enhanced stability and high desalination performance. Nanomicro Lett. 2022, 14, 176.
Ibrahim, N. I.; Al-Sulaiman, F. A.; Rahman, S.; Yilbas, B. S.; Sahin, A. Z. Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review. Renew. Sustain. Energy Rev. 2017, 74, 26–50.
Tripathi, B. M.; Shukla, S. K.; Rathore, P. K. S. A comprehensive review on solar to thermal energy conversion and storage using phase change materials. J. Energy Storage 2023, 72, 108280.
Zhang, Y. F.; Tang, J. B.; Chen, J. L.; Zhang, Y. H.; Chen, X. X.; Ding, M.; Zhou, W. J.; Xu, X. J.; Liu, H.; Xue, G. B. Accelerating the solar-thermal energy storage via inner-light supplying with optical waveguide. Nat. Commun. 2023, 14, 3456.
Geng, L.; Cui, J. P.; Zhang, C. L.; Yan, Y. B.; Zhao, J. T.; Liu, C. H. Chemistry in phase change energy storage: Properties regulation on organic phase change materials by covalent bond modification. Chem. Eng. J. 2024, 495, 153359.
Li, Z.; Ding, X. S.; Feng, Y. Y.; Feng, W.; Han, B. H. Structural and dimensional transformations between covalent organic frameworks via linker exchange. Macromolecules 2019, 52, 1257–1265.
He, M. K.; Zhong, X.; Lu, X. H.; Hu, J. W.; Ruan, K. P.; Guo, H.; Zhang, Y. L.; Guo, Y. Q.; Gu, J. W. Excellent low-frequency microwave absorption and high thermal conductivity in polydimethylsiloxane composites endowed by hydrangea-like CoNi@BN heterostructure fillers. Adv. Mater. 2024, 36, 2410186.
Guo, Y. Q.; Wang, S. S.; Zhang, H. T.; Guo, H.; He, M. K.; Ruan, K. P.; Yu, Z.; Wang, G. S.; Qiu, H.; Gu, J. W. Consistent thermal conductivities of spring-like structured polydimethylsiloxane composites under large deformation. Adv. Mater. 2024, 36, 2404648.
Wu, L. Z.; Chen, Y. Z.; Li, Y.; Meng, Q.; Duan, T. Functionally integrated g-C3N4@wood-derived carbon with an orderly interconnected porous structure. Appl. Surf. Sci. 2021, 540, 148440.
Zuo, Y. Q.; Feng, J.; Soyol-Erdene, T. O.; Wei, Z.; Hu, T.; Zhang, Y.; Tang, W. W. Recent advances in wood-derived monolithic carbon materials: Synthesis approaches, modification methods and environmental applications. Chem. Eng. J. 2023, 463, 142332.
Gan, W. T.; Xiao, S. L.; Gao, L. K.; Gao, R. N.; Li, J.; Zhan, X. X. Luminescent and transparent wood composites fabricated by poly(methyl methacrylate) and γ-Fe2O3@YVO4: Eu3+ nanoparticle impregnation. ACS Sustain. Chem. Eng. 2017, 5, 3855–3862.
Li, Y. Q.; Huang, X. B.; Lv, J. J.; Wang, F.; Jiang, S. H.; Wang, G. Enzymolysis-treated wood-derived hierarchical porous carbon for fluorescence-functionalized phase change materials. Compos. Part B: Eng. 2022, 234, 109735.
Zhou, M.; Wang, J. W.; Zhao, Y.; Wang, G. H.; Gu, W. H.; Ji, G. B. Hierarchically porous wood-derived carbon scaffold embedded phase change materials for integrated thermal energy management, electromagnetic interference shielding and multifunctional application. Carbon. 2021, 183, 515–524.
Yang, H. Y.; Wang, Y. Z.; Yu, Q. Q.; Cao, G. L.; Sun, X. H.; Yang, R. E.; Zhang, Q.; Liu, F.; Di, X.; Li, J. et al. Low-cost, three-dimension, high thermal conductivity, carbonized wood-based composite phase change materials for thermal energy storage. Energy 2018, 159, 929–936.
Li, X. H.; Zhu, Z. Q.; Yang, P.; You, Z. P.; Dong, Y.; Tang, M.; Chen, M. Z.; Zhou, X. Y. Carbonized wood loaded with carbon dots for preparation long-term shape-stabilized composite phase change materials with superior thermal energy conversion capacity. Renew. Energy 2021, 174, 19–30.
Zeng, M. J.; Li, X. F.; Li, W.; Zhao, T. Y.; Wu, J.; Hao, S. M.; Yu, Z. Z. Self-supported and hierarchically porous activated carbon nanotube/carbonized wood electrodes for high-performance solid-state supercapacitors. Appl. Surf. Sci. 2022, 598, 153765.
Hedman, D.; McLean, B.; Bichara, C.; Maruyama, S.; Larsson, J. A.; Ding, F. Dynamics of growing carbon nanotube interfaces probed by machine learning-enabled molecular simulations. Nat. Commun. 2024, 15, 4076.
Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 2015, 115, 4744–4822.
Cai, Y. Z.; Chai, Y. L.; Cheng, L. F.; Guo, S. Y.; Yuan, Y. B.; Huang, X.; Yu, Z. X.; Chen, M. X.; Ren, S. X.; Yuan, H. D. N-doped CNTs/CoNi nanochains-carbon hollow microspheres multi-level multi-scale heterogeneous interface structures and microwave absorption properties. Carbon. 2024, 228, 119423.
Yu, H. T.; Feng, Y. Y.; Chen, C.; Zhang, Z. X.; Cai, Y.; Qin, M. M.; Feng, W. Thermally conductive, self-healing, and elastic polyimide@vertically aligned carbon nanotubes composite as smart thermal interface material. Carbon 2021, 179, 348–357.
Aftab, W.; Mahmood, A.; Guo, W. H.; Yousaf, M.; Tabassum, H.; Huang, X. Y.; Liang, Z. B.; Cao, A. Y.; Zou, R. Q. Polyurethane-based flexible and conductive phase change composites for energy conversion and storage. Energy Storage Mater. 2019, 20, 401–409.
Zhu, W.; Hu, N. X.; Wei, Q. P.; Zhang, L.; Li, H. C.; Luo, J. T.; Lin, C. T.; Ma, L.; Zhou, K. C.; Yu, Z. M. Carbon nanotube-Cu foam hybrid reinforcements in composite phase change materials with enhanced thermal conductivity. Mater. Des. 2019, 172, 107709.
Tang, B. T.; Wang, Y. M.; Qiu, M. G.; Zhang, S. F. A full-band sunlight-driven carbon nanotube/PEG/SiO2 composites for solar energy storage. Sol. Energy Mater. Sol. Cells 2014, 123, 7–12.
Fernando, D.; Kowalczyk, M.; Guindos, P.; Auer, M.; Daniel, G. Electron tomography unravels new insights into fiber cell wall nanostructure; exploring 3D macromolecular biopolymeric nano-architecture of spruce fiber secondary walls. Sci. Rep. 2023, 13, 2350.
Schuepfer, D. B.; Badaczewski, F.; Guerra-Castro, J. M.; Hofmann, D. M.; Heiliger, C.; Smarsly, B.; Klar, P. J. Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy. Carbon. 2020, 161, 359–372.
Du, P. X.; Wang, M.; Zhong, X. C.; Chen, B. H.; Li, Z. Y.; Zhou, R. Y.; Huo, Y. T.; Rao, Z. H. Anisotropic porous skeleton for efficient thermal energy storage and enhanced heat transfer: Experiments and numerical models. J. Energy Storage 2022, 56, 106021.
Luan, Y.; Yang, M.; Ma, Q. Q.; Qi, Y.; Gao, H. Y.; Wu, Z. Y.; Wang, G. Introduction of an organic acid phase changing material into metal-organic frameworks and the study of its thermal properties. J. Mater. Chem. A. 2016, 4, 7641–7649.
Balasubramanian, K.; Pandey, A. K.; Abolhassani, R.; Rubahn, H. G.; Rahman, S.; Mishra, Y. K. Tetrapods based engineering of organic phase change material for thermal energy storage. Chem. Eng. J. 2023, 462, 141984.
Chen, X.; Cheng, P.; Tang, Z. D.; Xu, X. L.; Gao, H. Y.; Wang, G. Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion. Adv. Sci. 2021, 8, 2001274.
Lu, Y. Y.; Yu, D. H.; Dong, H. X.; Lv, J. R.; Wang, L. C.; Zhou, H.; Li, Z.; Liu, J.; He, Z. Z. Magnetically tightened form-stable phase change materials with modular assembly and geometric conformality features. Nat. Commun. 2022, 13, 1397.
Jing, Y. G.; Zhao, Z. C.; Cao, X. L.; Sun, Q. R.; Yuan, Y. P.; Li, T. X. Ultraflexible, cost-effective and scalable polymer-based phase change composites via chemical cross-linking for wearable thermal management. Nat. Commun. 2023, 14, 8060.