PDF (12 MB)
Collect
Submit Manuscript
Show Outline
Figures (4)

Research Article | Open Access | Online First

ZnSeTe/CdZnSe-based type-II core–shell quantum dots with tunable blue emission

Muhammad Ramzan1Chenhui Wang2 ()Mingrui Liu1Peng Huang3Jing Li4Yin Song3Haizheng Zhong1 ()
MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Beijing Engineering Research Center for Mixed Reality and Advanced Display Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
MIIT Key Laboratory of Complex-Field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Show Author Information

Graphical Abstract

View original image Download original image
We report the synthesis of ZnSeTe/CdZnSe-based type-II core–shell quantum dots with tunable blue emission.

Abstract

Blue emissive quantum dots are key materials in emerging light-emitting technologies for display applications. Herein, we report the synthesis of ZnSeTe/CdZnSe-based type-II core–shell quantum dots with a low Cd content of less than 2.5%. By modifying the Cd content of the CdZnSe shell, photoluminescence emission can be tuned from 430 to 510 nm with a full width at half maximum of less than 26 nm. Transient absorption spectra illustrate the charge transfer between the conduction band of ZnSeTe and the conduction band of CdZnSe, as well as the recombination between the valence band of ZnSeTe and the conduction band of CdZnSe. By subsequent growth of ZnSe and ZnS shells, the resulting quantum dots achieved a photoluminescence quantum yield of 95%. We further demonstrate a blue quantum dot light-emitting diode with an emission peak at 467 nm, showing a maximum external quantum efficiency of 5%, a maximum luminance of 10,376 cd·m−2, and an extrapolated T95 lifetime of 4.7 h.

Electronic Supplementary Material

Download File(s)
7267_ESM.pdf (2.3 MB)

References

[1]

Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23.

[2]

Shu, Y. F.; Lin, X.; Qin, H. Y.; Hu, Z.; Jin, Y. Z.; Peng, X. G. Quantum dots for display applications. Angew. Chem., Int. Edit. 2020, 59, 22312–22323.

[3]

Jang, E.; Jang, H. Review: Quantum dot light-emitting diodes. Chem. Rev. 2023, 123, 4663–4692.

[4]

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

[5]

Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

[6]

Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.

[7]

Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.

[8]

Deng, Y. Z.; Peng, F.; Lu, Y.; Zhu, X. T.; Jin, W. X.; Qiu, J.; Dong, J. W.; Hao, Y. L.; Di, D. W.; Gao, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photonics 2022, 16, 505–511.

[9]

Chen, X. T.; Lin, X. F.; Zhou, L. K.; Sun, X. J.; Li, R.; Chen, M. Y.; Yang, Y. X.; Hou, W. J.; Wu, L. J.; Cao, W. R. et al. Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling. Nat. Commun. 2023, 14, 284.

[10]

Gao, Y.; Li, B.; Liu, X. N.; Shen, H. B.; Song, Y.; Song, J. J.; Yan, Z. J.; Yan, X. H.; Chong, Y. H.; Yao, R. Y. et al. Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting. Nat. Nanotechnol. 2023, 18, 1168–1174.

[11]

Xu, H. Y.; Song, J. J.; Zhou, P. H.; Song, Y.; Xu, J.; Shen, H. B.; Fang, S. C.; Gao, Y.; Zuo, Z. J.; Pina, J. M. et al. Dipole–dipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes. Nat. Photonics 2024, 18, 186–191.

[12]

Zhang, W. J.; Li, B.; Chang, C.; Chen, F.; Zhang, Q.; Lin, Q. L.; Wang, L.; Yan, J. H.; Wang, F. F.; Chong, Y. H. et al. Stable and efficient pure blue quantum-dot LEDs enabled by inserting an anti-oxidation layer. Nat. Commun. 2024, 15, 783.

[13]

Li, M. Q.; Li, R.; Wu, L. J.; Lin, X. F.; Xia, X. Q.; Ao, Z. T.; Sun, X. J.; Chen, X. T.; Chen, S. Ultrabright and stable top-emitting quantum-dot light-emitting diodes with negligible angular color shift. Nat. Commun. 2024, 15, 5161.

[14]

Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004, 4, 11–18.

[15]

Kirchner, C.; Liedl, T.; Kudera, S.; Pellegrino, T.; Muñoz Javier, A.; Gaub, H. E.; Stölzle, S.; Fertig, N.; Parak, W. J. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 2005, 5, 331–338.

[16]

Jang, E. P.; Han, C. Y.; Lim, S. W.; Jo, J. H.; Jo, D. Y.; Lee, S. H.; Yoon, S. Y.; Yang, H. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters. ACS Appl. Mater. Interfaces 2019, 11, 46062–46069.

[17]

Han, C. Y.; Lee, S. H.; Song, S. W.; Yoon, S. Y.; Jo, J. H.; Jo, D. Y.; Kim, H. M.; Lee, B. J.; Kim, H. S.; Yang, H. More than 9% efficient ZnSeTe quantum dot-based blue electroluminescent devices. ACS Energy Lett. 2020, 5, 1568–1576.

[18]

Bi, Y. H.; Cao, S.; Yu, P.; Du, Z. T.; Wang, Y. J.; Zheng, J. J.; Zou, B. S.; Zhao, J. L. Reducing emission linewidth of pure-blue ZnSeTe quantum dots through shell engineering toward high color purity light-emitting diodes. Small 2023, 19, 2303247.

[19]

Imran, M.; Paritmongkol, W.; Mills, H. A.; Hassan, Y.; Zhu, T.; Wang, Y. K.; Liu, Y.; Wan, H. Y.; Park, S. M.; Jung, E. et al. Molecular-additive-assisted tellurium homogenization in ZnSeTe quantum dots. Adv. Mater. 2023, 35, 2303528.

[20]

Cheng, C. Y.; Yu, B. B.; Huang, F.; Gao, L.; Cao, K. Q.; Zang, P. P.; Zheng, K. B.; Tian, J. J. Near-unity quantum yield ZnSeTe quantum dots enabled by controlling shell growth for efficient deep-blue light-emitting diodes. Adv. Funct. Mater. 2024, 34, 2313811.

[21]

Deng, X. Z.; Zhang, F. J.; Zhang, Y.; Shen, H. B. Heavy-metal-free blue-emitting ZnSe(Te) quantum dots: Synthesis and light-emitting applications. J. Mater. Chem. C 2023, 11, 14495–14514.

[22]

Xie, R. G.; Battaglia, D.; Peng, X. G. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 2007, 129, 15432–15433.

[23]

Xu, S.; Ziegler, J.; Nann, T. Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. J. Mater. Chem. 2008, 18, 2653–2656.

[24]

Gao, M.; Yang, H. W.; Shen, H. B.; Zeng, Z. P.; Fan, F. J.; Tang, B. B.; Min, J. J.; Zhang, Y.; Hua, Q. Z.; Li, L. S.; Ji, B.; Du, Z et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett. 2021, 21, 7252–7260.

[25]

Long, Z. W.; Liu, M. R.; Wu, X. G.; Gu, K.; Yang, G. L.; Chen, Z.; Liu, Y.; Liu, R. H.; Zhong, H. Z. A reactivity-controlled epitaxial growth strategy for synthesizing large nanocrystals. Nat. Synth. 2023, 2, 296–304.

[26]

He, J. H.; Wang, C. H.; Liu, M. R.; Ramzan, M.; Long, Z. W.; Wu, X. G.; Chen, Y.; Zhong, H. Z. Overcoming side reaction effects in the colloidal synthesis of ZnSe/ZnS core/shell quantum dots with an etching strategy. Nano Res. 2024, 17, 7020–7026.

[27]

Yang, X. Y.; Zhao, D. W.; Leck, K. S.; Tan, S. T.; Tang, Y. X.; Zhao, J. L.; Demir, H. V.; Sun, X. W. Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes. Adv. Mater. 2012, 24, 4180–4185.

[28]

Zhang, H.; Ma, X. Y.; Lin, Q. L.; Zeng, Z. P.; Wang, H. Z.; Li, L. S.; Shen, H. B.; Jia, Y.; Du, Z. L. High-brightness blue InP quantum dot-based electroluminescent devices: The role of shell thickness. J. Phys. Chem. Lett. 2020, 11, 960–967.

[29]

Kim, K. H.; Jo, J. H.; Jo, D. Y.; Han, C. Y.; Yoon, S. Y.; Kim, Y.; Kim, Y. H.; Ko, Y. H.; Kim, S. W.; Lee, C. et al. Cation-exchange-derived InGaP alloy quantum dots toward blue emissivity. Chem. Mater. 2020, 32, 3537–3544.

[30]

Zhang, W. D.; Ding, S. H.; Zhuang, W. D.; Wu, D.; Liu, P.; Qu, X. W.; Liu, H. C.; Yang, H. C.; Wu, Z. H.; Wang, K. et al. InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 2020, 30, 2005303.

[31]

Wu, Z. H.; Liu, P.; Zhang, W. D.; Wang, K.; Sun, X. W. Development of InP quantum dot-based light-emitting diodes. ACS Energy Lett. 2020, 5, 1095–1106.

[32]

Kim, S.; Fisher, B.; Eisler, H. J.; Bawendi, M. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 2003, 125, 11466–11467.

[33]

Ivanov, S. A.; Piryatinski, A.; Nanda, J.; Tretiak, S.; Zavadil, K. R.; Wallace, W. O.; Werder, D.; Klimov, V. I. Type-II core/shell CdS/ZnSe nanocrystals: Synthesis, electronic structures, and spectroscopic properties. J. Am. Chem. Soc. 2007, 129, 11708–11719.

[34]

Li, X. M.; Shen, H. B.; Li, S.; Niu, J. Z.; Wang, H. Z.; Li, L. S. Investigation on type-II Cu2S–CdS core/shell nanocrystals: Synthesis and characterization. J. Mater. Chem. 2010, 20, 923–928.

[35]

Bang, J.; Park, J.; Lee, J. H.; Won, N.; Nam, J.; Lim, J.; Chang, B. Y.; Lee, H. J.; Chon, B.; Shin, J. et al. ZnTe/ZnSe (core/shell) type-II quantum dots: Their optical and photovoltaic properties. Chem. Mater. 2010, 22, 233–240.

[36]

Tyrakowski, C. M.; Shamirian, A.; Rowland, C. E.; Shen, H. Y.; Das, A.; Schaller, R. D.; Snee, P. T. Bright type II quantum dots. Chem. Mater. 2015, 27, 7276–7281.

[37]

Cao, K. Q.; Yu, B. B.; Huang, F.; Pan, Q. Y.; Wang, J. F.; Ning, J. J.; Zheng, K. B.; Pullerits, T.; Tian, J. J. Constructing ZnTe spherical quantum well for efficient light emission. Nano Lett. 2024, 24, 5238–5245.

[38]

Lin, Q. L.; Song, B.; Wang, H. Z.; Zhang, F. J.; Chen, F.; Wang, L.; Li, L. S.; Guo, F.; Shen, H. B. High-efficiency deep-red quantum-dot light-emitting diodes with type-II CdSe/CdTe core/shell quantum dots as emissive layers. J. Mater. Chem. C 2016, 4, 7223–7229.

[39]

Jin, X.; Li, H. Y.; Huang, S. J.; Gu, X. B.; Shen, H. B.; Li, D. Y.; Zhang, X. G.; Zhang, Q.; Li, F.; Li, Q. H. Bright alloy type-II quantum dots and their application to light-emitting diodes. J. Colloid Interface Sci. 2018, 510, 376–383.

[40]

Karatum, O.; Jalali, H. B.; Sadeghi, S.; Melikov, R.; Srivastava, S. B.; Nizamoglu, S. Light-emitting devices based on type-II InP/ZnO quantum dots. ACS Photonics 2019, 6, 939–946.

[41]

Eren, G. O.; Sadeghi, S.; Jalali, BH. HB.; Ritter, M.; Han, M.; Baylam, I.; Melikov, R.; Onal, A.; Oz, F.; Sahin, M. et al. Cadmium-free and efficient type-II InP/ZnO/ZnS quantum dots and their application for LEDs. ACS Appl. Mater. Interfaces 2021, 13, 32022–32030.

[42]

Liu, M. R.; Wang, C. H.; Huang, P.; He, J. H.; Ramzan, M.; Zhong, H. Z. Pure-blue emissive ZnSe/Cd x Zn1− x S/ZnS quantum dots with type-II core–shell structure for display application. Nano Res. 2024, 17, 10476–10482.

[43]

Norris, D. J.; Bawendi, M. G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B 1996, 53, 16338–16346.

[44]

Lomascolo, M.; Cretì, A.; Leo, G.; Vasanelli, L.; Manna, L. Exciton relaxation processes in colloidal core/shell ZnSe/ZnS nanocrystals. Appl. Phys. Lett. 2003, 82, 418–420.

[45]

Lad, A. D.; Mahamuni, S. Effect of ZnS shell formation on the confined energy levels of ZnSe quantum dots. Phys. Rev. B 2008, 78, 125421.

[46]
Jang, E.; Kim, T.; Chung, H.; Choi, S. M.; Won, Y. H.; Lee, J. Y. Effect of tellurium doping on optoelectronic properties of blue ZnTeSe quantum dots. Research Square. Preprint (Version 1), January 26, 2022. Available from https://doi.org/10.21203/rs.3.rs-1183117/v1 (accessed Month Day, Year).
[47]

Jin, W. X.; Deng, Y. Z.; Guo, B. B.; Lian, Y. X.; Zhao, B. D.; Di, D. W.; Sun, X. W.; Wang, K.; Chen, S. M.; Yang, Y. X. et al. On the accurate characterization of quantum-dot light-emitting diodes for display applications. npj Flex. Electron. 2022, 6, 35.

Nano Research
Cite this article:
Ramzan M, Wang C, Liu M, et al. ZnSeTe/CdZnSe-based type-II core–shell quantum dots with tunable blue emission. Nano Research, 2025, https://doi.org/10.26599/NR.2025.94907267
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return