PDF (23.6 MB)
Collect
Submit Manuscript
Research Article | Open Access

Single atom Cu-O2N bridge between BiVO4 and COFs toward photoelectrochemical seawater splitting

Zicong ZhangGaohang SongWenming Sun ()Zhaorui HuaYang Tian()
Department of Chemistry, Capital Normal University, Beijing 100048, China
Show Author Information

Graphical Abstract

View original image Download original image
A Cu-O2N single-atom bridge (SAB) was constructed at the contact interface between TpPa-1 and BiVO4, successfully preparing a composite photoanode with efficient charge separation ability. This work demonstrates the significant enhancement of photoelectrochemical (PEC) water splitting performance through incorporating Cu-O2N SAB with covalent organic framework (COF) supports and provides a promising strategy for the design of efficient and stable seawater splitting photoanodes.

Abstract

Photoelectrochemical (PEC) water splitting has great potential for solar energy conversion to hydrogen. However, the slow charge transfer in the photoanodes remains a core issue limiting the PEC performance. In this study, we address this issue by constructing a single-atom bridge (SAB) Cu-O2N at the interface between BiVO4 and covalent organic framework (COF) layer. X-ray absorption fine spectra and theoretical calculations demonstrate that the single-atom bridge is formed by the interfacial coordination reconstruction between BiVO4 and COF layers and create intermediate electronic states to facilitate the hole extraction. As a result, the SAB photoanode exhibits enhanced PEC water oxidation performance. Specifically, it achieves a photocurrent density of 4.84 mA·cm−2 at 1.23 V vs. reversible hydrogen electrode (RHE) in PEC simulant seawater splitting with a cocatalyst, higher than nearly all the previously reported BiVO4-based photoanodes. This work offers valuable insights into fast charge transfer in PEC systems and proposes a promising strategy for designing efficient photoelectrodes for seawater splitting.

Electronic Supplementary Material

Download File(s)
7273_ESM.pdf (8.5 MB)

References

[1]

He, B.; Cao, Y.; Lin, K.; Wang, Y.; Li, Z.; Yang, Y. K.; Zhao, Y. L.; Liu, X. Q. Strong interactions between Au nanoparticles and BiVO4 photoanode boosts hole extraction for photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2024, 63, e202402435.

[2]

Arunachalam, M.; Kanase, R. S.; Zhu, K.; Kang, S. H. Reliable bi-functional nickel-phosphate/TiO2 integration enables stable n-GaAs photoanode for water oxidation under alkaline condition. Nat. Commun. 2023, 14, 5429.

[3]

Wu, Z. L.; Liu, X. Y.; Li, H. J.; Sun, Z. Y.; Cao, M. S.; Li, Z. Z.; Fang, C. H.; Zhou, J. H.; Cao, C. B.; Dong, J. C. et al. A semiconductor-electrocatalyst nano interface constructed for successive photoelectrochemical water oxidation. Nat. Commun. 2023, 14, 2574.

[4]

Liu, C. H.; Zhang, N. S.; Li, Y.; Fan, R. L.; Wang, W. J.; Feng, J. Y.; Liu, C.; Wang, J. O.; Hao, W. C.; Li, Z. S. et al. Long-term durability of metastable β-Fe2O3 photoanodes in highly corrosive seawater. Nat. Commun. 2023, 14, 4266.

[5]

Yang, J. W.; Ji, S. G.; Jeong, C. S.; Kim, J.; Kwon, H. R.; Lee, T. H.; Lee, S. A.; Cheon, W. S.; Lee, S.; Lee, H. et al. High-efficiency unbiased water splitting with photoanodes harnessing polycarbazole hole transport layers. Energy Environ. Sci. 2024, 17, 2541–2553.

[6]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[7]

Gao, R. T.; Guo, X. T.; Liu, S. J.; Zhang, X. Y.; Liu, X. H.; Su, Y. G.; Wang, L. Ultrastable and high-performance seawater-based photoelectrolysis system for solar hydrogen generation. Appl. Catal. B: Environ. 2022, 304, 120883.

[8]

Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0–Co δ + interface double-site-mediated C–C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.

[9]

Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214.

[10]

Liu, Y.; Zhang, Z. Y.; Wang, K.; Tan, X. L.; Chen, J. R.; Ren, X. L.; Jiang, F. Efficient BiVO4 photoanode with an excellent hole transport layer of CuSCN for solar water oxidation. Adv. Energy Mater. 2024, 14, 2304223.

[11]

Wang, J. M.; Xu, L.; Wang, T. X.; Li, R. J.; Zhang, Y. X.; Zhang, J.; Peng, T. Y. Porphyrin conjugated polymer grafted onto BiVO4 nanosheets for efficient Z-scheme overall water splitting via cascade charge transfer and single-atom catalytic sites. Adv. Energy Mater. 2021, 11, 2003575.

[12]

Gao, R. T.; Wang, L. Stable cocatalyst-free BiVO4 photoanodes with passivated surface states for photocorrosion inhibition. Angew. Chem., Int. Ed. 2020, 59, 23094–23099.

[13]

Gao, Y.; Yang, C. D.; Sun, F. L.; He, D. P.; Wang, X. Q.; Chen, J.; Zheng, X. B.; Liu, R. C.; Pan, H. G.; Wang, D. S. Ligand-tuning metallic sites in molecular complexes for efficient water oxidation. Angew. Chem., Int. Ed. 2025, 64, e202415755.

[14]

Zhang, X. M.; Zhai, P. L.; Zhang, Y. X.; Wu, Y. Z.; Wang, C.; Ran, L.; Gao, J. F.; Li, Z. W.; Zhang, B.; Fan, Z. Z. et al. Engineering single-atomic Ni–N4–O sites on semiconductor photoanodes for high-performance photoelectrochemical water splitting. J. Am. Chem. Soc. 2021, 143, 20657–20669.

[15]

Gan, L.; He, G. S.; Liu, Y.; Li, W. Z.; Li, J. Engineering heteropolyblue hole transfer layer for efficient photoelectrochemical water splitting of BiVO4 photoanodes. Appl. Catal. B: Environ. Energy 2024, 349, 123895.

[16]

Wang, X. W.; Sun, W. M.; Tian, Y.; Dang, K.; Zhang, Q. M.; Shen, Z. R.; Zhan, S. H. Conjugated π electrons of MOFs drive charge separation at heterostructures interface for enhanced photoelectrochemical water oxidation. Small 2021, 17, 2100367.

[17]

Zhang, Y. D.; Sun, Y. J.; Wang, Q. Y.; Zhuang, Z. C.; Ma, Z. T.; Liu, L. M.; Wang, G. M.; Wang, D. S.; Zheng, X. S. Synergy of photogenerated electrons and holes toward efficient photocatalytic urea synthesis from CO2 and N2. Angew. Chem., Int. Ed. 2024, 63, e202405637.

[18]

Yang, N. C.; Zhang, S. N.; Xiao, Y. J.; Qi, Y.; Bao, Y. F.; Xu, P.; Jin, S. Y.; Zhang, F. X. Insight into the key restriction of BiVO4 photoanodes prepared by pyrolysis method for scalable preparation. Angew. Chem., Int. Ed. 2023, 62, e202308729.

[19]

Pei, H.; Peng, L. L.; Jiang, Z.; Zhang, Y. X.; Li, R. J.; Peng, T. Y. Gradient-tuned VO4 vacancies in BiVO4 photoanode for boosting bulk hole transport and oxygen evolution reaction performance. Adv. Funct. Mater. 2024, 34, 2401122.

[20]

Gao, R. T.; Liu, S. J.; Guo, X. T.; Zhang, R. A.; He, J. L.; Liu, X. H.; Nakajima, T.; Zhang, X. Y.; Wang, L. Pt-induced defects curing on BiVO4 photoanodes for near-threshold charge separation. Adv. Energy Mater. 2021, 11, 2102384.

[21]

Sun, M.; Gao, R. T.; He, J. L.; Liu, X. H.; Nakajima, T.; Zhang, X. Y.; Wang, L. Photo-driven oxygen vacancies extends charge carrier lifetime for efficient solar water splitting. Angew. Chem., Int. Ed. 2021, 60, 17601–17607.

[22]

Guo, X. T.; Liu, X. H.; Wang, L. NiMoO x as a highly protective layer against photocorrosion for solar seawater splitting. J. Mater. Chem. A 2022, 10, 1270–1277.

[23]

Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

[24]

Zhang, Y. L.; Liu, B.; Dai, Y. K.; Shen, L. X.; Guo, P.; Xia, Y. F.; Zhang, Z. Y.; Kong, F. T.; Zhao, L.; Wang, Z. B. Engineering Co–N–Cr cross-interfacial electron bridges to break activity-stability trade-off for superdurable bifunctional single atom oxygen electrocatalysts. Angew. Chem., Int. Ed. 2024, 63, e202400577.

[25]

Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

[26]

Ou, H. H.; Qian, Y. P.; Yuan, L. T.; Li, H.; Zhang, L. D.; Chen, S. H.; Zhou, M.; Yang, G. D.; Wang, D. S.; Wang, Y. G. Spatial position regulation of Cu single atom site realizes efficient nanozyme photocatalytic bactericidal activity. Adv. Mater. 2023, 35, 2305077.

[27]

Wang, Y.; Ma, F. Y.; Zhang, G. Q.; Zhang, J. W.; Zhao, H.; Dong, Y. M.; Wang, D. S. Precise synthesis of dual atom sites for electrocatalysis. Nano Res. 2024, 17, 9397–9427.

[28]

Tao, Y.; Guan, J. P.; Zhang, J.; Hu, S. Y.; Ma, R. Z.; Zheng, H. R.; Gong, J. X.; Zhuang, Z. C.; Liu, S. J.; Ou, H. H. et al. Ruthenium single atomic sites surrounding the support pit with exceptional photocatalytic activity. Angew. Chem., Int. Ed. 2024, 63, e202400625.

[29]

Li, J.; Zhou, J.; Wang, X. H.; Guo, C.; Li, R. H.; Zhuang, H. F.; Feng, W. H.; Hua, Y. J.; Lan, Y. Q. In situ construction of single-atom electronic bridge on COF to enhance photocatalytic H2 production. Angew. Chem. , Int. Ed. 2024, 63, e202411721.

[30]

Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.

[31]

Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.

[32]

Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched Ru x Fe3− x O4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.

[33]

Mu, X. Q.; Yu, M.; Liu, X. Y.; Liao, Y. R.; Chen, F. J.; Pan, H. Z.; Chen, Z. Y.; Liu, S. L.; Wang, D. S.; Mu, S. C. High-entropy ultrathin amorphous metal-organic framework-stabilized Ru(Mo) dual-atom sites for water oxidation. ACS Energy Lett. 2024, 9, 5763–5770.

[34]

Zhang, H. L.; Lin, Z.; Kidkhunthod, P.; Guo, J. Stable immobilization of nickel ions on covalent organic frameworks for panchromatic photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2023, 62, e202217527.

[35]

Qiu, J. Y.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J. J.; Wang, L. X.; Yu, J. G. COF/In2S3 S-scheme photocatalyst with enhanced light absorption and H2O2-production activity and fs-TA investigation. Adv. Mater. 2024, 36, 2400288.

[36]

Wang, L. N.; Zhang, J. M.; Li, Y.; Shi, Y. B.; Huang, J. W.; Mei, Q.; Wang, L.; Ding, F.; Bai, B.; Wang, Q. Z. Heterostructured CoFe1.5Cr0.5S3O/COFs/BiVO4 photoanode boosts charge extraction for efficient photoelectrochemical water splitting. Appl. Catal. B: Environ. 2023, 336, 122921.

[37]

Dong, P. Y.; Wang, Y.; Zhang, A. C. J.; Cheng, T.; Xi, X. G.; Zhang, J. L. Platinum single atoms anchored on a covalent organic framework: Boosting active sites for photocatalytic hydrogen evolution. ACS Catal. 2021, 11, 13266–13279.

[38]

Weng, W. J.; Guo, J. The effect of enantioselective chiral covalent organic frameworks and cysteine sacrificial donors on photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 5768.

[39]

Li, Z. W.; Shi, X. R.; Cheng, H. J.; Song, Y. R.; Jiao, Y. Y.; Shi, S. B.; Gao, J. F.; Hou, J. G. Atomically dispersed iron active sites on covalent organic frameworks for artificial photosynthesis of hydrogen peroxide. Adv. Energy Mater. 2024, 14, 2302797.

[40]

Wang, G. B.; Wang, Y. J.; Kan, J. L.; Xie, K. H.; Xu, H. P.; Zhao, F.; Wang, M. C.; Geng, Y.; Dong, Y. B. Construction of covalent organic frameworks via a visible-light-activated photocatalytic multicomponent reaction. J. Am. Chem. Soc. 2023, 145, 4951–4956.

[41]

Ran, L.; Li, Z. W.; Ran, B.; Cao, J. Q.; Zhao, Y.; Shao, T.; Song, Y. R.; Leung, M. K. H.; Sun, L. C.; Hou, J. G. Engineering single-atom active sites on covalent organic frameworks for boosting CO2 photoreduction. J. Am. Chem. Soc. 2022, 144, 17097–17109.

[42]

Lin, C.; Shan, Z.; Dong, C. R.; Lu, Y.; Meng, W. K.; Zhang, G.; Cai, B.; Su, G. Y.; Park, J. H.; Zhang, K. Covalent organic frameworks bearing Ni active sites for free radical-mediated photoelectrochemical organic transformations. Sci. Adv. 2023, 9, eadi9442.

[43]

Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 2013, 135, 5328–5331.

[44]

Yang, J.; Deng, C. Y.; Lei, Y.; Duan, M. Y.; Yang, Y. S.; Chen, X. R.; Yang, S. P.; Li, J. K.; Sheng, H.; Shi, W. Q. et al. Fe–N Co-doped BiVO4 photoanode with record photocurrent for water oxidation. Angew. Chem., Int. Ed. 2025, 64, e202416340.

[45]

Wang, H.; Gao, R. T.; Nguyen, N. T.; Bai, J. W.; Ren, S. J.; Liu, X. H.; Zhang, X. Y.; Wang, L. Superhydrophilic CoFe dispersion of hydrogel electrocatalysts for quasi-solid-state photoelectrochemical water splitting. ACS Nano 2023, 17, 22071–22081.

[46]

Xu, M. L.; Lu, M.; Qin, G. Y.; Wu, X. M.; Yu, T.; Zhang, L. N.; Li, K.; Cheng, X.; Lan, Y. Q. Piezo-photocatalytic synergy in BiFeO3@COF Z-scheme heterostructures for high-efficiency overall water splitting. Angew. Chem., Int. Ed. 2022, 61, e202210700.

[47]

Yang, Y. L.; Wang, Y. R.; Dong, L. Z.; Li, Q.; Zhang, L.; Zhou, J.; Sun, S. N.; Ding, H. M.; Chen, Y. F.; Li, S. L. et al. A honeycomb-like porous crystalline hetero-electrocatalyst for efficient electrocatalytic CO2 reduction. Adv. Mater. 2022, 34, 2206706.

[48]

Wu, W. L.; Wang, Y. N.; Luo, L.; Wang, M. L.; Li, Z. L.; Chen, Y.; Wang, Z. Q.; Chai, J. B.; Cen, Z. Y.; Shi, Y. L. et al. CO2 hydrogenation over copper/ZnO single-atom catalysts: Water-promoted transient synthesis of methanol. Angew. Chem. , Int. Ed. 2022, 61, e202213024.

[49]

He, T.; Zhao, Z. F.; Liu, R. Y.; Liu, X. Y.; Ni, B.; Wei, Y. P.; Wu, Y. L.; Yuan, W.; Peng, H. J.; Jiang, Z. Y. et al. Porphyrin-based covalent organic frameworks anchoring au single atoms for photocatalytic nitrogen fixation. J. Am. Chem. Soc. 2023, 145, 6057–6066.

[50]

Sun, L.; Zhang, Z. Q.; Bian, J.; Bai, F. Q.; Su, H. W.; Li, Z. J.; Xie, J. J.; Xu, R. P.; Sun, J. H.; Bai, L. L. et al. A Z-scheme heterojunctional photocatalyst engineered with spatially separated dual redox sites for selective CO2 reduction with water: Insight by in situ µs-transient absorption spectra. Adv. Mater. 2023, 35, 2300064.

[51]

Deng, Y. T.; Zhou, H. P.; Zhao, Y.; Yang, B.; Shi, M.; Tao, X. P.; Yang, S. Q.; Li, R. G.; Li, C. Spatial separation of photogenerated charges on well-defined bismuth vanadate square nanocrystals. Small 2022, 18, 2103245.

[52]

Ravensbergen, J.; Abdi, F. F.; van Santen, J. H.; Frese, R. N.; Dam, B.; van de Krol, R.; Kennis, J. T. M. Unraveling the carrier dynamics of BiVO4: A femtosecond to microsecond transient absorption study. J. Phys. Chem. C 2014, 118, 27793–27800.

[53]

Mondal, S.; Mohanty, B.; Nurhuda, M.; Dalapati, S.; Jana, R.; Addicoat, M.; Datta, A.; Jena, B. K.; Bhaumik, A. A thiadiazole-based covalent organic framework: A metal-free electrocatalyst toward oxygen evolution reaction. ACS Catal. 2020, 10, 5623–5630.

[54]

Yang, C. H.; Yang, Z. D.; Dong, H.; Sun, N.; Lu, Y.; Zhang, F. M.; Zhang, G. L. Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER. ACS Energy Lett. 2019, 4, 2251–2258.

[55]

Wang, R.; Zhang, Z. Q.; Suo, J. Q.; Liao, L.; Li, L. B.; Yu, Z. C.; Zhang, H.; Valtchev, V.; Qiu, S. L.; Fang, Q. R. Exploring metal-free ionic covalent organic framework nanosheets as efficient OER electrocatalysts via cationic–π interactions. Chem. Eng. J. 2023, 478, 147403.

[56]

Yang, Y.; Chu, X. Y.; Zhang, H. Y.; Zhang, R.; Liu, Y. H.; Zhang, F. M.; Lu, M.; Yang, Z. D.; Lan, Y. Q. Engineering β-ketoamine covalent organic frameworks for photocatalytic overall water splitting. Nat. Commun. 2023, 14, 593.

[57]

Wan, Y. Y.; Wang, L.; Xu, H. X.; Wu, X. J.; Yang, J. L. A simple molecular design strategy for two-dimensional covalent organic framework capable of visible-light-driven water splitting. J. Am. Chem. Soc. 2020, 142, 4508–4516.

[58]

Lin, C. Y.; Zhang, L. P.; Zhao, Z. H.; Xia, Z. H. Design principles for covalent organic frameworks as efficient electrocatalysts in clean energy conversion and green oxidizer production. Adv. Mater. 2017, 29, 1606635.

[59]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru–Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

Nano Research
Article number: 94907273
Cite this article:
Zhang Z, Song G, Sun W, et al. Single atom Cu-O2N bridge between BiVO4 and COFs toward photoelectrochemical seawater splitting. Nano Research, 2025, 18(4): 94907273. https://doi.org/10.26599/NR.2025.94907273
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return