Photoelectrochemical (PEC) water splitting has great potential for solar energy conversion to hydrogen. However, the slow charge transfer in the photoanodes remains a core issue limiting the PEC performance. In this study, we address this issue by constructing a single-atom bridge (SAB) Cu-O2N at the interface between BiVO4 and covalent organic framework (COF) layer. X-ray absorption fine spectra and theoretical calculations demonstrate that the single-atom bridge is formed by the interfacial coordination reconstruction between BiVO4 and COF layers and create intermediate electronic states to facilitate the hole extraction. As a result, the SAB photoanode exhibits enhanced PEC water oxidation performance. Specifically, it achieves a photocurrent density of 4.84 mA·cm−2 at 1.23 V vs. reversible hydrogen electrode (RHE) in PEC simulant seawater splitting with a cocatalyst, higher than nearly all the previously reported BiVO4-based photoanodes. This work offers valuable insights into fast charge transfer in PEC systems and proposes a promising strategy for designing efficient photoelectrodes for seawater splitting.
He, B.; Cao, Y.; Lin, K.; Wang, Y.; Li, Z.; Yang, Y. K.; Zhao, Y. L.; Liu, X. Q. Strong interactions between Au nanoparticles and BiVO4 photoanode boosts hole extraction for photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2024, 63, e202402435.
Arunachalam, M.; Kanase, R. S.; Zhu, K.; Kang, S. H. Reliable bi-functional nickel-phosphate/TiO2 integration enables stable n-GaAs photoanode for water oxidation under alkaline condition. Nat. Commun. 2023, 14, 5429.
Wu, Z. L.; Liu, X. Y.; Li, H. J.; Sun, Z. Y.; Cao, M. S.; Li, Z. Z.; Fang, C. H.; Zhou, J. H.; Cao, C. B.; Dong, J. C. et al. A semiconductor-electrocatalyst nano interface constructed for successive photoelectrochemical water oxidation. Nat. Commun. 2023, 14, 2574.
Liu, C. H.; Zhang, N. S.; Li, Y.; Fan, R. L.; Wang, W. J.; Feng, J. Y.; Liu, C.; Wang, J. O.; Hao, W. C.; Li, Z. S. et al. Long-term durability of metastable β-Fe2O3 photoanodes in highly corrosive seawater. Nat. Commun. 2023, 14, 4266.
Yang, J. W.; Ji, S. G.; Jeong, C. S.; Kim, J.; Kwon, H. R.; Lee, T. H.; Lee, S. A.; Cheon, W. S.; Lee, S.; Lee, H. et al. High-efficiency unbiased water splitting with photoanodes harnessing polycarbazole hole transport layers. Energy Environ. Sci. 2024, 17, 2541–2553.
Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.
Gao, R. T.; Guo, X. T.; Liu, S. J.; Zhang, X. Y.; Liu, X. H.; Su, Y. G.; Wang, L. Ultrastable and high-performance seawater-based photoelectrolysis system for solar hydrogen generation. Appl. Catal. B: Environ. 2022, 304, 120883.
Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0–Co δ + interface double-site-mediated C–C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.
Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214.
Liu, Y.; Zhang, Z. Y.; Wang, K.; Tan, X. L.; Chen, J. R.; Ren, X. L.; Jiang, F. Efficient BiVO4 photoanode with an excellent hole transport layer of CuSCN for solar water oxidation. Adv. Energy Mater. 2024, 14, 2304223.
Wang, J. M.; Xu, L.; Wang, T. X.; Li, R. J.; Zhang, Y. X.; Zhang, J.; Peng, T. Y. Porphyrin conjugated polymer grafted onto BiVO4 nanosheets for efficient Z-scheme overall water splitting via cascade charge transfer and single-atom catalytic sites. Adv. Energy Mater. 2021, 11, 2003575.
Gao, R. T.; Wang, L. Stable cocatalyst-free BiVO4 photoanodes with passivated surface states for photocorrosion inhibition. Angew. Chem., Int. Ed. 2020, 59, 23094–23099.
Gao, Y.; Yang, C. D.; Sun, F. L.; He, D. P.; Wang, X. Q.; Chen, J.; Zheng, X. B.; Liu, R. C.; Pan, H. G.; Wang, D. S. Ligand-tuning metallic sites in molecular complexes for efficient water oxidation. Angew. Chem., Int. Ed. 2025, 64, e202415755.
Zhang, X. M.; Zhai, P. L.; Zhang, Y. X.; Wu, Y. Z.; Wang, C.; Ran, L.; Gao, J. F.; Li, Z. W.; Zhang, B.; Fan, Z. Z. et al. Engineering single-atomic Ni–N4–O sites on semiconductor photoanodes for high-performance photoelectrochemical water splitting. J. Am. Chem. Soc. 2021, 143, 20657–20669.
Gan, L.; He, G. S.; Liu, Y.; Li, W. Z.; Li, J. Engineering heteropolyblue hole transfer layer for efficient photoelectrochemical water splitting of BiVO4 photoanodes. Appl. Catal. B: Environ. Energy 2024, 349, 123895.
Wang, X. W.; Sun, W. M.; Tian, Y.; Dang, K.; Zhang, Q. M.; Shen, Z. R.; Zhan, S. H. Conjugated π electrons of MOFs drive charge separation at heterostructures interface for enhanced photoelectrochemical water oxidation. Small 2021, 17, 2100367.
Zhang, Y. D.; Sun, Y. J.; Wang, Q. Y.; Zhuang, Z. C.; Ma, Z. T.; Liu, L. M.; Wang, G. M.; Wang, D. S.; Zheng, X. S. Synergy of photogenerated electrons and holes toward efficient photocatalytic urea synthesis from CO2 and N2. Angew. Chem., Int. Ed. 2024, 63, e202405637.
Yang, N. C.; Zhang, S. N.; Xiao, Y. J.; Qi, Y.; Bao, Y. F.; Xu, P.; Jin, S. Y.; Zhang, F. X. Insight into the key restriction of BiVO4 photoanodes prepared by pyrolysis method for scalable preparation. Angew. Chem., Int. Ed. 2023, 62, e202308729.
Pei, H.; Peng, L. L.; Jiang, Z.; Zhang, Y. X.; Li, R. J.; Peng, T. Y. Gradient-tuned VO4 vacancies in BiVO4 photoanode for boosting bulk hole transport and oxygen evolution reaction performance. Adv. Funct. Mater. 2024, 34, 2401122.
Gao, R. T.; Liu, S. J.; Guo, X. T.; Zhang, R. A.; He, J. L.; Liu, X. H.; Nakajima, T.; Zhang, X. Y.; Wang, L. Pt-induced defects curing on BiVO4 photoanodes for near-threshold charge separation. Adv. Energy Mater. 2021, 11, 2102384.
Sun, M.; Gao, R. T.; He, J. L.; Liu, X. H.; Nakajima, T.; Zhang, X. Y.; Wang, L. Photo-driven oxygen vacancies extends charge carrier lifetime for efficient solar water splitting. Angew. Chem., Int. Ed. 2021, 60, 17601–17607.
Guo, X. T.; Liu, X. H.; Wang, L. NiMoO x as a highly protective layer against photocorrosion for solar seawater splitting. J. Mater. Chem. A 2022, 10, 1270–1277.
Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.
Zhang, Y. L.; Liu, B.; Dai, Y. K.; Shen, L. X.; Guo, P.; Xia, Y. F.; Zhang, Z. Y.; Kong, F. T.; Zhao, L.; Wang, Z. B. Engineering Co–N–Cr cross-interfacial electron bridges to break activity-stability trade-off for superdurable bifunctional single atom oxygen electrocatalysts. Angew. Chem., Int. Ed. 2024, 63, e202400577.
Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.
Ou, H. H.; Qian, Y. P.; Yuan, L. T.; Li, H.; Zhang, L. D.; Chen, S. H.; Zhou, M.; Yang, G. D.; Wang, D. S.; Wang, Y. G. Spatial position regulation of Cu single atom site realizes efficient nanozyme photocatalytic bactericidal activity. Adv. Mater. 2023, 35, 2305077.
Wang, Y.; Ma, F. Y.; Zhang, G. Q.; Zhang, J. W.; Zhao, H.; Dong, Y. M.; Wang, D. S. Precise synthesis of dual atom sites for electrocatalysis. Nano Res. 2024, 17, 9397–9427.
Tao, Y.; Guan, J. P.; Zhang, J.; Hu, S. Y.; Ma, R. Z.; Zheng, H. R.; Gong, J. X.; Zhuang, Z. C.; Liu, S. J.; Ou, H. H. et al. Ruthenium single atomic sites surrounding the support pit with exceptional photocatalytic activity. Angew. Chem., Int. Ed. 2024, 63, e202400625.
Li, J.; Zhou, J.; Wang, X. H.; Guo, C.; Li, R. H.; Zhuang, H. F.; Feng, W. H.; Hua, Y. J.; Lan, Y. Q. In situ construction of single-atom electronic bridge on COF to enhance photocatalytic H2 production. Angew. Chem. , Int. Ed. 2024, 63, e202411721.
Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.
Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.
Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched Ru x Fe3− x O4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.
Mu, X. Q.; Yu, M.; Liu, X. Y.; Liao, Y. R.; Chen, F. J.; Pan, H. Z.; Chen, Z. Y.; Liu, S. L.; Wang, D. S.; Mu, S. C. High-entropy ultrathin amorphous metal-organic framework-stabilized Ru(Mo) dual-atom sites for water oxidation. ACS Energy Lett. 2024, 9, 5763–5770.
Zhang, H. L.; Lin, Z.; Kidkhunthod, P.; Guo, J. Stable immobilization of nickel ions on covalent organic frameworks for panchromatic photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2023, 62, e202217527.
Qiu, J. Y.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J. J.; Wang, L. X.; Yu, J. G. COF/In2S3 S-scheme photocatalyst with enhanced light absorption and H2O2-production activity and fs-TA investigation. Adv. Mater. 2024, 36, 2400288.
Wang, L. N.; Zhang, J. M.; Li, Y.; Shi, Y. B.; Huang, J. W.; Mei, Q.; Wang, L.; Ding, F.; Bai, B.; Wang, Q. Z. Heterostructured CoFe1.5Cr0.5S3O/COFs/BiVO4 photoanode boosts charge extraction for efficient photoelectrochemical water splitting. Appl. Catal. B: Environ. 2023, 336, 122921.
Dong, P. Y.; Wang, Y.; Zhang, A. C. J.; Cheng, T.; Xi, X. G.; Zhang, J. L. Platinum single atoms anchored on a covalent organic framework: Boosting active sites for photocatalytic hydrogen evolution. ACS Catal. 2021, 11, 13266–13279.
Weng, W. J.; Guo, J. The effect of enantioselective chiral covalent organic frameworks and cysteine sacrificial donors on photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 5768.
Li, Z. W.; Shi, X. R.; Cheng, H. J.; Song, Y. R.; Jiao, Y. Y.; Shi, S. B.; Gao, J. F.; Hou, J. G. Atomically dispersed iron active sites on covalent organic frameworks for artificial photosynthesis of hydrogen peroxide. Adv. Energy Mater. 2024, 14, 2302797.
Wang, G. B.; Wang, Y. J.; Kan, J. L.; Xie, K. H.; Xu, H. P.; Zhao, F.; Wang, M. C.; Geng, Y.; Dong, Y. B. Construction of covalent organic frameworks via a visible-light-activated photocatalytic multicomponent reaction. J. Am. Chem. Soc. 2023, 145, 4951–4956.
Ran, L.; Li, Z. W.; Ran, B.; Cao, J. Q.; Zhao, Y.; Shao, T.; Song, Y. R.; Leung, M. K. H.; Sun, L. C.; Hou, J. G. Engineering single-atom active sites on covalent organic frameworks for boosting CO2 photoreduction. J. Am. Chem. Soc. 2022, 144, 17097–17109.
Lin, C.; Shan, Z.; Dong, C. R.; Lu, Y.; Meng, W. K.; Zhang, G.; Cai, B.; Su, G. Y.; Park, J. H.; Zhang, K. Covalent organic frameworks bearing Ni active sites for free radical-mediated photoelectrochemical organic transformations. Sci. Adv. 2023, 9, eadi9442.
Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 2013, 135, 5328–5331.
Yang, J.; Deng, C. Y.; Lei, Y.; Duan, M. Y.; Yang, Y. S.; Chen, X. R.; Yang, S. P.; Li, J. K.; Sheng, H.; Shi, W. Q. et al. Fe–N Co-doped BiVO4 photoanode with record photocurrent for water oxidation. Angew. Chem., Int. Ed. 2025, 64, e202416340.
Wang, H.; Gao, R. T.; Nguyen, N. T.; Bai, J. W.; Ren, S. J.; Liu, X. H.; Zhang, X. Y.; Wang, L. Superhydrophilic CoFe dispersion of hydrogel electrocatalysts for quasi-solid-state photoelectrochemical water splitting. ACS Nano 2023, 17, 22071–22081.
Xu, M. L.; Lu, M.; Qin, G. Y.; Wu, X. M.; Yu, T.; Zhang, L. N.; Li, K.; Cheng, X.; Lan, Y. Q. Piezo-photocatalytic synergy in BiFeO3@COF Z-scheme heterostructures for high-efficiency overall water splitting. Angew. Chem., Int. Ed. 2022, 61, e202210700.
Yang, Y. L.; Wang, Y. R.; Dong, L. Z.; Li, Q.; Zhang, L.; Zhou, J.; Sun, S. N.; Ding, H. M.; Chen, Y. F.; Li, S. L. et al. A honeycomb-like porous crystalline hetero-electrocatalyst for efficient electrocatalytic CO2 reduction. Adv. Mater. 2022, 34, 2206706.
Wu, W. L.; Wang, Y. N.; Luo, L.; Wang, M. L.; Li, Z. L.; Chen, Y.; Wang, Z. Q.; Chai, J. B.; Cen, Z. Y.; Shi, Y. L. et al. CO2 hydrogenation over copper/ZnO single-atom catalysts: Water-promoted transient synthesis of methanol. Angew. Chem. , Int. Ed. 2022, 61, e202213024.
He, T.; Zhao, Z. F.; Liu, R. Y.; Liu, X. Y.; Ni, B.; Wei, Y. P.; Wu, Y. L.; Yuan, W.; Peng, H. J.; Jiang, Z. Y. et al. Porphyrin-based covalent organic frameworks anchoring au single atoms for photocatalytic nitrogen fixation. J. Am. Chem. Soc. 2023, 145, 6057–6066.
Sun, L.; Zhang, Z. Q.; Bian, J.; Bai, F. Q.; Su, H. W.; Li, Z. J.; Xie, J. J.; Xu, R. P.; Sun, J. H.; Bai, L. L. et al. A Z-scheme heterojunctional photocatalyst engineered with spatially separated dual redox sites for selective CO2 reduction with water: Insight by in situ µs-transient absorption spectra. Adv. Mater. 2023, 35, 2300064.
Deng, Y. T.; Zhou, H. P.; Zhao, Y.; Yang, B.; Shi, M.; Tao, X. P.; Yang, S. Q.; Li, R. G.; Li, C. Spatial separation of photogenerated charges on well-defined bismuth vanadate square nanocrystals. Small 2022, 18, 2103245.
Ravensbergen, J.; Abdi, F. F.; van Santen, J. H.; Frese, R. N.; Dam, B.; van de Krol, R.; Kennis, J. T. M. Unraveling the carrier dynamics of BiVO4: A femtosecond to microsecond transient absorption study. J. Phys. Chem. C 2014, 118, 27793–27800.
Mondal, S.; Mohanty, B.; Nurhuda, M.; Dalapati, S.; Jana, R.; Addicoat, M.; Datta, A.; Jena, B. K.; Bhaumik, A. A thiadiazole-based covalent organic framework: A metal-free electrocatalyst toward oxygen evolution reaction. ACS Catal. 2020, 10, 5623–5630.
Yang, C. H.; Yang, Z. D.; Dong, H.; Sun, N.; Lu, Y.; Zhang, F. M.; Zhang, G. L. Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER. ACS Energy Lett. 2019, 4, 2251–2258.
Wang, R.; Zhang, Z. Q.; Suo, J. Q.; Liao, L.; Li, L. B.; Yu, Z. C.; Zhang, H.; Valtchev, V.; Qiu, S. L.; Fang, Q. R. Exploring metal-free ionic covalent organic framework nanosheets as efficient OER electrocatalysts via cationic–π interactions. Chem. Eng. J. 2023, 478, 147403.
Yang, Y.; Chu, X. Y.; Zhang, H. Y.; Zhang, R.; Liu, Y. H.; Zhang, F. M.; Lu, M.; Yang, Z. D.; Lan, Y. Q. Engineering β-ketoamine covalent organic frameworks for photocatalytic overall water splitting. Nat. Commun. 2023, 14, 593.
Wan, Y. Y.; Wang, L.; Xu, H. X.; Wu, X. J.; Yang, J. L. A simple molecular design strategy for two-dimensional covalent organic framework capable of visible-light-driven water splitting. J. Am. Chem. Soc. 2020, 142, 4508–4516.
Lin, C. Y.; Zhang, L. P.; Zhao, Z. H.; Xia, Z. H. Design principles for covalent organic frameworks as efficient electrocatalysts in clean energy conversion and green oxidizer production. Adv. Mater. 2017, 29, 1606635.
Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru–Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.