Silver molybdate (Ag6Mo10O33) exhibits excellent catalytic properties and photocatalytic degradation owing to its unique chemical and structural characteristics, but its prospective applications in electrochemistry energy storage have not received sufficient attention. Herein, the Ag6Mo10O33 meso/nanowires with superior morphological characteristics are fabricated employing a high-efficient microwave irradiation method. Furthermore, the novel synthesizing mechanism of ultralong Ag6Mo10O33 mesowires is also proved to be a “self-assembly-dissolution-recrystallization-Ostwald-ripening” process, by exploring through the parallel experiments on the dramatic alterations in topology and size of Ag6Mo10O33 at continuous reaction time. Additionally, the properties of the ultralong uniform Ag6Mo10O33 mesowires for the sodium storage are investigated via cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge–discharge. Notably, these as-obtained Ag6Mo10O33 mesowires exhibit an outstanding initial capacity (1587.9 mAh·g−1), a remarkable specific capacity for the second cycle (817.9 mAh·g−1), and an excellent reversible capacity (551.5 mAh·g−1 after 30 cycles). The superior electrochemical properties of the nanoscaled silver molybdate are ascribed to the lower charge transfer resistance due to the microstructure of the smallest size Ag6Mo10O33 nanosheets that exhibit a thickness of around 5 nm, which can provide a great contact with the electrolyte, facilitating the rapid diffusion of sodium ions at the electrode/electrolyte interface and the rapid transport of sodium ions within the electrode materials. Thus, the proposed synthetic strategy and achieved deep insights will stimulate the development of Ag6Mo10O33 for high-safety and long-life sodium ion batteries.
Qin, X.; Xu, B. L.; Lestas, I.; Guo, Y.; Sun, H. B. The role of electricity market design for energy storage in cost-efficient decarbonization. Joule 2023, 7, 1227–1240.
Wang, Y. X.; Li, M.; Zhang, Y.; Zhang, N. Q. Hard carbon for sodium storage: Mechanism and performance optimization. Nano Res. 2024, 17, 6038–6057.
Hou, S.; Ji, X.; Gaskell, K.; Wang, P. F.; Wang, L. N.; Xu, J. J.; Sun, R. M.; Borodin, O.; Wang, C. S. Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics. Science 2021, 374, 172–178.
Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985.
Zhang, Q.; Gao, X. W.; Liu, X.; Mu, J. J.; Gu, Q. F.; Liu, Z. M.; Luo, W. B. Flexible wearable energy storage devices: Materials, structures, and applications. Battery Energy 2024, 3, 20230061.
Xu, Z. W.; Song, K. W.; Chang, X. Y.; Li, L.; Zhang, W. C.; Xue, Y. X.; Zhang, J. H.; Lin, D. W.; Liu, Z. Y.; Wang, Q. et al. Layered oxide cathodes: A comprehensive review of characteristics, research, and development in lithium and sodium ion batteries. Carbon Neutralization 2024, 3, 832–856.
Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013.
Gu, M. B.; Xu, J. L.; Shi, X. Y.; Shao, L. Y.; Sun, Z. P. Research progress of oxygen redox in sodium-layered oxides. Battery Energy 2024, 3, 20230046.
Xing, B. Y.; Ren, J. K.; Hu, P.; Luo, W.; Mai, B.; Cai, H. W.; Wu, J. H.; Wu, X. F.; Chen, X. B.; Deng, Z. H. et al. Fluoride doping Na3Al2/3V4/3(PO4)3 microspheres as cathode materials for sodium-ion batteries with multielectron redox. Small 2024, 20, 2310997.
Zhang, L. P.; Li, X. L.; Yang, M. R.; Chen, W. H. High-safety separators for lithium-ion batteries and sodium-ion batteries: Advances and perspective. Energy Storage Mater. 2021, 41, 522–545.
Guan, X.; Jian, Z. H.; Liao, X. A.; Liao, W. C.; Huang, Y. F.; Chen, D. Z.; Li, R. K. Y.; Liu, C. Tailored architecture of composite electrolyte for all-solid-state sodium batteries with superior rate performance and cycle life. Nano Res. 2024, 17, 4171–4180.
Peng, B.; Zhou, Z. H.; Shi, J.; Xu, S.; Yang, J.; Xu, C. R.; Zuo, D. X.; Xu, J.; Ma, L. B.; Guo, S. H.; Zhou, H. S. A customized strategy realizes stable cycle of large-capacity and high-voltage layered cathode for sodium-ion batteries. Angew. Chem., Int. Ed. 2024, 63, e202411618.
Wen, X.; Feng, W.; Li, X. H.; Yang, J. B.; Du, R. F.; Wang, P.; Li, H.; Song, L. Y.; Wang, Y. Z.; Cheng, M. et al. Diatomite-templated synthesis of single-atom cobalt-doped MoS2/carbon composites to boost sodium storage. Adv. Mater. 2023, 35, 2211690.
Yuan, T.; Fu, X. P.; Wang, Y.; Li, M. J.; Xia, S. X.; Pang, Y. P.; Zheng, S. Y. Enhanced conductivity and stability of Prussian blue cathodes in sodium-ion batteries by surface vapor-phase molecular self-assembly. Nano Res. 2024, 17, 4221–4230.
Zhang, Y. X.; Chen, Y. Z. Y.; Jiang, Y.; Wang, J.; Zheng, X. Y.; Han, B.; Xia, K. S.; Gao, Q.; Cai, Z.; Zhou, C. G. et al. Construction of VS2/VO x heterostructure via hydrolysis-oxidation coupling reaction with superior sodium storage properties. Adv. Funct. Mater. 2023, 33, 2212785.
Huang, S.; Sun, Y. Y.; Yuan, T.; Che, H. Y.; Zheng, Q. F.; Zhang, Y. X.; Li, P. Z.; Qiu, J.; Pang, Y. P.; Yang, J. H. et al. Mitigating voltage decay of O3-NaNi1/3Fe1/3Mn1/3O2 layered oxide cathode for sodium-ion batteries by incorporation of 5D metal tantalum. Carbon Neutralization 2024, 3, 584–596.
Liu, Q. N.; Hu, Z.; Chen, M. Z.; Zou, C.; Jin, H. L.; Wang, S.; Chou, S. L.; Liu, Y.; Dou, S. X. The cathode choice for commercialization of sodium-ion batteries: Layered transition metal oxides versus Prussian blue analogs. Adv. Funct. Mater. 2020, 30, 1909530.
Liu, Q. N.; Hu, Z.; Li, W. J.; Zou, C.; Jin, H. L.; Wang, S.; Chou, S. L.; Dou, S. X. Sodium transition metal oxides: The preferred cathode choice for future sodium-ion batteries. Energy Environ. Sci. 2021, 14, 158–179.
Tan, M. D.; Han, S. H.; Li, Z. B.; Cui, H.; Lei, D. N.; Wang, C. X. Compact Sn/C composite realizes long-life sodium-ion batteries. Nano Res. 2023, 16, 3804–3813.
Sharipova, A.; Klinger, L.; Bisht, A.; Straumal, B. B.; Rabkin, E. Solid-state dewetting of thin Au films on oxidized surface of biomedical TiAlV alloy. Acta Mater. 2022, 231, 117919.
Fan, H. N.; Zhang, Q.; Gu, Q. F.; Li, Y.; Luo, W. B.; Liu, H. K. Exploration of the sodium ion ordered transfer mechanism in a MoSe2@graphene composite for superior rate and lifespan performance. J. Mater. Chem. A 2019, 7, 13736–13742.
Xu, J.; Jiang, J. B.; Cao, S. F.; Li, S. W.; Ma, Y. M.; Chen, J. W.; Zhang, Y.; Lu, X. Q. Amorphous carbon intercalated MoS2 nanosheets embedded on reduced graphene oxide for excellent high-rate and ultralong cycling sodium storage. EcoMat 2024, 6, e12479.
Zhou, J.; Hu, H. Y.; Li, H. Q.; Chen, Z. P.; Yuan, C. Z.; He, X. J. Advanced carbon-based materials for Na, K, and Zn ion hybrid capacitors. Rare Met. 2023, 42, 719–739.
Suntharam, N. M.; Bashir, S.; Vengadaesvaran, B.; Rahim, N. A.; Reasmyraj, S.; Ramesh, S.; Ramesh, K.; Prasankumar, T. Fundamentals and key components of sodium-ion batteries: Challenges and future perspectives. Mater. Today Chem. 2024, 42, 102350.
Santhoshkumar, P.; Vikraman, D.; Hussain, S.; Karuppasamy, K.; Kathalingam, A.; Kim, H. S. 3D-architectured spherical Ce2Mo5O16 by a time-dependent hydrothermal process and their energy storage application. J. Alloys Compd. 2022, 928, 167215.
Hu, J. X.; Xie, Y. Y.; Zheng, J. Q.; Lai, Y. Q.; Zhang, Z. A. Unveiling nanoplates-assembled Bi2MoO6 microsphere as a novel anode material for high performance potassium-ion batteries. Nano Res. 2020, 13, 2650–2657.
Suresh Babu, G.; Shakkeel, N. K.; Kalaiselvi, N. FeMoO4 nanorods anchored on graphene sheets as a potential anode for high performance sodium ion batteries. J. Alloys Compd. 2021, 877, 160306.
Wang, D. D.; Li, C. S.; Yang, C.; Sun, Y.; Peng, W. X.; Dai, G. L.; Zhao, Y. J.; Liu, P. C.; Wang, L. N.; Zhao, Y. Z. et al. CaMoO4 Persimmon/MCMB composites with highly exposed (103) active facets and enhanced properties for reversible lithium storage. Compos. Part B Eng. 2022, 247, 110301.
Zhang, J. L.; Ma, Z. Ag6Mo10O33/g-C3N4 1D–2D hybridized heterojunction as an efficient visible-light-driven photocatalyst. Mol. Catal. 2017, 432, 285–291.
Misra, S.; Sahoo, S.; Jayaraman, V.; Arora, A. K.; Gnanasekaran, T. Effect of annealing on microstructure and phase evolution of Ag6Mo10O33 nanorods synthesised by novel soft chemical method. Int. J. Nanotechnol. 2010, 7, 870–882.
Prabhu, E.; Madhavan, R. R.; Jayaraman, V.; Gnanasekar, K. I. Selective response of Ag6Mo10O33 thick film toward ammonia using AC measurement. J. Electrochem. Soc. 2019, 166, B1196–B1201.
Moura, J. V. B.; Freitas, T. S.; Cruz, R. P.; Pereira, R. L. S.; Silva, A. R. P.; Santos, A. T. L.; da Silva, J. H.; Luz-Lima, C.; Freire, P. T. C.; Coutinho, H. D. M. β-Ag2MoO4 microcrystals: Characterization, antibacterial properties and modulation analysis of antibiotic activity. Biomed. Pharmacother. 2017, 86, 242–247.
Della Rocca, R. D.; Victória, H. F. V.; Moura-Nickel, C. D.; Scaratti, G.; Krambrock, K.; De Noni, A.; Vilar, V. J. P.; José, H. J.; Moreira, R. F. P. M. Peroxidation and photo-peroxidation of pantoprazole in aqueous solution using silver molybdate as catalyst. Chemosphere 2021, 262, 127671.
Guo, H.; Xie, J. W.; He, G. Z.; Zhu, D. Z.; Qiao, M.; Yan, J. F.; Yu, J. C.; Li, J. Q.; Zhao, Y. Z.; Luo, M. et al. A review of ultrafast laser micro/nano fabrication: Material processing, surface/interface controlling, and devices fabrication. Nano Res. 2024, 17, 6212–6230.
Li, C. S.; Cheng, F. Y.; Ji, W. Q.; Tao, Z. L.; Chen, J. Magnesium microspheres and nanospheres: Morphology-controlled synthesis and application in Mg/MnO2 batteries. Nano Res. 2009, 2, 713–721.
Chen, Y.; Zhang, X. Y.; Jiang, J. Z.; Chen, G. Y.; Zhou, K. H.; Zhang, X. W.; Li, F. J.; Yuan, C. J.; Bao, J. C.; Xu, X. X. Microfluidic synthesis of hollow CsPbBr3 perovskite nanocrystals through the nanoscale Kirkendall effect. Nano Res. 2024, 17, 8487–8494.
Lin, C. J.; Zhang, J. T.; von Lim, Y.; Yan, D.; Li, K.; Leong, Z. Y.; Vafakhah, S.; Li, Y. F.; Silva, A.; Yang, H. Y. 3D hierarchical architectures of CoSe2 nanoparticles embedded in rice-derived hard carbon for advanced sodium storage. Carbon Neutralization 2022, 1, 224–232.
Sun, Y.; Li, C. S.; Yang, Q. R.; Chou, S. L.; Liu, H. K. Electrochemically active, novel layered m-ZnV2O6 nanobelts for highly rechargeable Na-ion energy storage. Electrochim. Acta 2016, 205, 62–69.
Wang, F.; Jiang, Z. M.; Zhang, Y. Y.; Zhang, Y. L.; Li, J. D.; Wang, H. B.; Jiang, Y. Z.; Xing, G. C.; Liu, H. C.; Tang, Y. X. Revitalizing sodium-ion batteries via controllable microstructures and advanced electrolytes for hard carbon. eScience 2024, 4, 100181.
Yuan, T.; Li, P. Z.; Sun, Y. Y.; Che, H. Y.; Zheng, Q. F.; Zhang, Y. X.; Huang, S.; Qiu, J.; Pang, Y. P.; Yang, J. H. et al. Refining O3-type Ni/Mn-based sodium-ion battery cathodes via “atomic knife” achieving high capacity and stability. Adv. Funct. Mater. 2025, 35, 2414627.
Montenegro, J. E.; Villalobos, C. M.; Singh, D. P. Ethylene glycol mediated facile and controlled growth of ultralong hexagonal silver molybdate microrods. Mater. Lett. 2018, 215, 129–133.
Zhou, P.; Wang, L. P.; Zhang, M. Y.; Huang, Q. Z.; Su, Z. A.; Wang, X. D.; Guo, D. R.; Liao, M. D.; Xu, P.; Lin, X. B. Hierarchical structural modulation and Co-construction of selenium vacancy in ZnSe/NiSe2 heterojunctions to enhance cycling stability and fast ion diffusion kinetics for lithium-ion and sodium-ion batteries. Chem. Eng. J. 2024, 488, 150829.
Song, Z. Q.; Di, M. X.; Zhang, X. Y.; Wang, Z. Y.; Chen, S. H.; Zhang, Q. Y.; Bai, Y. Nanoconfined strategy optimizing hard carbon for robust sodium storage. Adv. Energy Mater. 2024, 14, 2401763.
Safartoobi, A.; Mazloom, J.; Ghodsi, F. E. Silver/molybdenum metal-organic framework derived Ag2MoO4 nanoparticles as novel electrode for high-performance supercapacitor. J. Energy Storage 2023, 68, 107818.
Chen, N.; Gao, Y.; Zhang, M. N.; Meng, X.; Wang, C. Z.; Wei, Y. J.; Du, F.; Chen, G. Electrochemical properties and sodium-storage mechanism of Ag2Mo2O7 as the anode material for sodium-ion batteries. Chem.—Eur. J. 2016, 22, 7248–7254.
Fabbro, M. T.; Saliby, C.; Rios, L. R.; La Porta, F. A.; Gracia, L.; Li, M. S.; Andrés, J.; Santos, L. P. S.; Longo, E. Identifying and rationalizing the morphological, structural, and optical properties of β-Ag2MoO4 microcrystals, and the formation process of Ag nanoparticles on their surfaces: Combining experimental data and first-principles calculations. Sci. Technol. Adv. Mater. 2015, 16, 065002.
Anderegg, L.; Burchesky, S.; Bao, Y. C.; Yu, S. S.; Karman, T.; Chae, E.; Ni, K. K.; Ketterle, W.; Doyle, J. M. Observation of microwave shielding of ultracold molecules. Science 2021, 373, 779–782.
Chen, J. W.; Adit, G.; Li, L.; Zhang, Y. X.; Chua, D. H. C.; Lee, P. S. Optimization strategies toward functional sodium-ion batteries. Energy Environ. Mater. 2023, 6, e12633.
Zhou, Y. F.; Lin, F. W.; Ling, Z. Q.; Zhan, M. X.; Zhang, G. X.; Yuan, D. K. Comparative study by microwave pyrolysis and conventional pyrolysis of pharmaceutical sludge: Resourceful disposal and antibiotic adsorption. J. Hazard. Mater. 2024, 468, 133867.
Zhu, J. H.; Li, C. S.; Sun, Y.; Yang, C.; Zhao, Y. J.; Zhu, Z.; Wang, D. D.; Hu, Z.; Chou, S. L.; Li, L. et al. Enhanced photoluminescence of hollow CaWO4 microspheres: The fast fabrication, structural manipulation, and exploration of the growth mechanism. Mater. Chem. Front. 2022, 6, 1046–1055.
Li, C. S.; Sun, Y.; Ma, X. G.; Yao, W. X.; Hu, Y. W.; Wang, Y. D.; Wang, Y. Z. Ultralong triclinic-Ba2V2O7 nanowires: Microwave radiation-assisted CTAB surfactant synthesis, the novel growth mechanism and optical activity performances. RSC Adv. 2014, 4, 9737–9742.
Tao, X.; Wei, M. Q.; Yu, L. H.; Zhuang, B. C.; Zhang, L. L.; Zhu, R. L.; Zhao, G. Z.; Han, L.; Zhu, Y. Y.; Jin, H. L. et al. Facile microwave-assisted synthesis of Ce-doped Bi2O3 for efficient hybrid supercapacitors. Battery Energy 2024, 3, 20230052.
Wang, W. Q.; Qiao, Z. J.; Zhao, Y. W.; Xie, G.; Yan, S. L.; Pang, Z. H.; Chen, Y. F.; Yang, H.; Zhang, M. M.; Zhang, Y. F. et al. SO42−-ion induced synthesis of 3D porous hydrangea-shaped anatase TiO2 as high performance anode material for lithium/sodium-ion batteries. J. Porous Mater. 2023, 30, 1245–1253.
Sun, Y.; Li, C. S.; Wang, L. N.; Wang, Y. Z.; Ma, X. G.; Ma, P. J.; Song, M. Y. Ultralong monoclinic ZnV2O6 nanowires: Their shape-controlled synthesis, new growth mechanism, and highly reversible lithium storage in lithium-ion batteries. RSC Adv. 2012, 2, 8110–8115.
Lee, H. J.; Oh, S.; Cho, K. Y.; Jeong, W. L.; Lee, D. S.; Park, S. J. Spontaneous and selective nanowelding of silver nanowires by electrochemical Ostwald ripening and high electrostatic potential at the junctions for high-performance stretchable transparent electrodes. ACS Appl. Mater. Interfaces 2018, 10, 14124–14131.
Lee, H. J.; Yang, U. J.; Kim, K. N.; Park, S.; Kil, K. H.; Kim, J. S.; Wodtke, A. M.; Choi, W. J.; Kim, M. H.; Baik, J. M. Directional Ostwald ripening for producing aligned arrays of nanowires. Nano Lett. 2019, 19, 4306–4313.
Lotty, O.; Hobbs, R.; O’Regan, C.; Hlina, J.; Marschner, C.; O’Dwyer, C.; Petkov, N.; Holmes, J. D. Self-seeded growth of germanium nanowires: Coalescence and Ostwald ripening. Chem. Mater. 2013, 25, 215–222.
Liu, C. H.; Li, R. T.; Fan, Y. M.; Li, S. W.; Feng, X. H.; Feng, L.; Ning, Y. X.; Fu, Q. Liquid-mediated Ostwald ripening of Ag-based clusters supported on oxides. Nano Res. 2024, 17, 4971–4978.
Yang, A. K.; Yao, K.; Schaller, M.; Dashjav, E.; Li, H.; Zhao, S.; Zhang, Q.; Etter, M.; Shen, X. C.; Song, H. M. et al. Enhanced room-temperature Na+ ionic conductivity in Na4.92Y0.92Zr0.08Si4O12. eScience 2023, 3, 100175.
Chen, D. Q.; Hu, C. J.; Chen, Q.; Xue, G. Y.; Tang, L. F.; Dong, Q. Y.; Chen, B. W.; Zhang, F. R.; Gao, M. W.; Xu, J. J. et al. High ceramic content composite solid-state electrolyte films prepared via a scalable solvent-free process. Nano Res. 2023, 16, 3847–3854.
Li, C. S.; Zhang, S. Y.; Cheng, F. Y.; Ji, W. Q.; Chen, J. Porous LiFePO4/NiP Composite nanospheres as the cathode materials in rechargeable lithium-ion batteries. Nano Res. 2008, 1, 242–248.
Liu, S.; Tang, S.; Zhang, X. Y.; Wang, A. X.; Yang, Q. H.; Luo, J. Y. Porous Al current collector for dendrite-free Na metal anodes. Nano Lett. 2017, 17, 5862–5868.
Wu, H.; Song, Z. Y.; Wang, X. X.; Feng, W. F.; Zhou, Z. B.; Zhang, H. N,N-dimethyl fluorosulfonamide for suppressed aluminum corrosion in lithium bis(trifluoromethanesulfonyl)imide-based electrolytes. Nano Res. 2023, 16, 8269–8280.