PDF (19.7 MB)
Collect
Submit Manuscript
Research Article | Open Access

Modulation of oxygen vacancies and hot electrons promotes highly efficient CO2 photoreduction towards C2H6

Chengyang Zhu1,§Hengming Huang2,§Huiling Hu1Jiaojiao Fang1 ()Junjie Mao1 ()
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China

§ Chengyang Zhu and Hengming Huang contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
Oxygen vacancy (VO) enriched CeO2 hollow structure supported Au nanoparticles (NPs) was constructed for elevating the CO2 photoreduction towards C2H6 by the regulation of VO and hot electrons.

Abstract

Efficient CO2 photoreduction towards C2+ solar fuels has emerged as one of the most promising strategies for alleviating the current energy and environment problems. However, the C-C coupling barriers and complex multi-electron transfer steps still limit the activity and selectivity of CO2-to-C2 photoreduction. Herein, Au nanoparticles (NPs) modified CeO2 with oxygen vacancies (Au/CeO2-VO) were reported for enhancing the CO2-to-C2H6 photoreduction performance. Au/CeO2-VO achieved the high C2H6 activity of 51.7 μmol·g−1·h−1, accompanied with C2H6 selectivity up to 80% in the absence of sacrificial agent. Experimental results combined with theoretical simulation indicated that VO strengthened CO2 adsorption and activated *CO production, and plasmon-induced hot electrons from Au NPs to CeO2-VO facilitated the *CO-*CO dimerization. The synergistic modulation of VO and hot electrons further decreased the energy barriers of C-C coupling and subsequent hydrogenation, resulting in the superior photoreduction performance. This work opens an avenue of developing plasmonic photocatalysts for multi-carbon products from CO2 photoreduction.

Electronic Supplementary Material

Download File(s)
7275_ESM.pdf (2.1 MB)

References

[1]

Zhang, M. R.; Zhang, D.; Jing, X.; Xu, B. J.; Duan, C. Y. Engineering NH2–Cu–NH2 triple-atom sites in defective MOFs for selective overall photoreduction of CO2 into CH3COCH3. Angew. Chem., Int. Ed. 2024, 63, e202402755.

[2]

Xie, Z. K.; Xu, S. J.; Li, L. H.; Gong, S. H.; Wu, X. J.; Xu, D. B.; Mao, B. D.; Zhou, T.; Chen, M.; Wang, X. et al. Well-defined diatomic catalysis for photosynthesis of C2H4 from CO2. Nat. Commun. 2024, 15, 2422.

[3]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[4]

Fang, J. J.; Zhu, C. Y.; Hu, H. L.; Li, J. Q.; Li, L. C.; Zhu, H. Y.; Mao, J. J. Progress of photocatalytic CO2 reduction toward multi-carbon products. Sci. China Chem. 2024, 67, 3994–4013.

[5]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru–Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem. 2024, 136, e202319618.

[6]

Ban, C. G.; Wang, Y.; Feng, Y. J.; Zhu, Z. H.; Duan, Y. Y.; Ma, J. P.; Zhang, X.; Liu, X.; Zhou, K.; Zou, H. J. et al. Photochromic single atom Ag/TiO2 catalysts for selective CO2 reduction to CH4. Energy Environ. Sci. 2024, 17, 518–530.

[7]

Di, J.; Chen, C.; Wu, Y.; Chen, H.; Xiong, J.; Long, R.; Li, S. Z.; Song, L.; Jiang, W.; Liu, Z. Asymmetric electron redistribution in niobic-oxygen vacancy associates to tune noncovalent interaction in CO2 photoreduction. Adv. Mater. 2024, 36, 2401914.

[8]

Zhang, Y.; Mu, X. Q.; Liu, Z. Y.; Zhao, H. Y.; Zhuang, Z. C.; Zhang, Y. F.; Mu, S. C.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Twin-distortion modulated ultra-low coordination PtRuNi–O x catalyst for enhanced hydrogen production from chemical wastewater. Nat. Commun. 2024, 15, 10149.

[9]

Tao, Y.; Guan, J. P.; Zhang, J.; Hu, S. Y.; Ma, R. Z.; Zheng, H. R.; Gong, J. X.; Zhuang, Z. C.; Liu, S. J.; Ou, H. H. et al. Ruthenium single atomic sites surrounding the support pit with exceptional photocatalytic activity. Angew. Chem., Int. Ed. 2024, 63, e202400625.

[10]

Wang, L.; Wang, L.; Xu, Y. K.; Sun, G. X.; Nie, W. C.; Liu, L. H.; Kong, D. B.; Pan, Y.; Zhang, Y. H.; Wang, H. et al. Schottky junction and D–A1–A2 system dual regulation of covalent triazine frameworks for highly efficient CO2 photoreduction. Adv. Mater. 2024, 36, 2309376.

[11]

Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0–Co δ + Interface double-site-mediated C–C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.

[12]

Zhang, M. Y.; Zhou, D. Y.; Mu, X. Q.; Wang, D. S.; Liu, S. L.; Dai, Z. H. Regulating the critical intermediates of dual-atom catalysts for CO2 electroreduction. Small 2024, 20, 2402050.

[13]

Fang, J. J.; Zhu, C. Y.; Fang, L. C.; Chen, Y. K.; Hu, H. L.; Wu, Y.; Chen, Q. Q.; Mao, J. J. Efficient charge relay steering in Pd nanoparticles coupled with the heterojunction for boosting CO2 photoreduction to C2H6. Sci. China Mater. 2024, 67, 2949–2956.

[14]

Wang, G.; Chen, Z.; Wang, T.; Wang, D. S.; Mao, J. J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew. Chem., Int. Ed. 2022, 134, e202210789.

[15]

Xu, R.; Si, D. H.; Zhao, S. S.; Wu, Q. J.; Wang, X. S.; Liu, T. F.; Zhao, H.; Cao, R.; Huang, Y. B. Tandem photocatalysis of CO2 to C2H4 via a synergistic rhenium-(I) bipyridine/copper-porphyrinic triazine framework. J. Am. Chem. Soc. 2023, 145, 8261–8270.

[16]

Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

[17]

Zhang, Y. D.; Sun, Y. J.; Wang, Q. Y.; Zhuang, Z. C.; Ma, Z. T.; Liu, L. M.; Wang, G. M.; Wang, D. S.; Zheng, X. S. Synergy of photogenerated electrons and holes toward efficient photocatalytic urea synthesis from CO2 and N2. Angew. Chem., Int. Ed. 2024, 63, e202405637.

[18]

Hu, Q. Y.; Li, M. Q.; Zhu, J. C.; Zhang, Z. X.; He, D. P.; Zheng, K.; Wu, Y.; Fan, M. H.; Zhu, S.; Yan, W. S. et al. Nitrogen doping-roused synergistic active sites in perovskite enabling highly selective CO2 photoreduction into CH4. Nano Lett. 2024, 24, 4610–4617.

[19]

Wang, Y.; Ma, F. Y.; Zhang, G. Q.; Zhang, J. W.; Zhao, H.; Dong, Y. M.; Wang, D. S. Precise synthesis of dual atom sites for electrocatalysis. Nano Res. 2024, 17, 9397–9427.

[20]

Yu, J.; Qin, X. T.; Yang, Y. S.; Lv, M. X.; Yin, P.; Wang, L.; Ren, Z.; Song, B. Y.; Li, Q.; Zheng, L. R. et al. Highly stable Pt/CeO2 catalyst with embedding structure toward water–gas shift reaction. J. Am. Chem. Soc. 2024, 146, 1071–1080.

[21]

Luo, L.; Fu, L.; Liu, H. F.; Xu, Y. X.; Xing, J. L.; Chang, C. R.; Yang, D. Y.; Tang, J. W. Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light. Nat. Commun. 2022, 13, 2930.

[22]

Sun, Y. Y.; Ji, H. Q.; Sun, Y. J.; Zhang, G. X.; Zhou, H. J.; Cao, S.; Liu, S. X.; Zhang, L.; Li, W. T.; Zhu, X. W. et al. Synergistic effect of oxygen vacancy and high porosity of nano MIL-125(Ti) for enhanced photocatalytic nitrogen fixation. Angew. Chem., Int. Ed. 2024, 63, e202316973.

[23]

Luo, X.; Zhao, L. X.; Zhou, H. J.; He, L.; Lei, X.; Guan, Q. Q.; Liu, Z. L. Oxygen vacancy induction strategy to regulate the evolution of valence- and free-electrons for boosting visible photodegradation of tetracycline hydrochloride. J. Hazard. Mater. 2024, 466, 133624.

[24]

Liu, B. Y.; Zhang, B. G.; Liu, B. Y.; Hu, Z. F.; Dai, W. J.; Zhang, J. R.; Feng, F. D.; Lan, B.; Zhang, T.; Huang, H. B. Surface hydroxyl and oxygen vacancies engineering in ZnSnAl LDH: Synergistic promotion of photocatalytic oxidation of aromatic VOCs. Environ. Sci. Technol. 2024, 58, 4404–4414.

[25]

Yang, S. Y.; Zhang, W. S.; Pan, G. L.; Chen, J. Y.; Deng, J. Y.; Chen, K.; Xie, X. L.; Han, D. X.; Dai, M. J.; Niu, L. Photocatalytic Co-reduction of N2 and CO2 with CeO2 catalyst for urea synthesis. Angew. Chem., Int. Ed. 2023, 62, e202312076.

[26]

Tang, Z.; Li, Y. J.; Zhang, K. X.; Wang, X. X.; Wang, S. Y.; Sun, Y. F.; Zhang, H. Y.; Li, S. Y.; Wang, J. R.; Gao, X. Y. et al. Interfacial hydrogen spillover on Pd–TiO2 with oxygen vacancies promotes formate electrooxidation. ACS Energy Lett. 2023, 8, 3945–3954.

[27]

Han, W.; Chen, Y. J.; Jiao, Y. Z.; Liang, S. M.; Li, W.; Tian, G. H. Oxygen vacancy-rich S-scheme CeO2@Ni1− x Co x Se2 hollow spheres derived from NiCo–MOF for remarkable photocatalytic CO2 conversion. ACS Sustain. Chem. Eng. 2023, 11, 7787–7797.

[28]

Hao, L.; Huang, H. W.; Zhang, Y. H.; Ma, T. Y. Oxygen vacant semiconductor photocatalysts. Adv. Funct. Mater. 2021, 31, 2100919.

[29]

Hou, T. L.; Li, X. Y.; Zhang, X. M.; Cai, R. S.; Wang, Y. C.; Chen, A. K.; Gu, H. F.; Su, M. Y.; Li, S. Y.; Li, Q. Z. et al. Atomic Au3Cu palisade interlayer in core@shell nanostructures for efficient Kirkendall effect mediation. Nano Lett. 2024, 24, 2719–2726.

[30]

Shangguan, W. C.; Liu, Q.; Wang, Y.; Sun, N.; Liu, Y.; Zhao, R.; Li, Y. X.; Wang, C. Y.; Zhao, J. C. Molecular-level insight into photocatalytic CO2 reduction with H2O over Au nanoparticles by interband transitions. Nat. Commun. 2022, 13, 3894.

[31]

Jiang, J. W.; Wang, X. F.; Guo, H. Enhanced interfacial charge transfer/separation by LSPR-induced defective semiconductor toward high CO2RR performance. Small 2023, 19, 2301280.

[32]

Li, X. Y.; Li, C.; Xu, Y. X.; Liu, Q.; Bahri, M.; Zhang, L. Q.; Browning, N. D.; Cowan, A. J.; Tang, J. W. Efficient hole abstraction for highly selective oxidative coupling of methane by Au-sputtered TiO2 photocatalysts. Nat. Energy 2023, 8, 1013–1022.

[33]

Zhang, S. C.; Chen, D.; Chen, P. G.; Zhang, R.; Hou, Y.; Guo, Y.; Li, P.; Liang, X.; Xing, T. Y.; Chen, J. et al. Concurrent mechanisms of hot electrons and interfacial water molecule ordering in plasmon-enhanced nitrogen fixation. Adv. Mater. 2024, 36, 2310776.

[34]

Zhao, J. Q.; Bai, Y.; Li, Z. H.; Liu, J. J.; Wang, W.; Wang, P.; Yang, B.; Shi, R.; Waterhouse, G. I. N.; Wen, X. D. et al. Plasmonic Cu nanoparticles for the low-temperature photo-driven water–gas shift reaction. Angew. Chem., Int. Ed. 2023, 62, e202219299.

[35]

Tang, J. L.; Li, Y. L.; Ye, S.; Jiang, P. Z.; Xue, Z. H.; Li, X. F.; Lyu, X. Y.; Liu, Q. Y.; Chu, S. S.; Yang, H. et al. Direct hot-electron transfer at the Au nanoparticle/monolayer transition-metal dichalcogenide interface observed with ultrahigh spatiotemporal resolution. Nano Lett. 2024, 24, 2931–2938.

[36]

Dey, A.; Mendalz, A.; Wach, A.; Vadell, R. B.; Silveira, V. R.; Leidinger, P. M.; Huthwelker, T.; Shtender, V.; Novotny, Z.; Artiglia, L. et al. Hydrogen evolution with hot electrons on a plasmonic-molecular catalyst hybrid system. Nat. Commun. 2024, 15, 445.

[37]

Meng, L. J.; How, Z. T.; Chelme-Ayala, P.; Benally, C.; Gamal El-Din, M. Z-scheme plasmonic Ag decorated Bi2WO6/NiO hybrids for enhanced photocatalytic treatment of naphthenic acids in real oil sands process water under simulated solar irradiation. J. Hazard. Mater. 2023, 454, 131441.

[38]

Jiang, W. C.; Deng, Y. H.; Su, R.; Xu, J. P.; Liu, L. High-detectivity and broadband MoS2 phototransistor array by coupling negative capacitance and local surface plasmon resonance effects. ACS Photonics 2024, 11, 2308–2315.

[39]

Wu, W. L.; Zhang, N.; Wang, Y. H. Construction of Au/ZnWO4/CdS ternary photocatalysts with oxygen vacancy modification for efficient photocatalytic hydrogen production. Adv. Funct. Mater. 2024, 34, 2316604.

[40]

Tsao, C. W.; Narra, S.; Kao, J. C.; Lin, Y. C.; Chen, C. Y.; Chin, Y. C.; Huang, Z. J.; Huang, W. H.; Huang, C. C.; Luo, C. W. et al. Dual-plasmonic Au@Cu7S4 yolk@shell nanocrystals for photocatalytic hydrogen production across visible to near infrared spectral region. Nat. Commun. 2024, 15, 413.

[41]

Wang, W.; Deng, C. Y.; Xie, S. J.; Li, Y. F.; Zhang, W. Y.; Sheng, H.; Chen, C. C.; Zhao, J. C. Photocatalytic C–C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II). J. Am. Chem. Soc. 2021, 143, 2984–2993.

[42]

Ren, L. T.; Yang, X. N.; Sun, X.; Wang, Y. L.; Li, H. Q.; Yuan, Y. P. Cascaded *CO–*COH intermediates on a nonmetallic plasmonic photocatalyst for CO2-to-C2H6 with 90.6% selectivity. Angew. Chem., Int. Ed. 2024, 63, e202404660.

[43]

Wang, J. Y.; Yang, C.; Mao, L.; Cai, X. Y.; Geng, Z. K.; Zhang, H. Y.; Zhang, J. Y.; Tan, X.; Ye, J. H.; Yu, T. Regulating the metallic Cu–Ga bond by S vacancy for improved photocatalytic CO2 reduction to C2H4. Adv. Funct. Mater. 2023, 33, 2213901.

Nano Research
Article number: 94907275
Cite this article:
Zhu C, Huang H, Hu H, et al. Modulation of oxygen vacancies and hot electrons promotes highly efficient CO2 photoreduction towards C2H6. Nano Research, 2025, 18(4): 94907275. https://doi.org/10.26599/NR.2025.94907275
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return