Artificial intelligence for science (AI4S) has emerged as a new horizon in state-of-the-art scientific research, and single-molecule electronics could be considered an ideal prototype in AI4S due to the opportunities in correlating high-throughput and high-quality data with clear physical mechanisms. Towards using artificial intelligence for single-molecule electronics (AI4SME), the unsupervised extraction of low-probability events from the massive experimental data becomes the key step, which has emerged for accurate detection of different configurations and even structural changes in single-molecule junctions. However, the present algorithms suffer from the “uniform effect”, in which the majority events are erroneously allocated to minority ones, resulting in a relatively equal spread of cluster sizes and hindering the investigations for charge transport mechanisms with subtle and complex behaviors in single-molecule electronics. In this work, we propose a new multi-prototype clustering technique for precisely discriminating molecular events during the break junction process, especially those occurring with a probability below 10%, and further precisely extract the product species at the onset of the electric field-driven single-molecule keto-enol reaction with a probability as low as 1.5%. Our work tackles the long-term bottleneck of uniform effect for the precise detection of low-probability single-molecule events.
Suvarna, M.; Pérez-Ramírez, J. Embracing data science in catalysis research. Nat. Catal. 2024, 7, 624–635.
Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M. et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019, 18, 463–477.
Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547–555.
Wang, H. C.; Fu, T. F.; Du, Y. Q.; Gao, W. H.; Huang, K. X.; Liu, Z. M.; Chandak, P.; Liu, S. C.; Van Katwyk, P.; Deac, A. et al. Scientific discovery in the age of artificial intelligence. Nature 2023, 620, 47–60.
Xu, Y. J.; Wang, F.; An, Z. L.; Wang, Q.; Zhang, Z. Artificial intelligence for science-bridging data to wisdom. Innovation 2023, 4, 100525.
Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Conductance of a molecular junction. Science 1997, 278, 252–254.
Xu, B. Q.; Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221–1223.
Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 2006, 442, 904–907.
Liu, H. J.; Chen, L. J.; Zhang, H.; Yang, Z. Q.; Ye, J. Y.; Zhou, P.; Fang, C.; Xu, W.; Shi, J.; Liu, J. Y. et al. Single-molecule photoelectron tunnelling spectroscopy. Nat. Mater. 2023, 22, 1007–1012.
Wang, L.; Gong, Z. L.; Li, S. Y.; Hong, W. J.; Zhong, Y. W.; Wang, D.; Wan, L. J. Molecular conductance through a quadruple-hydrogen-bond-bridged supramolecular junction. Angew. Chem., Int. Ed. 2016, 55, 12393–12397.
Li, R. H.; Lu, Z. Y.; Cai, Y. T.; Jiang, F.; Tang, C.; Chen, Z. X.; Zheng, J. T.; Pi, J. C.; Zhang, R.; Liu, J. Y. et al. Switching of charge transport pathways via delocalization changes in single-molecule metallacycles junctions. J. Am. Chem. Soc. 2017, 139, 14344–14347.
Giacalone, F.; Herranz, M. Á.; Grüter, L.; González, M. T.; Calame, M.; Schönenberger, C.; Arroyo, C. R.; Rubio-Bollinger, G.; Vélez, M.; Agraït, N. et al. Tetrathiafulvalene-based molecular nanowires. Chem. Commun. 2007, 4854–4856.
Géranton, G.; Seiler, C.; Bagrets, A.; Venkataraman, L.; Evers, F. Transport properties of individual C60-molecules. J. Chem. Phys. 2013, 139, 234701.
Sadeghi, H.; Sangtarash, S.; Lambert, C. Robust molecular anchoring to graphene electrodes. Nano Lett. 2017, 17, 4611–4618.
Hong, W. J.; Li, H.; Liu, S. X.; Fu, Y. C.; Li, J. F.; Kaliginedi, V.; Decurtins, S.; Wandlowski, T. Trimethylsilyl-terminated oligo(phenylene ethynylene)s: An approach to single-molecule junctions with covalent Au–C σ-bonds. J. Am. Chem. Soc. 2012, 134, 19425–19431.
Mishchenko, A.; Zotti, L. A.; Vonlanthen, D.; Bürkle, M.; Pauly, F.; Cuevas, J. C.; Mayor, M.; Wandlowski, T. Single-molecule junctions based on nitrile-terminated biphenyls: A promising new anchoring group. J. Am. Chem. Soc. 2011, 133, 184–187.
Yoshioka, K.; Katayama, I.; Minami, Y.; Kitajima, M.; Yoshida, S.; Shigekawa, H.; Takeda, J. Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields. Nat. Photonics 2016, 10, 762–765.
Zhou, C.; Li, X. X.; Gong, Z. L.; Jia, C. C.; Lin, Y. W.; Gu, C. H.; He, G.; Zhong, Y. W.; Yang, J. L.; Guo, X. F. Direct observation of single-molecule hydrogen-bond dynamics with single-bond resolution. Nat. Commun. 2018, 9, 807.
Zhong, X. L.; Pandey, R.; Karna, S. P. Stacking dependent electronic structure and transport in bilayer graphene nanoribbons. Carbon 2012, 50, 784–790.
Fu, T. R.; Zang, Y. P.; Zou, Q.; Nuckolls, C.; Venkataraman, L. Using deep learning to identify molecular junction characteristics. Nano Lett. 2020, 20, 3320–3325.
Huang, F. F.; Li, R. H.; Wang, G.; Zheng, J. T.; Tang, Y. X.; Liu, J. Y.; Yang, Y.; Yao, Y.; Shi, J.; Hong, W. J. Automatic classification of single-molecule charge transport data with an unsupervised machine-learning algorithm. Phys. Chem. Chem. Phys. 2020, 22, 1674–1681.
Lin, L. C.; Tang, C.; Dong, G.; Chen, Z. X.; Pan, Z. C.; Liu, J. Y.; Yang, Y.; Shi, J.; Ji, R. R.; Hong, W. J. Spectral clustering to analyze the hidden events in single-molecule break junctions. J. Phys. Chem. C 2021, 125, 3623–3630.
Vladyka, A.; Albrecht, T. Unsupervised classification of single-molecule data with autoencoders and transfer learning. Mach. Learn.: Sci. Technol. 2020, 1, 035013.
Magyarkuti, A.; Balogh, N.; Balogh, Z.; Venkataraman, L.; Halbritter, A. Unsupervised feature recognition in single-molecule break junction data. Nanoscale 2020, 12, 8355–8363.
Zheng, J. T.; Gao, W. L.; Lu, T. G.; Chen, L. J.; Lin, L. C.; Huang, R. Y.; Tang, Y. X.; Dong, G.; Liu, J. Y.; Pan, Y. F. et al. Structure identification for force-induced reaction using single-molecule conductance measurement. CCS Chem. 2023, 5, 1888–1895.
Liu, B.; Murayama, S.; Komoto, Y.; Tsutsui, M.; Taniguchi, M. Dissecting time-evolved conductance behavior of single molecule junctions by nonparametric machine learning. J. Phys. Chem. Lett. 2020, 11, 6567–6572.
Zhang, A. H.; Zhuang, X. Y.; Liu, J.; Huang, J. C.; Lin, L. C.; Tang, Y. X.; Zhao, S. Q.; Li, R. H.; Wang, B. J.; Fang, B. S. et al. Catalytic cycle of formate dehydrogenase captured by single-molecule conductance. Nat. Catal. 2023, 6, 266–275.
Feng, A. N.; Zhou, Y.; Al-Shebami, M. A. Y.; Chen, L. C.; Pan, Z. C.; Xu, W.; Zhao, S. Q.; Zeng, B. F.; Xiao, Z. Y.; Yang, Y. et al. σ–σ stacked supramolecular junctions. Nat. Chem. 2022, 14, 1158–1164.
Bro-Jørgensen, W.; Hamill, J. M.; Bro, R.; Solomon, G. C. Trusting our machines: Validating machine learning models for single-molecule transport experiments. Chem. Soc. Rev. 2022, 51, 6875–6892.
Xiong, H.; Wu, J. J.; Chen, J. K-means clustering versus validation measures: A data-distribution perspective. IEEE Trans. Syst. Man Cybern. B 2009, 39, 318–331.
Zhou, K. L.; Yang, S. L. Effect of cluster size distribution on clustering: A comparative study of K-means and fuzzy c-means clustering. Pattern Anal. Appl. 2020, 23, 455–466.
Krishnapuram, R.; Kim, J. A note on the Gustafson–Kessel and adaptive fuzzy clustering algorithms. IEEE Trans. Fuzzy Syst. 1999, 7, 453–461.
Fränti, P.; Sieranoja, S. K-means properties on six clustering benchmark datasets. Appl. Intell. 2018, 48, 4743–4759.
Salvador, S.; Chan, P. Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 2007, 11, 561–580.
Lu, Y.; Cheung, Y. M.; Tang, Y. Y. Self-adaptive multiprototype-based competitive learning approach: A K-means-type algorithm for imbalanced data clustering. IEEE Trans. Cybern. 2021, 51, 1598–1612.
Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492–1496.
Xu, L.; Krzyzak, A.; Oja, E. Rival penalized competitive learning for clustering analysis, RBF net, and curve detection. IEEE Trans. Neural Netw. 1993, 4, 636–649.
Serrà, J.; Arcos, J. L. An empirical evaluation of similarity measures for time series classification. Knowl.-Based Syst. 2014, 67, 305–314.
Murtagh, F.; Contreras, P. Algorithms for hierarchical clustering: An overview. WIREs Data Min. Knowl. Discov. 2012, 2, 86–97.
Ikotun, A. M.; Ezugwu, A. E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Inf. Sci. 2023, 622, 178–210.
Lemmer, M.; Inkpen, M. S.; Kornysheva, K.; Long, N. J.; Albrecht, T. Unsupervised vector-based classification of single-molecule charge transport data. Nat. Commun. 2016, 7, 12922.
Hubert, L.; Arabie, P. Comparing partitions. J. Classif. 1985, 2, 193–218.
Chen, Z. L.; Goldwasser, J.; Tuckman, P.; Liu, J.; Zhang, J.; Gerstein, M. Forest fire clustering for single-cell sequencing combines iterative label propagation with parallelized Monte Carlo simulations. Nat. Commun. 2022, 13, 3538.
Liu, J. Y.; Zhao, X. T.; Al-Galiby, Q.; Huang, X. Y.; Zheng, J. T.; Li, R. H.; Huang, C. C.; Yang, Y.; Shi, J.; Manrique, D. Z. et al. Radical-enhanced charge transport in single-molecule phenothiazine electrical junctions. Angew. Chem., Int. Ed. 2017, 56, 13061–13065.
Limburg, B.; Thomas, J. O.; Holloway, G.; Sadeghi, H.; Sangtarash, S.; Hou, I. C. Y.; Cremers, J.; Narita, A.; Müllen, K.; Lambert, C. J. et al. Anchor groups for graphene-porphyrin single-molecule transistors. Adv. Funct. Mater. 2018, 28, 1803629.
Zhao, S. Q.; Wu, Q. Q.; Pi, J. C.; Liu, J. Y.; Zheng, J. T.; Hou, S. J.; Wei, J. Y.; Li, R. H.; Sadeghi, H.; Yang, Y. et al. Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction. Sci. Adv. 2020, 6, eaba6714.
Tang, C.; Su, M. L.; Lu, T. G.; Zheng, J. T.; Wang, J. J.; Zhou, Y.; Zou, Y. L.; Liu, W. Q.; Huang, R. Y.; Xu, W. et al. Massive acceleration of SN2 reaction using the oriented external electric field. Chem. Sci. 2024, 15, 13486–13494.
Su, T. A.; Li, H. X.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Stereoelectronic switching in single-molecule junctions. Nat. Chem. 2015, 7, 215–220.
Zhu, Y. X.; Zhou, Y.; Ren, L.; Ye, J. Y.; Wang, H. C.; Liu, X. Y.; Huang, R. Y.; Liu, H. J.; Liu, J. Y.; Shi, J. et al. Switching quantum interference in single-molecule junctions by mechanical tuning. Angew. Chem., Int. Ed. 2023, 62, e202302693.
Qiu, K. P.; Fato, T. P.; Yuan, B.; Long, Y. T. Toward precision measurement and manipulation of single-molecule reactions by a confined space. Small 2019, 15, 1805426.
Liu, W.; Yang, Z. L.; Yang, C. N.; Ying, Y. L.; Long, Y. T. Profiling single-molecule reaction kinetics under nanopore confinement. Chem. Sci. 2022, 13, 4109–4114.
Huang, X. Y.; Tang, C.; Li, J. Q.; Chen, L. C.; Zheng, J. T.; Zhang, P.; Le, J. B.; Li, R. H.; Li, X. H.; Liu, J. Y. et al. Electric field-induced selective catalysis of single-molecule reaction. Sci. Adv. 2019, 5, eaaw3072.
Tang, C.; Stuyver, T.; Lu, T. G.; Liu, J. Y.; Ye, Y. L.; Gao, T. Y.; Lin, L. C.; Zheng, J. T.; Liu, W. Q.; Shi, J. et al. Voltage-driven control of single-molecule keto-enol equilibrium in a two-terminal junction system. Nat. Commun. 2023, 14, 3657.
Shaik, S.; Ramanan, R.; Danovich, D.; Mandal, D. Structure and reactivity/selectivity control by oriented-external electric fields. Chem. Soc. Rev. 2018, 47, 5125–5145.
Yang, C.; Liu, Z. T.; Li, Y. W.; Zhou, S. Y.; Lu, C. X.; Guo, Y. L.; Ramirez, M.; Zhang, Q. Z.; Li, Y.; Liu, Z. R. et al. Electric field-catalyzed single-molecule Diels-Alder reaction dynamics. Sci. Adv. 2021, 7, eabf0689.