PDF (16.3 MB)
Collect
Submit Manuscript
Show Outline
Figures (4)

Research Article | Open Access

Low-probability events detection using unsupervised multi-prototype clustering for single-molecule electronics

Chi Shang1Rigong Te1Shenglun Xiong1Xipeng Liu1Taige Lu1Yixuan Zhu1Chun Tang1Jing Li1Yu Zhou1Haojie Liu1,2 ()Junyang Liu1 ()Wenjing Hong1 ()
Institution State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
Show Author Information

Graphical Abstract

View original image Download original image
This work proposes a multi-prototype clustering (MPC) algorithm to address the long-term challenge in low-probability events detection for single-molecule electronics.

Abstract

Artificial intelligence for science (AI4S) has emerged as a new horizon in state-of-the-art scientific research, and single-molecule electronics could be considered an ideal prototype in AI4S due to the opportunities in correlating high-throughput and high-quality data with clear physical mechanisms. Towards using artificial intelligence for single-molecule electronics (AI4SME), the unsupervised extraction of low-probability events from the massive experimental data becomes the key step, which has emerged for accurate detection of different configurations and even structural changes in single-molecule junctions. However, the present algorithms suffer from the “uniform effect”, in which the majority events are erroneously allocated to minority ones, resulting in a relatively equal spread of cluster sizes and hindering the investigations for charge transport mechanisms with subtle and complex behaviors in single-molecule electronics. In this work, we propose a new multi-prototype clustering technique for precisely discriminating molecular events during the break junction process, especially those occurring with a probability below 10%, and further precisely extract the product species at the onset of the electric field-driven single-molecule keto-enol reaction with a probability as low as 1.5%. Our work tackles the long-term bottleneck of uniform effect for the precise detection of low-probability single-molecule events.

Electronic Supplementary Material

Download File(s)
7276_ESM.pdf (4 MB)

References

[1]

Suvarna, M.; Pérez-Ramírez, J. Embracing data science in catalysis research. Nat. Catal. 2024, 7, 624–635.

[2]

Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M. et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019, 18, 463–477.

[3]

Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547–555.

[4]

Wang, H. C.; Fu, T. F.; Du, Y. Q.; Gao, W. H.; Huang, K. X.; Liu, Z. M.; Chandak, P.; Liu, S. C.; Van Katwyk, P.; Deac, A. et al. Scientific discovery in the age of artificial intelligence. Nature 2023, 620, 47–60.

[5]

Xu, Y. J.; Wang, F.; An, Z. L.; Wang, Q.; Zhang, Z. Artificial intelligence for science-bridging data to wisdom. Innovation 2023, 4, 100525.

[6]

Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Conductance of a molecular junction. Science 1997, 278, 252–254.

[7]

Xu, B. Q.; Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221–1223.

[8]

Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 2006, 442, 904–907.

[9]

Liu, H. J.; Chen, L. J.; Zhang, H.; Yang, Z. Q.; Ye, J. Y.; Zhou, P.; Fang, C.; Xu, W.; Shi, J.; Liu, J. Y. et al. Single-molecule photoelectron tunnelling spectroscopy. Nat. Mater. 2023, 22, 1007–1012.

[10]

Wang, L.; Gong, Z. L.; Li, S. Y.; Hong, W. J.; Zhong, Y. W.; Wang, D.; Wan, L. J. Molecular conductance through a quadruple-hydrogen-bond-bridged supramolecular junction. Angew. Chem., Int. Ed. 2016, 55, 12393–12397.

[11]

Li, R. H.; Lu, Z. Y.; Cai, Y. T.; Jiang, F.; Tang, C.; Chen, Z. X.; Zheng, J. T.; Pi, J. C.; Zhang, R.; Liu, J. Y. et al. Switching of charge transport pathways via delocalization changes in single-molecule metallacycles junctions. J. Am. Chem. Soc. 2017, 139, 14344–14347.

[12]

Giacalone, F.; Herranz, M. Á.; Grüter, L.; González, M. T.; Calame, M.; Schönenberger, C.; Arroyo, C. R.; Rubio-Bollinger, G.; Vélez, M.; Agraït, N. et al. Tetrathiafulvalene-based molecular nanowires. Chem. Commun. 2007, 4854–4856.

[13]

Géranton, G.; Seiler, C.; Bagrets, A.; Venkataraman, L.; Evers, F. Transport properties of individual C60-molecules. J. Chem. Phys. 2013, 139, 234701.

[14]

Sadeghi, H.; Sangtarash, S.; Lambert, C. Robust molecular anchoring to graphene electrodes. Nano Lett. 2017, 17, 4611–4618.

[15]

Hong, W. J.; Li, H.; Liu, S. X.; Fu, Y. C.; Li, J. F.; Kaliginedi, V.; Decurtins, S.; Wandlowski, T. Trimethylsilyl-terminated oligo(phenylene ethynylene)s: An approach to single-molecule junctions with covalent Au–C σ-bonds. J. Am. Chem. Soc. 2012, 134, 19425–19431.

[16]

Mishchenko, A.; Zotti, L. A.; Vonlanthen, D.; Bürkle, M.; Pauly, F.; Cuevas, J. C.; Mayor, M.; Wandlowski, T. Single-molecule junctions based on nitrile-terminated biphenyls: A promising new anchoring group. J. Am. Chem. Soc. 2011, 133, 184–187.

[17]

Yoshioka, K.; Katayama, I.; Minami, Y.; Kitajima, M.; Yoshida, S.; Shigekawa, H.; Takeda, J. Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields. Nat. Photonics 2016, 10, 762–765.

[18]

Zhou, C.; Li, X. X.; Gong, Z. L.; Jia, C. C.; Lin, Y. W.; Gu, C. H.; He, G.; Zhong, Y. W.; Yang, J. L.; Guo, X. F. Direct observation of single-molecule hydrogen-bond dynamics with single-bond resolution. Nat. Commun. 2018, 9, 807.

[19]

Zhong, X. L.; Pandey, R.; Karna, S. P. Stacking dependent electronic structure and transport in bilayer graphene nanoribbons. Carbon 2012, 50, 784–790.

[20]

Fu, T. R.; Zang, Y. P.; Zou, Q.; Nuckolls, C.; Venkataraman, L. Using deep learning to identify molecular junction characteristics. Nano Lett. 2020, 20, 3320–3325.

[21]

Huang, F. F.; Li, R. H.; Wang, G.; Zheng, J. T.; Tang, Y. X.; Liu, J. Y.; Yang, Y.; Yao, Y.; Shi, J.; Hong, W. J. Automatic classification of single-molecule charge transport data with an unsupervised machine-learning algorithm. Phys. Chem. Chem. Phys. 2020, 22, 1674–1681.

[22]

Lin, L. C.; Tang, C.; Dong, G.; Chen, Z. X.; Pan, Z. C.; Liu, J. Y.; Yang, Y.; Shi, J.; Ji, R. R.; Hong, W. J. Spectral clustering to analyze the hidden events in single-molecule break junctions. J. Phys. Chem. C 2021, 125, 3623–3630.

[23]

Vladyka, A.; Albrecht, T. Unsupervised classification of single-molecule data with autoencoders and transfer learning. Mach. Learn.: Sci. Technol. 2020, 1, 035013.

[24]

Magyarkuti, A.; Balogh, N.; Balogh, Z.; Venkataraman, L.; Halbritter, A. Unsupervised feature recognition in single-molecule break junction data. Nanoscale 2020, 12, 8355–8363.

[25]

Zheng, J. T.; Gao, W. L.; Lu, T. G.; Chen, L. J.; Lin, L. C.; Huang, R. Y.; Tang, Y. X.; Dong, G.; Liu, J. Y.; Pan, Y. F. et al. Structure identification for force-induced reaction using single-molecule conductance measurement. CCS Chem. 2023, 5, 1888–1895.

[26]

Liu, B.; Murayama, S.; Komoto, Y.; Tsutsui, M.; Taniguchi, M. Dissecting time-evolved conductance behavior of single molecule junctions by nonparametric machine learning. J. Phys. Chem. Lett. 2020, 11, 6567–6572.

[27]

Zhang, A. H.; Zhuang, X. Y.; Liu, J.; Huang, J. C.; Lin, L. C.; Tang, Y. X.; Zhao, S. Q.; Li, R. H.; Wang, B. J.; Fang, B. S. et al. Catalytic cycle of formate dehydrogenase captured by single-molecule conductance. Nat. Catal. 2023, 6, 266–275.

[28]

Feng, A. N.; Zhou, Y.; Al-Shebami, M. A. Y.; Chen, L. C.; Pan, Z. C.; Xu, W.; Zhao, S. Q.; Zeng, B. F.; Xiao, Z. Y.; Yang, Y. et al. σ–σ stacked supramolecular junctions. Nat. Chem. 2022, 14, 1158–1164.

[29]

Bro-Jørgensen, W.; Hamill, J. M.; Bro, R.; Solomon, G. C. Trusting our machines: Validating machine learning models for single-molecule transport experiments. Chem. Soc. Rev. 2022, 51, 6875–6892.

[30]

Xiong, H.; Wu, J. J.; Chen, J. K-means clustering versus validation measures: A data-distribution perspective. IEEE Trans. Syst. Man Cybern. B 2009, 39, 318–331.

[31]

Zhou, K. L.; Yang, S. L. Effect of cluster size distribution on clustering: A comparative study of K-means and fuzzy c-means clustering. Pattern Anal. Appl. 2020, 23, 455–466.

[32]

Krishnapuram, R.; Kim, J. A note on the Gustafson–Kessel and adaptive fuzzy clustering algorithms. IEEE Trans. Fuzzy Syst. 1999, 7, 453–461.

[33]

Fränti, P.; Sieranoja, S. K-means properties on six clustering benchmark datasets. Appl. Intell. 2018, 48, 4743–4759.

[34]
Guha, S.; Rastogi, R.; Shim, K. CURE: An efficient clustering algorithm for large databases. In Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, Seattle, USA, 1998, pp 73–84.
[35]

Salvador, S.; Chan, P. Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 2007, 11, 561–580.

[36]

Lu, Y.; Cheung, Y. M.; Tang, Y. Y. Self-adaptive multiprototype-based competitive learning approach: A K-means-type algorithm for imbalanced data clustering. IEEE Trans. Cybern. 2021, 51, 1598–1612.

[37]

Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492–1496.

[38]

Xu, L.; Krzyzak, A.; Oja, E. Rival penalized competitive learning for clustering analysis, RBF net, and curve detection. IEEE Trans. Neural Netw. 1993, 4, 636–649.

[39]

Serrà, J.; Arcos, J. L. An empirical evaluation of similarity measures for time series classification. Knowl.-Based Syst. 2014, 67, 305–314.

[40]

Murtagh, F.; Contreras, P. Algorithms for hierarchical clustering: An overview. WIREs Data Min. Knowl. Discov. 2012, 2, 86–97.

[41]

Ikotun, A. M.; Ezugwu, A. E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Inf. Sci. 2023, 622, 178–210.

[42]

Lemmer, M.; Inkpen, M. S.; Kornysheva, K.; Long, N. J.; Albrecht, T. Unsupervised vector-based classification of single-molecule charge transport data. Nat. Commun. 2016, 7, 12922.

[43]

Hubert, L.; Arabie, P. Comparing partitions. J. Classif. 1985, 2, 193–218.

[44]

Chen, Z. L.; Goldwasser, J.; Tuckman, P.; Liu, J.; Zhang, J.; Gerstein, M. Forest fire clustering for single-cell sequencing combines iterative label propagation with parallelized Monte Carlo simulations. Nat. Commun. 2022, 13, 3538.

[45]

Liu, J. Y.; Zhao, X. T.; Al-Galiby, Q.; Huang, X. Y.; Zheng, J. T.; Li, R. H.; Huang, C. C.; Yang, Y.; Shi, J.; Manrique, D. Z. et al. Radical-enhanced charge transport in single-molecule phenothiazine electrical junctions. Angew. Chem., Int. Ed. 2017, 56, 13061–13065.

[46]

Limburg, B.; Thomas, J. O.; Holloway, G.; Sadeghi, H.; Sangtarash, S.; Hou, I. C. Y.; Cremers, J.; Narita, A.; Müllen, K.; Lambert, C. J. et al. Anchor groups for graphene-porphyrin single-molecule transistors. Adv. Funct. Mater. 2018, 28, 1803629.

[47]

Zhao, S. Q.; Wu, Q. Q.; Pi, J. C.; Liu, J. Y.; Zheng, J. T.; Hou, S. J.; Wei, J. Y.; Li, R. H.; Sadeghi, H.; Yang, Y. et al. Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction. Sci. Adv. 2020, 6, eaba6714.

[48]

Tang, C.; Su, M. L.; Lu, T. G.; Zheng, J. T.; Wang, J. J.; Zhou, Y.; Zou, Y. L.; Liu, W. Q.; Huang, R. Y.; Xu, W. et al. Massive acceleration of SN2 reaction using the oriented external electric field. Chem. Sci. 2024, 15, 13486–13494.

[49]

Su, T. A.; Li, H. X.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Stereoelectronic switching in single-molecule junctions. Nat. Chem. 2015, 7, 215–220.

[50]

Zhu, Y. X.; Zhou, Y.; Ren, L.; Ye, J. Y.; Wang, H. C.; Liu, X. Y.; Huang, R. Y.; Liu, H. J.; Liu, J. Y.; Shi, J. et al. Switching quantum interference in single-molecule junctions by mechanical tuning. Angew. Chem., Int. Ed. 2023, 62, e202302693.

[51]

Qiu, K. P.; Fato, T. P.; Yuan, B.; Long, Y. T. Toward precision measurement and manipulation of single-molecule reactions by a confined space. Small 2019, 15, 1805426.

[52]

Liu, W.; Yang, Z. L.; Yang, C. N.; Ying, Y. L.; Long, Y. T. Profiling single-molecule reaction kinetics under nanopore confinement. Chem. Sci. 2022, 13, 4109–4114.

[53]

Huang, X. Y.; Tang, C.; Li, J. Q.; Chen, L. C.; Zheng, J. T.; Zhang, P.; Le, J. B.; Li, R. H.; Li, X. H.; Liu, J. Y. et al. Electric field-induced selective catalysis of single-molecule reaction. Sci. Adv. 2019, 5, eaaw3072.

[54]

Tang, C.; Stuyver, T.; Lu, T. G.; Liu, J. Y.; Ye, Y. L.; Gao, T. Y.; Lin, L. C.; Zheng, J. T.; Liu, W. Q.; Shi, J. et al. Voltage-driven control of single-molecule keto-enol equilibrium in a two-terminal junction system. Nat. Commun. 2023, 14, 3657.

[55]

Shaik, S.; Ramanan, R.; Danovich, D.; Mandal, D. Structure and reactivity/selectivity control by oriented-external electric fields. Chem. Soc. Rev. 2018, 47, 5125–5145.

[56]

Yang, C.; Liu, Z. T.; Li, Y. W.; Zhou, S. Y.; Lu, C. X.; Guo, Y. L.; Ramirez, M.; Zhang, Q. Z.; Li, Y.; Liu, Z. R. et al. Electric field-catalyzed single-molecule Diels-Alder reaction dynamics. Sci. Adv. 2021, 7, eabf0689.

[57]
Ester, M.; Kriegel, H. P.; Sander, J.; Xu, X. W. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, USA, 1996, pp 226–231.
[58]
Williams, C. K. I.; Rasmussen, C. E. Gaussian processes for regression. In Proceedings of the 9 th International Conference on Neural Information Processing Systems, Denver, USA, 1995, pp 514–520.
Nano Research
Article number: 94907276
Cite this article:
Shang C, Te R, Xiong S, et al. Low-probability events detection using unsupervised multi-prototype clustering for single-molecule electronics. Nano Research, 2025, 18(4): 94907276. https://doi.org/10.26599/NR.2025.94907276
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return