PDF (27.3 MB)
Collect
Submit Manuscript
Research Article | Open Access

Correlation between structure, microstructure and electrochemical properties of Prussian white cathode material for sodium-ion batteries

Nataliya Yu. Samoylova1 ()Marina E. Donets1Roman N. Vasin1Sergei V. Sumnikov1Ekaterina A. Korneeva1Alexander S. Sohatsky1Evgeny V. Andreev1Svetlana G. Protasova2Rais N. Mozhchil2Nickolay A. Kolyshkin3
Joint Institute for Nuclear Research, Dubna 141980, Russia
Institute of Solid State Physics and Chernogolovka Scientific Research Center of Russian Academy of Sciences, Chernogolovka 142432, Russia
National Research Center Kurchatov Institute, Moscow 123182, Russia
Show Author Information

Graphical Abstract

View original image Download original image
Fragmentation of micron-sized Prussian white cathode material particles into nano-sized particles using ball milling improves the high-rate capacity and long-term cycling stability of the material.

Abstract

Sodium hexacyanoferrate, or Prussian white (PW), is a cheap cathode material for rechargeable sodium-ion batteries, exhibiting high capacity and charge/discharge rate. Tailoring structure and microstructure of PW to further improve its properties, in particular, cycling stability, is an important task to achieve for successful commercial applications of sodium-ion batteries. Here, the relation of grain refinement and thermal treatment with crystal structure, structural phase transition sequences and electrochemical properties of the PW are studied. The ball-milling process and subsequent drying at high temperatures induce the transformation of the initial rhombohedral structure of the pristine commercial Prussian White powder into a multiphase compound of dehydrated rhombohedral and cubic structures with different average crystallite sizes. The increased surface area of the effectively milled cubic phase promotes its transition into the dehydrated rhombohedral Prussian White at temperatures below 100 °C. Electrodes based on the milled Prussian White powder demonstrate a capacity of ~ 110 mAh·g−1 (compared to ~ 80 mAh·g−1 for the non-milled commercial powder) at 10 C cycling rate and better cycling stability, retaining a larger part of their initial specific capacity after 300 charge/discharge cycles than those based on non-milled material. It is shown that high-spin and low-spin Fe redox processes in Prussian white-based electrodes are also affected by ball milling.

Electronic Supplementary Material

Download File(s)
7280_ESM.pdf (4.3 MB)

References

[1]

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

[2]

Hasa, I.; Mariyappan, S.; Saurel, D.; Adelhelm, P.; Koposov, A. Y.; Masquelier, C.; Croguennec, L.; Casas-Cabanas, M. Challenges of today for Na-based batteries of the future: From materials to cell metrics. J. Power Sources 2021, 482, 228872.

[3]

Tapia-Ruiz, N.; Armstrong, A. R.; Alptekin, H.; Amores, M. A.; Au, H.; Barker, J.; Boston, R.; Brant, W. R.; Brittain, J. M.; Chen, Y. et al. 2021 roadmap for sodium-ion batteries. J. Phys. Energy 2021, 3, 031503.

[4]

Liu, Y. A.; Liu, H. Q.; Zhang, R. Z.; Zhong, Y. J.; Wu, Z. G.; Wang, X. L.; Zhang, Z. Y. Recent progress of manganese-based Prussian blue analogue cathode materials for sodium-ion batteries. Ionics 2024, 30, 39–59.

[5]

Lu, Y. H.; Wang, L.; Cheng, J. G.; Goodenough, J. B. Prussian blue: A new framework of electrode materials for sodium batteries. Chem. Commun. 2012, 48, 6544–6546.

[6]

Peng, J.; Zhang, W.; Liu, Q. N.; Wang, J. Z.; Chou, S. L.; Liu, H. K.; Dou, S. X. Prussian Blue analogues for sodium-ion batteries: Past, present, and future. Adv. Mater. 2022, 34, 2108384.

[7]

Yi, H. C.; Qin, R. Z.; Ding, S. X.; Wang, Y. T.; Li, S. N.; Zhao, Q. H.; Pan, F. Structure and properties of Prussian blue analogues in energy storage and conversion applications. Adv. Funct. Mater. 2021, 31, 2006970.

[8]

Maddar, F. M.; Walker, D.; Chamberlain, T. W.; Compton, J.; Menon, A. S.; Copley, M.; Hasa, I. Understanding dehydration of Prussian white: From material to aqueous processed composite electrodes for sodium-ion battery application. J. Mater. Chem. A 2023, 11, 15778–15791.

[9]

Samoylova, N. Y.; Bobrikov, I. A.; Razanau, I.; Sumnikov, S. V.; Vasin, R. N.; Korneeva, E. A.; Ponomareva, O. Y.; Novikau, U. Peculiarities of charge–discharge processes in Prussian white electrodes with different level of dehydration. J. Alloys Compd. 2024, 983, 173849.

[10]

Yamada, A.; Chung, S. C.; Hinokuma, K. Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 2001, 148, A224.

[11]

Bobrikov, I. A.; Balagurov, A. M.; Hu, C. W.; Lee, C. H.; Chen, T. Y.; Sangaa, D.; Balagurov, D. A. Structural evolution in LiFePO4-based battery materials: In- situ and ex- situ time-of-flight neutron diffraction study. J. Power Sources 2014, 258, 356–364.

[12]

Ni, J. F.; Kawabe, Y.; Morishita, M.; Watada, M.; Sakai, T. Improved electrochemical activity of LiMnPO4 by high-energy ball-milling. J. Power Sources 2011, 196, 8104–8109.

[13]

Zhang, H.; Xu, Y. L.; Liu, D. Novel nanostructured LiMn2O4 microspheres for high power Li-ion batteries. RSC Adv. 2015, 5, 11091–11095.

[14]

Lee, H. J.; Kim, D. Y.; Jeong, S. K. Effect of ball milling process on electrochemical properties of copper hexacyanoferrate active material for calcium-ion batteries. Key Eng. Mater. 2019, 803, 109–114.

[15]

Peng, J.; Gao, Y.; Zhang, H.; Liu, Z. G.; Zhang, W.; Li, L.; Qiao, Y.; Yang, W. S.; Wang, J. Z.; Dou, S. X. et al. Ball milling solid-state synthesis of highly crystalline Prussian Blue analogue Na2– x MnFe(CN)6 cathodes for all-climate sodium-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202205867.

[16]

He, S. L.; Zhao, J. M.; Rong, X. H.; Xu, C. L.; Zhang, Q. Q.; Shen, X.; Qi, X. G.; Li, Y. Q.; Li, X. Y.; Niu, Y. S. et al. Solvent-free mechanochemical synthesis of Na-rich Prussian white cathodes for high-performance Na-ion batteries. J. Chem. Eng. 2022, 428, 131083.

[17]

Ma, N.; Ohtani, R.; Le, H. M.; Sørensen, S. S.; Ishikawa, R.; Kawata, S.; Bureekaew, S.; Kosasang, S.; Kawazoe, Y.; Ohara, K. et al. Exploration of glassy state in Prussian blue analogues. Nat. Commun. 2022, 13, 4023.

[18]

Brant, W. R.; Mogensen, R.; Colbin, S.; Ojwang, D. O.; Schmid, S.; Häggström, L.; Ericsson, T.; Jaworski, A.; Pell, A. J.; Younesi, R. Selective control of composition in Prussian white for enhanced material properties. Chem. Mater. 2019, 31, 7203–7211.

[19]

Wang, W. L.; Hu, Z.; Yan, Z. C.; Peng, J.; Chen, M. Z.; Lai, W. H.; Gu, Q. F.; Chou, S. L.; Liu, H. K. et al. Understanding rhombohedral iron hexacyanoferrate with three different sodium positions for high power and long stability sodium-ion battery. Energy Stor. Mater. 2020, 30, 42–51.

[20]

Kraft, A. Some considerations on the structure, composition, and properties of Prussian blue: A contribution to the current discussion. Ionics 2021, 27, 2289–2305.

[21]

Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319.

[22]

Lejeune, J.; Brubach, J. B.; Roy, P.; Bleuzen, A. Application of the infrared spectroscopy to the structural study of Prussian blue analogues. C. R. Chim. 2014, 17, 534–540.

[23]

Ojwang, D. O.; Svensson, M.; Njel, C.; Mogensen, R.; Menon, A. S.; Ericsson, T.; Häggström, L.; Maibach, J.; Brant, W. R. Moisture-driven degradation pathways in Prussian white cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 10054–10063.

[24]

Niwa, H.; Moriya, T.; Shibata, T.; Fukuzumi, Y.; Moritomo, Y. In situ IR spectroscopy during oxidation process of cobalt Prussian blue analogues. Sci. Rep. 2021, 11, 4119.

[25]

Tang, D. J.; Wang, J. X.; Liu, X. A.; Tong, Z. F.; Ji, H. B.; Qu, H. Y. Low-Spin Fe Redox-Based Prussian Blue with excellent selective dual-band electrochromic modulation and energy-saving applications. J. Colloid Interface Sci. 2023, 636, 351–362.

[26]

Luo, Y.; Peng, J. Y.; Yan, Y. W. Self-induced cobalt-derived hollow structure Prussian blue as a cathode for sodium-ion batteries. RSC Adv. 2021, 11, 31827–31833.

[27]

Forment-Aliaga, A.; Weitz, R. T.; Sagar, A. S.; Lee, E. J. H.; Konuma, M.; Burghard, M.; Kern, K. Strong p-type doping of individual carbon nanotubes by Prussian blue functionalization. Small 2008, 4, 1671–1675.

[28]

Lutterotti, L.; Matthies, S.; Wenk, H. R.; Schultz, A. S.; Richardson, J. W. Jr. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J. Appl. Phys. 1997, 81, 594–600.

[29]

Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 1969, 2, 65–71.

[30]

Wang, W. L.; Gang, Y.; Hu, Z.; Yan, Z. C.; Li, W. J.; Li, Y. C.; Gu, Q. F.; Wang, Z. X.; Chou, S. L.; Liu, H. K. et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion Batteries. Nat. Commun. 2020, 11, 980.

[31]

Rudola, A.; Du, K.; Balaya, P. Monoclinic sodium iron hexacyanoferrate cathode and non-flammable glyme-based electrolyte for inexpensive sodium-ion batteries. J. Electrochem. Soc. 2017, 164, A1098–A1109.

[32]

Balagurov, A. M.; Bobrikov, I. A.; Bokuchava, G. D.; Vasin, R. N.; Gusev, A. I.; Kurlov, A. S.; Leoni, M. High-resolution neutron diffraction study of microstructural changes in nanocrystalline ball-milled niobium carbide NbC0.93. Mater. Charact. 2015, 109, 173–180.

[33]

Patnaik, S. G.; Escher, I.; Ferrero, G. A.; Adelhelm, P. Electrochemical study of Prussian white cathodes with glymes-pathway to graphite-based sodium-ion battery full cells. Batteries Supercaps 2022, 5, e202200043.

[34]

Sun, J. G.; Ye, H. L.; Oh, J. A. S.; Plewa, A.; Sun, Y.; Wu, T.; Sun, Q. M.; Zeng, K. Y.; Lu, L. Elevating the discharge plateau of prussian blue analogs through low-spin Fe redox induced intercalation pseudocapacitance. Energy Stor. Mater. 2021, 43, 182–189.

[35]

Wang, L.; Song, J.; Qiao, R. M.; Wray, L. A.; Hossain, M. A.; Chuang, Y. D.; Yang, W. L.; Lu, Y. H.; Evans, D.; Lee, J. J. et al. Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J. Am. Chem. Soc. 2015, 137, 2548–2554.

[36]

Piernas-Muñoz, M. J.; Castillo-Martínez, E.; Bondarchuk, O.; Armand, M.; Rojo, T. Higher voltage plateau cubic Prussian white for Na-ion batteries. J. Power Sources 2016, 324, 766–773.

[37]

Tang, W.; Xie, Y. Y.; Peng, F. W.; Yang, Y.; Feng, F.; Liao, X. Z.; He, Y. S.; Ma, Z. F.; Chen, Z. H.; Ren, Y. Electrochemical performance of NaFeFe(CN)6 prepared by solid reaction for sodium ion batteries. J. Electrochem. Soc. 2018, 165, A3910–A3917.

[38]

You, Y.; Wu, X. L.; Yin, Y. X.; Guo, Y. G. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 2014, 7, 1643–1647.

[39]

Xi, Y. M.; Lu, Y. C. Facile synthesis and cycling performance maintenance of iron hexacyanoferrate cathode for sodium-ion battery. J. Power Sources 2021, 513, 230554.

[40]

Nielsen, I.; Dzodan, D.; Ojwang, D. O.; Henry, P. F.; Ulander, A.; Ek, G.; Häggström, L.; Ericsson, T.; Boström, H. L. B.; Brant, W. R. Water driven phase transitions in Prussian white cathode materials. J. Phys. Energy 2022, 4, 044012.

[41]

Wang, W. L.; Gang, Y.; Peng, J.; Hu, Z.; Yan, Z. C.; Lai, W. H.; Zhu, Y. F.; Appadoo, D.; Ye, M.; Cao, Y. L. et al. Effect of eliminating water in Prussian blue cathode for sodium-ion batteries. Adv. Funct. Mater. 2022, 32, 2111727.

[42]

Ponomareva, O. Y.; Sumnikov, S. V.; Vasin, R. N.; Korneeva, E. A.; Samoylova, N. Y. Phase transformations in Na-rich Prussian white cathode materials with different morphology. Phys. Part. Nuclei Lett. 2024, 21, 764–767.

[43]

Nielsen, I.; Hall, C. A.; Mattsson, A. M.; Younesi, R.; Buckel, A.; Ek, G.; Brant, W. R. Unravelling the origin of capacity fade in Prussian white hard carbon full cells through operando X-ray diffraction. J. Mater. Chem. A 2024, 12, 17413–17421.

[44]

Ling, C.; Chen, J. J.; Mizuno, F. First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate: The important role of ionic radius. J. Phys. Chem. C 2013, 117, 21158–21165.

[45]

Brezesinski, T.; Wang, J.; Polleux, J.; Dunn, B.; Tolbert, S. H. Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 2009, 131, 1802–1809.

Nano Research
Article number: 94907280
Cite this article:
Samoylova NY, Donets ME, Vasin RN, et al. Correlation between structure, microstructure and electrochemical properties of Prussian white cathode material for sodium-ion batteries. Nano Research, 2025, 18(4): 94907280. https://doi.org/10.26599/NR.2025.94907280
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return