PDF (44.1 MB)
Collect
Submit Manuscript
Show Outline
Figures (6)

Research Article | Open Access

Oxygen nanobubbles of ICG dimers achieve self-cascade photothermal and photodynamic therapy for hypoxia-reversible tumor treatment

Xiang Sun1Zheng Zhang2Moran Wang1Yuqin Chen1Xiang Meng1Wenjun Zhao1Juan Jin1Wanghanqi Yang1Chengwan Xia2 ()Yuxin Wang2Shengliang Li3 ()Bin Huang1 ()Ning Gu1,4 ()
Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
Department of Oral and Maxillofacial Trauma Orthognathic Plastic Surgery, Nanjing Stomatological Hospital, Research Institute of Stomatology, Medical School of Nanjing University, Nanjing 210093, China
College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
Nanjing Key Laboratory for Cardiovascular Information and Health, Engineering Medicine Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
Show Author Information

Graphical Abstract

View original image Download original image
A proof-of-concept of self-cascade photothermal and photodynamic therapy (PTT and PDT) was developed for hypoxia-reversible tumor therapy.

Abstract

Simultaneous photothermal and photodynamic therapies (PTT and PDT) hold great promise for noninvasive tumor therapy. However, effective regulation of PTT and PDT with optimal synergistic effects remains a challenge. To date, there are only a few synergistic PTT and PDT methods with suitable collaborative effects due to the rarity of efficient nanoplatforms with good cascading properties. To overcome this limitation, a proof-of-concept of self-cascade PTT and PDT was developed for hypoxia-reversible tumor therapy. With the assembly of dimeric indocyanine green (DICG) with oxygen nanobubbles (O2-NBs), DICG/O2-NBs typically exhibit J-aggregates for significant PTT effects, with a high photothermal conversion efficiency of 51.45% under 880 nm light irradiation. Interestingly, the PTT performance of DICG/O2-NBs can switch J-aggregates of DICG into DICG monomers with efficient O2 gas liberation, while producing hydroxyl radicals for type I PDT. Additionally, the evolved DICG monomer reacts with the released O2 to generate plenty of 1O2 for efficient type II PDT. With these advantages, the cascaded nanoplatform achieves good tumor targeting and biocompatibility, and thus has high tumor inhibition of 94.26%, with an obvious ability to reverse hypoxia. This work demonstrates the efficiency of self-cascade PTT and PDT nanomedicine for high-performance hypoxia-reversible tumor ablation, thus providing a new approach for the development of cascading phototheranostics in vivo.

Electronic Supplementary Material

Download File(s)
7281_ESM.pdf (1.8 MB)

References

[1]

Fan, W. P.; Yung, B.; Huang, P.; Chen, X. Y. Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev. 2017, 117, 13566–13638.

[2]

Nguyen, V. N.; Yan, Y. X.; Zhao, J. Z.; Yoon, J. Heavy-atom-free photosensitizers: From molecular design to applications in the photodynamic therapy of cancer. Acc. Chem. Res. 2021, 54, 207–220.

[3]

Pham, T. C.; Nguyen, V. N.; Choi, Y.; Lee, S.; Yoon, J. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem. Rev. 2021, 121, 13454–13619.

[4]

Xi, D. M.; Xiao, M.; Cao, J. F.; Zhao, L. Y.; Xu, N.; Long, S. R.; Fan, J. L.; Shao, K.; Sun, W.; Yan, X. H. et al. NIR light-driving barrier-free group rotation in nanoparticles with an 88.3% photothermal conversion efficiency for photothermal therapy. Adv. Mater. 2020, 32, e1907855.

[5]

Wu, Z. H.; Peng, M.; Ji, C. D.; Kardasis, P.; Tzourtzouklis, I.; Baumgarten, M.; Wu, H.; Basché, T.; Floudas, G.; Yin, M. Z. et al. A terrylene-anthraquinone dyad as a chromophore for photothermal therapy in the NIR-II window. J. Am. Chem. Soc. 2023, 145, 26487–26493.

[6]

Zhao, M. Y.; Zhuang, H. J.; Li, B. H.; Chen, M. W.; Chen, X. Y. In situ transformable nanoplatforms with supramolecular cross-linking triggered complementary function for enhanced cancer photodynamic therapy. Adv. Mater. 2023, 35, 2209944.

[7]

Li, B.; Wang, W.; Zhao, L.; Wu, Y. X.; Li, X. X.; Yan, D. Y.; Gao, Q. X.; Yan, Y.; Zhang, J.; Feng, Y. et al. Photothermal therapy of tuberculosis using targeting pre-activated macrophage membrane-coated nanoparticles. Nat. Nanotechnol. 2024, 19, 834–845.

[8]

Hu, X. M.; Fang, Z. T.; Sun, F. W.; Zhu, C. J.; Jia, M. X.; Miao, X. F.; Huang, L. T.; Hu, W. B.; Fan, Q. L.; Yang, Z. et al. Deciphering oxygen-independent augmented photodynamic oncotherapy by facilitating the separation of electron-hole pairs. Angew. Chem., Int. Ed. 2024, 63, e202401036.

[9]

Melamed, J. R.; Edelstein, R. S.; Day, E. S. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano 2015, 9, 6–11.

[10]

Zhang, Y. J.; Zhan, X. L.; Xiong, J.; Peng, S. S.; Huang, W.; Joshi, R.; Cai, Y.; Liu, Y. L.; Li, R.; Yuan, K. et al. Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Sci. Rep. 2018, 8, 8720.

[11]

Jin, Z. Y.; Fatima, H.; Zhang, Y.; Shao, Z. P.; Chen, X. J. Recent advances in bio‐compatible oxygen singlet generation and its tumor treatment. Adv. Therapeutics 2022, 5, 210076.

[12]

Teng, K. X.; Niu, L. Y.; Yang, Q. Z. Supramolecular photosensitizer enables oxygen-independent generation of hydroxyl radicals for photodynamic therapy. J. Am. Chem. Soc. 2023, 145, 4081–4087.

[13]

Teng, K. X.; Chen, W. K.; Niu, L. Y.; Fang, W. H.; Cui, G. L.; Yang, Q. Z. BODIPY-based photodynamic agents for exclusively generating superoxide radical over singlet oxygen. Angew. Chem., Int. Ed. 2021, 60, 19912–19920.

[14]

Chen, H.; Wan, Y. P.; Cui, X.; Li, S. L.; Lee, C. S. Recent advances in hypoxia-overcoming strategy of aggregation-induced emission photosensitizers for efficient photodynamic therapy. Adv. Healthc. Mater. 2021, 10, e2101607.

[15]

Wang, Y.; Luo, S. Y.; Wu, Y. S.; Tang, P.; Liu, J. J.; Liu, Z. Y.; Shen, S. H.; Ren, H. Z.; Wu, D. C. Highly penetrable and on-demand oxygen release with Tumor activity composite nanosystem for photothermal/photodynamic synergetic therapy. ACS Nano 2020, 14, 17046–17062.

[16]

Wilson, B. C.; Weersink, R. A. The Yin and Yang of PDT and PTT. Photochem. Photobiol. 2020, 96, 219–231.

[17]

Overchuk, M.; Weersink, R. A.; Wilson, B. C.; Zheng, G. Photodynamic and photothermal therapies: Synergy opportunities for nanomedicine. ACS Nano 2023, 17, 7979–8003.

[18]

Benítez-Mateos, A. I.; Roura Padrosa, D.; Paradisi, F. Multistep enzyme cascades as a route towards green and sustainable pharmaceutical syntheses. Nat. Chem. 2022, 14, 489–499.

[19]

Lee, M. G.; Li, X. Y.; Ozden, A.; Wicks, J.; Ou, P. F.; Li, Y. H.; Dorakhan, R.; Lee, J.; Park, H. K.; Yang, J. W. et al. Selective synthesis of butane from carbon monoxide using cascade electrolysis and thermocatalysis at ambient conditions. Nat. Catal. 2023, 6, 310–318.

[20]

Du, C.; Mills, J. P.; Yohannes, A. G.; Wei, W.; Wang, L.; Lu, S. Y.; Lian, J. X.; Wang, M. Y.; Guo, T.; Wang, X. Y. et al. Cascade electrocatalysis via AgCu single-atom alloy and Ag nanoparticles in CO2 electroreduction toward multicarbon products. Nat. Commun. 2023, 14, 6142.

[21]

Cao, W. W.; Zhu, Y.; Wu, F. P.; Tian, Y.; Chen, Z. M.; Xu, W. J.; Liu, S. Y.; Liu, T. T.; Xiong, H. Three birds with one stone: Acceptor engineering of hemicyanine dye with NIR-II emission for synergistic photodynamic and photothermal anticancer therapy. Small 2022, 18, e2204851.

[22]

Jin, T. X.; Cheng, D.; Jiang, G. Y.; Xing, W. Q.; Liu, P. W.; Wang, B.; Zhu, W. P.; Sun, H. T.; Sun, Z. R.; Xu, Y. F. et al. Engineering naphthalimide-cyanine integrated near-infrared dye into ROS-responsive nanohybrids for tumor PDT/PTT/chemotherapy. Bioact. Mater. 2022, 14, 42–51.

[23]

Hu, X. M.; Zhu, C. J.; Sun, F. W.; Chen, Z. J.; Zou, J. H.; Chen, X. Y.; Yang, Z. J-aggregation strategy toward potentiated NIR-II fluorescence bioimaging of molecular fluorophores. Adv. Mater. 2024, 36, e2304848.

[24]

Würthner, F.; Kaiser, T. E.; Saha-Möller, C. R. J-aggregates: From serendipitous discovery to supramolecular engineering of functional dye materials. Angew. Chem., Int. Ed. 2011, 50, 3376–3410.

[25]

Sun, C. X.; Zhao, M. Y.; Zhu, X. Y.; Pei, P.; Zhang, F. One-pot preparation of highly dispersed second near-infrared J-aggregate nanoparticles based on FD-1080 cyanine dye for bioimaging and biosensing. CCS Chem. 2022, 4, 476–486.

[26]

Wei, K.; Wu, Y. X.; Zheng, X.; Ouyang, L.; Ma, G. P.; Ji, C. D.; Yin, M. Z. A light-triggered J-aggregation-regulated therapy conversion: From photodynamic/photothermal therapy to long-lasting chemodynamic therapy for effective tumor ablation. Angew. Chem., Int. Ed. 2024, 63, e202404395.

[27]

Liu, R. F.; Tang, J.; Xu, Y. X.; Zhou, Y. M.; Dai, Z. F. Nano-sized indocyanine green J-aggregate as a one-component theranostic agent. Nanotheranostics 2017, 1, 430–439.

[28]

Vincy, A.; Bhatia, N.; Vankayala, R. Optical characteristics of indocyanine green J-aggregates induced by cisplatin for phototheranostic applications. ACS Biomater. Sci. Eng. 2022, 8, 5119–5128.

[29]

Bhavane, R.; Starosolski, Z.; Stupin, I.; Ghaghada, K. B.; Annapragada, A. NIR-II fluorescence imaging using indocyanine green nanoparticles. Sci. Rep. 2018, 8, 14455.

[30]

Sun, X. Y.; Xu, Y.; Guo, Q. K.; Wang, N.; Wu, B.; Zhu, C.; Zhao, W.; Qiang, W. L.; Zheng, M. A novel nanoprobe for targeted imaging and photothermal/photodynamic therapy of lung cancer. Langmuir 2022, 38, 1360–1367.

[31]

Lin, H. R.; Zhou, Y.; Wang, J. M.; Wang, H. M.; Yao, T. H.; Chen, H.; Zheng, H. L.; Zhang, Y.; Ren, E.; Jiang, L. et al. Repurposing ICG enables MR/PA imaging signal amplification and iron depletion for iron-overload disorders. Sci. Adv. 2021, 7, eabl5862.

[32]

Kwon, N.; Jasinevicius, G. O.; Kassab, G.; Ding, L. L.; Bu, J. C.; Martinelli, L. P.; Ferreira, V. G.; Dhaliwal, A.; Chan, H. H. L.; Mo, Y. L. et al. Nanostructure-driven indocyanine green dimerization generates ultra-stable phototheranostics nanoparticles. Angew. Chem., Int. Ed. 2023, 62, e202305564.

[33]

McEwan, C.; Owen, J.; Stride, E.; Fowley, C.; Nesbitt, H.; Cochrane, D.; Coussios, C. C.; Borden, M.; Nomikou, N.; McHale, A. P. et al. Oxygen carrying microbubbles for enhanced sonodynamic therapy of hypoxic tumours. J. Control. Release 2015, 203, 51–56.

[34]

Huang, B.; Yang, L.; Yu, W. B.; Li, Y.; Li, L.; Gu, N. Advances of therapeutic microbubbles and nanobubbles. Nat. Sci. Open 2023, 2, 20220062.

[35]

Song, L.; Wang, G. H.; Hou, X. D.; Kala, S.; Qiu, Z. H.; Wong, K. F.; Cao, F.; Sun, L. Biogenic nanobubbles for effective oxygen delivery and enhanced photodynamic therapy of cancer. Acta Biomater. 2020, 108, 313–325.

[36]

Yang, L.; Huang, B.; Hu, S. Q.; An, Y.; Sheng, J. Y.; Li, Y.; Wang, Y. X.; Gu, N. Indocyanine green assembled free oxygen-nanobubbles towards enhanced near-infrared induced photodynamic therapy. Nano Res. 2022, 15, 4285–4293.

[37]

Rüttger, F.; Mindt, S.; Golz, C.; Alcarazo, M.; John, M. Isomerization and dimerization of indocyanine green and a related heptamethine dye. Eur. J. Org. Chem. 2019, 2019, 4791–4796.

[38]

Jin, J.; Feng, Z. Q.; Yang, F.; Gu, N. Bulk nanobubbles fabricated by repeated compression of microbubbles. Langmuir 2019, 35, 4238–4245.

[39]

Zhao, X. Z.; Long, S. R.; Li, M. L.; Cao, J. F.; Li, Y. C.; Guo, L. Y.; Sun, W.; Du, J. J.; Fan, J. L.; Peng, X. J. Oxygen-dependent regulation of excited-state deactivation process of rational photosensitizer for smart phototherapy. J. Am. Chem. Soc. 2020, 142, 1510–1517.

[40]

Chen, F.; Chen, J. N.; Yang, L. B.; Liu, J.; Zhang, X. Q.; Zhang, Y.; Tu, Q. Q.; Yin, D.; Lin, D. C.; Wong, P. P. et al. Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat. Cell Biol. 2019, 21, 498–510.

[41]

Rojo De La Vega, M.; Chapman, E.; Zhang, D. D. NRF2 and the hallmarks of cancer. Cancer Cell 2018, 34, 21–43

[42]

Qin, C.; Yang, S.; Chu, Y. H.; Zhang, H.; Pang, X. W.; Chen, L.; Zhou, L. Q.; Chen, M.; Tian, D. S.; Wang, W. Signaling pathways involved in ischemic stroke: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2022, 7, 215.

Nano Research
Article number: 94907281
Cite this article:
Sun X, Zhang Z, Wang M, et al. Oxygen nanobubbles of ICG dimers achieve self-cascade photothermal and photodynamic therapy for hypoxia-reversible tumor treatment. Nano Research, 2025, 18(4): 94907281. https://doi.org/10.26599/NR.2025.94907281
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return