PDF (19.1 MB)
Collect
Submit Manuscript
Research Article | Open Access

Bottom-up approaches to form superatom-assembled 2D few-layered borophanes and carborophanes and 3D α-B12, γ-B28, and B4C based on icosahedral B12 and CB11

Qiao-Qiao YanWen-Yan ZanYue-Wen MuSi-Dian Li ()
Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
Show Author Information

Graphical Abstract

View original image Download original image
Extensive density functional theory calculations establish bottom-up approaches to form a series of superatom-assembled two-dimensional (2D) monolayer, dilayer, trilayer, tetralayer, and pentalayer borophases and carborophanes and the experimentally observed three-dimensional (3D) α-B12, γ-B28, and B4C with aromatic icosahedral B12 and CB11 as building blocks.

Abstract

Using the experimentally known aromatic icosahedral Ih B12H122− and C5vB11CH12 as building blocks and based on extensive density functional theory calculations, we present herein bottom-up approaches to form the superatom-assembled two-dimensional (2D) few-layered α-rhombohedral borophanes (B12)nH6 (α-15) and (B12)nH2 (α-610), γ-orthorhombic borophanes (B12-B2)nH8 (γ-15), and carborophanes (CB11-CBC)nH8 (σ-15) (n = 1–5) and experimentally known three-dimensional (3D) α-B12, γ-B28, and B4C crystals based on aromatic icosahedral B12 and CB11, with the B–B dumbbells in γ-15 and C–B–C chains in σ-15 serving as interstitial units to help stabilize the systems. As both chemically and mechanically stable species, the optimized 2D monolayer, bilayer, trilayer, tetralayer, and pentalayer borophanes and carborophanes all turn out to be semiconductors in nature, in particular, the few-layered carborophanes σ-35 ((CB11-CBC)nH8 (n = 3–5)) with the calculated band gaps of Egap = 1.32–1.26 eV appear to be well compatible with traditional silicon semiconductors in band gaps. Detailed adaptive natural density partitioning (AdNDP) bonding analyses indicate that both the icosahedral B12 and CB11 cages in these 2D and 3D crystal structures follow the universal superatomic electronic configuration of 1S21P61D101F8 matching the n + 1 Wade’s rule (n = 12), rendering local spherical aromaticity and overall high stability to the systems.

Electronic Supplementary Material

Download File(s)
7288_ESM.pdf (11 MB)

References

[1]
Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry; 6th ed. Wiley: New York, 1999.
[2]

Wang, L. S. Photoelectron spectroscopy of size-selected boron clusters: From planar structures to borophenes and borospherenes. Int. Rev. Phys. Chem. 2016, 35, 69–142.

[3]

Jian, T.; Chen, X. N.; Li, S. D.; Boldyrev, A. I.; Li, J.; Wang, L. S. Probing the structures and bonding of size-selected boron and doped-boron clusters. Chem. Soc. Rev. 2019, 48, 3550–3591.

[4]

Sivaev, I. B.; Bregadze, V. I.; Sjöberg, S. Chemistry of closo-dodecaborate anion [B12H12]2-: A review. Collect. Czech. Chem. Commun. 2002, 67, 679–727.

[5]
Hosmane, N. S. Boron Science: New Technologies and Applications; CRC Press: Boca Raton, 2012.
[6]
Grimes, R. N. Carboranes; 3rd ed. Elsevier: Amsterdam, 2016.
[7]

Wade, K. The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. J. Chem. Soc. D 1971, 792–793.

[8]

Pitochelli, A. R.; Hawthorne, F. M. The isolation of the icosahedral B12H12-2 ion. J. Am. Chem. Soc. 1960, 82, 3228–3229.

[9]

McCarty, L. V.; Kasper, J. S.; Horn, F. H.; Decker, B. F.; Newkirk, A. E. A new crystalline modification of boron. J. Am. Chem. Soc. 1958, 80, 2592–2592.

[10]

Albert, B.; Hillebrecht, H. Boron: Elementary challenge for experimenters and theoreticians. Angew. Chem., Int. Ed. 2009, 48, 8640–8668.

[11]

Oganov, A. R.; Chen, J. H.; Gatti, C.; Ma, Y. Z.; Ma, Y. M.; Glass, C. W.; Liu, Z. X.; Yu, T.; Kurakevych, O. O.; Solozhenko, V. L. Ionic high-pressure form of elemental boron. Nature 2009, 457, 863–867.

[12]

Fujimori, M.; Nakata, T.; Nakayama, T.; Nishibori, E.; Kimura, K.; Takata, M.; Sakata, M. Peculiar covalent bonds in α-rhombohedral boron. Phys. Rev. Lett. 1999, 82, 4452–4455.

[13]

Zarechnaya, E. Y.; Dubrovinsky, L.; Dubrovinskaia, N.; Filinchuk, Y.; Chernyshov, D.; Dmitriev, V.; Miyajima, N.; El Goresy, A.; Braun, H. F.; Van Smaalen, S. et al. Superhard semiconducting optically transparent high pressure phase of boron. Phys. Rev. Lett. 2009, 102, 185501.

[14]

Reddy, K. M.; Liu, P.; Hirata, A.; Fujita, T.; Chen, M. W. Atomic structure of amorphous shear bands in boron carbide. Nat. Commun. 2013, 4, 2483.

[15]

Piazza, Z. A.; Hu, H. S.; Li, W. L.; Zhao, Y. F.; Li, J.; Wang, L. S. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 3113.

[16]

Li, D. F.; Gao, J. F.; Cheng, P.; He, J.; Yin, Y. X.; Hu, Y.; Chen, L.; Cheng, Y.; Zhao, J. J. 2D boron sheets: Structure, growth, and electronic and thermal transport properties. Adv. Funct. Mater. 2020, 30, 1904349.

[17]

Yang, R.; Sun, M. T. Borophenes: Monolayer, bilayer and heterostructures. J. Mater. Chem. C 2023, 11, 6834–6846.

[18]

Gupta, G. H.; Kadakia, S.; Agiwal, D.; Keshari, T.; Kumar, S. Borophene nanomaterials: Synthesis and applications in biosensors. Mater. Adv. 2024, 5, 1803–1816.

[19]

Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.

[20]

Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563–568.

[21]

Liu, X. L.; Li, Q. C.; Ruan, Q. Y.; Rahn, M. S.; Yakobson, B. I.; Hersam, M. C. Borophene synthesis beyond the single-atomic-layer limit. Nat. Mater. 2022, 21, 35–40.

[22]

Chen, C. Y.; Lv, H. F.; Zhang, P.; Zhuo, Z. W.; Wang, Y.; Ma, C.; Li, W. B.; Wang, X. G.; Feng, B. J.; Cheng, P. et al. Synthesis of bilayer borophene. Nat. Chem. 2022, 14, 25–31.

[23]

Tai, G. A.; Hu, T. S.; Zhou, Y. G.; Wang, X. F.; Kong, J. Z.; Zeng, T.; You, Y. C.; Wang, Q. Synthesis of atomically thin boron films on copper foils. Angew. Chem. 2015, 127, 15693–15697.

[24]

Liang, X. C.; Hao, J. Q.; Zhang, P. Y.; Hou, C.; Tai, G. A. Freestanding α-rhombohedral borophene nanosheets: Preparation and memory device application. Nanotechnology 2022, 33, 505601.

[25]

Kah, C. B.; Yu, M.; Tandy, P.; Jayanthi, C. S.; Wu, S. Y. Low-dimensional boron structures based on icosahedron B12. Nanotechnology 2015, 26, 405701.

[26]

Yu, X.; Zhou, T. G.; Zhao, Y. C.; Lu, F.; Zhang, X. M.; Liu, G. D.; Gou, H. Y.; Zurek, E.; Luo, X. G. Surface magnetism in pristine α rhombohedral boron and intersurface exchange coupling mechanism of boron icosahedra. J. Phys. Chem. Lett. 2021, 12, 6812–6817.

[27]

Amsler, M.; Botti, S.; Marques, M. A. L.; Goedecker, S. Conducting boron sheets formed by the reconstruction of the α-boron (111) surface. Phys. Rev. Lett. 2013, 111, 136101.

[28]

Zhou, X. F.; Oganov, A. R.; Shao, X.; Zhu, Q.; Wang, H. T. Unexpected reconstruction of the α-boron (111) surface. Phys. Rev. Lett. 2014, 113, 176101.

[29]

Yan, Q. Q.; Wei, Y. F.; Chen, Q.; Mu, Y. W.; Li, S. D. Superatom-assembled boranes, carboranes, and low-dimensional boron nanomaterials based on aromatic icosahedral B12 and C2B10. Nano Res. 2024, 17, 6734–6740.

[30]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[31]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[32]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[33]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[34]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3869.

[35]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[36]

Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 2008, 78, 134106.

[37]

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

[38]

VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103–128.

[39]

Zubarev, D. Y.; Boldyrev, A. I. Comprehensive analysis of chemical bonding in boron clusters. J. Comput. Chem. 2007, 28, 251–268.

[40]

Zubarev, D. Y.; Boldyrev, A. I. Developing paradigms of chemical bonding: Adaptive natural density partitioning. Phys. Chem. Chem. Phys. 2008, 10, 5207–5217.

[41]

Galeev, T. R.; Dunnington, B. D.; Schmidt, J. R.; Boldyrev, A. I. Solid state adaptive natural density partitioning: A tool for deciphering multi-center bonding in periodic systems. Phys. Chem. Chem. Phys. 2013, 15, 5022–5029.

[42]

Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.

Nano Research
Article number: 94907288
Cite this article:
Yan Q-Q, Zan W-Y, Mu Y-W, et al. Bottom-up approaches to form superatom-assembled 2D few-layered borophanes and carborophanes and 3D α-B12, γ-B28, and B4C based on icosahedral B12 and CB11. Nano Research, 2025, 18(4): 94907288. https://doi.org/10.26599/NR.2025.94907288
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return