PDF (21.1 MB)
Collect
Submit Manuscript
Research Article | Open Access

Ultra-sensitive magnetic nanomechanical array sensor based on graphene oxide for single bacterial cell detection

Zihan Qiao1,§Kainan Mei1,,§Yu Wang1Tianhao Yan2Shubo Zhang3,4Qiubo Chen1Ye Chen1Chen Wang1Tianxiang Ren1Shangquan Wu1,5 ()Qingchuan Zhang1 ()
CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
Department of Cell Biology and Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore 639798, Singapore
Institute of Flexible Electronics Technology of THU, Jiaxing 314000, China
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Science, Beijing 100190, China
Present address: Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China

§ Zihan Qiao and Kainan Mei contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
A magnetic nanomechanical array sensor based on graphene oxide was developed for ultra-sensitive and culture-free detection of pathogenic bacteria. It can detect Escherichia coli at an extremely low concentration (1 CFU·mL−1) within 30 min, offering a novel method for rapid bacterial detection.

Abstract

Pathogenic bacterial infections pose major health threats and economic burdens. Rapid and highly sensitive biochemical sensors are essential for bacterial detection in food safety and clinical applications. Here, we introduce a graphene oxide (GO)-based magnetic nanomechanical array sensor that utilizes the large surface area of GO to bind more magnetic nanoparticles (MNPs) and aptamers. Rapid and ultra-sensitive detection can be achieved even at extremely low target concentrations. This approach can directly detect a single Escherichia coli cell without time-consuming bacterial culture, and the linear detection range is 1–100 CFU·mL−1. Meanwhile, the sensor showed good specificity, reproducibility, stability, and stance to interference, and could detect 1 CFU·mL−1 Escherichia coli in milk. Moreover, we realized the simultaneous detection of two bacteria at extremely low concentrations, which proved that the sensor had the potential for high-throughput detection. In addition, for extremely low-concentration samples (< 100 CFU·mL−1), we controlled the magnetic force at the tip of the microcantilever, greatly enhancing its deflection and sensitivity. This method provides a novel and ultrasensitive method for the timely detection of pathogenic bacteria, and can also be applied to the highly sensitive detection of other targets such as DNA, small molecules, proteins, and viruses by using different probes. Our research provides a promising tool for effective, rapid and highly sensitive detection in the field of public health and food safety.

Electronic Supplementary Material

Download File(s)
7290_ESM.pdf (3.4 MB)

References

[1]

Zhou, X.; Hu, Z. W.; Yang, D. T.; Xie, S. X.; Jiang, Z. J.; Niessner, R.; Haisch, C.; Zhou, H. B.; Sun, P. H. Bacteria detection: From powerful SERS to its advanced compatible techniques. Adv. Sci. 2020, 7, 2001739.

[2]
World Health Organization. Food Safety in South-East Asia[Online]. https://www.who.int/southeastasia/health-topics/food-safety (accessed May 28, 2024).
[3]
Sharif, M. K.; Javed, K.; Nasir, A. Foodborne illness: threats and control. In Foodborne Diseases. Holban, A. M.; Grumezescu, A. M., Eds.; Academic Press: New York, 2018; pp 501–523.
[4]

Huang, C. R.; Kuo, C. J.; Huang, C. W.; Chen, Y. T.; Liu, B. Y.; Lee, C. T.; Chen, P. L.; Chang, W. T.; Chen, Y. W.; Lee, T. M. et al. Host CDK-1 and formin mediate microvillar effacement induced by enterohemorrhagic Escherichia coli. Nat. Commun. 2021, 12, 90.

[5]

Effa, E. E.; Lassi, Z. S.; Critchley, J. A.; Garner, P.; Sinclair, D.; Olliaro, P. L.; Bhutta, Z. A. Fluoroquinolones for treating typhoid and paratyphoid fever (enteric fever). Cochrane Database Syst. Rev. 2011, 2011, CD004530.

[6]

Zhang, K. F.; Chang, S.; Zhang, Q.; Bai, Y. S.; Wang, E. R.; Zhang, M. L.; Fu, Q.; Wei, L. L.; Yu, Y. L. Heavy metals in influent and effluent from 146 drinking water treatment plants across China: Occurrence, explanatory factors, probabilistic health risk, and removal efficiency. J. Hazard. Mater. 2023, 450, 131003.

[7]

Lin-Gibson, S.; Lin, N. J.; Jackson, S.; Viswanathan, S.; Zylberberg, C.; Wolfrum, J.; Basu, S.; Roy, K.; Marshall, D.; McFarland, R. et al. Standards efforts and landscape for rapid microbial testing methodologies in regenerative medicine. Cytotherapy 2021, 23, 390–398.

[8]

Roddie, C.; O'Reilly, M.; Dias Alves Pinto, J.; Vispute, K.; Lowdell, M. Manufacturing chimeric antigen receptor T cells: Issues and challenges. Cytotherapy 2019, 21, 327–340.

[9]

Robb, K. P.; Fitzgerald, J. C.; Barry, F.; Viswanathan, S. Mesenchymal stromal cell therapy: Progress in manufacturing and assessments of potency. Cytotherapy 2019, 21, 289–306.

[10]

Opota, O.; Croxatto, A.; Prod'hom, G.; Greub, G. Blood culture-based diagnosis of bacteraemia: State of the art. Clin. Microbiol. Infect. 2015, 21, 313–322.

[11]

Thaler, D. S. Toward a microbial Neolithic revolution in buildings. Microbiome 2016, 4, 14.

[12]

Castelli, M.; Sabaneyeva, E.; Lanzoni, O.; Lebedeva, N.; Floriano, A. M.; Gaiarsa, S.; Benken, K.; Modeo, L.; Bandi, C.; Potekhin, A. et al. Deianiraea, an extracellular bacterium associated with the ciliate Paramecium, suggests an alternative scenario for the evolution of Rickettsiales. ISME J. 2019, 13, 2280–2294.

[13]

Gracias, K. S.; McKillip, J. L. A review of conventional detection and enumeration methods for pathogenic bacteria in food. Can. J. Microbiol. 2004, 50, 883–890.

[14]
López-Campos, G.; Martínez-Suárez, J. V.; Aguado-Urda, M.; López-Alonso, V. Detection, identification, and analysis of foodborne pathogens. In Microarray Detection and Characterization of Bacterial Foodborne Pathogens. López-Campos, G.; Martínez-Suárez, J. V.; Aguado-Urda, M.; López-Alonso, V., Eds.; Springer: Boston, 2012; pp 13–32.
[15]

Ranjbar, S.; Shahrokhian, S.; Nurmohammadi, F. Nanoporous gold as a suitable substrate for preparation of a new sensitive electrochemical aptasensor for detection of Salmonella typhimurium. Sens. Actuators B: Chem. 2018, 255, 1536–1544.

[16]

Pankratov, D.; Bendixen, M.; Shipovskov, S.; Gosewinkel, U.; Ferapontova, E. E. Cellulase-linked immunomagnetic microbial assay on electrodes: Specific and sensitive detection of a single bacterial cell. Anal. Chem. 2020, 92, 12451–12459.

[17]

Kim, M. J.; Park, J.; Kang, M.; Jeong, U.; Jeong, D.; Kang, N. G.; Hwang, S. J.; Youn, S. H.; Hwang, B. K.; Hyun, Y. et al. Bacteria detection and species identification at the single-cell level using super-resolution fluorescence imaging and AI analysis. Biosens. Bioelectron. 2023, 240, 115603.

[18]

Zhang, J.; Lang, H. P.; Huber, F.; Bietsch, A.; Grange, W.; Certa, U.; McKendry, R.; Güntherodt, H. J.; Hegner, M.; Gerber, C. Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat. Nanotechnol. 2006, 1, 214–220.

[19]

Kasas, S.; Ruggeri, F. S.; Benadiba, C.; Maillard, C.; Stupar, P.; Tournu, H.; Dietler, G.; Longo, G. Detecting nanoscale vibrations as signature of life. Proc. Natl. Acad. Sci. USA 2015, 112, 378–381.

[20]

Huber, F.; Hegner, M.; Gerber, C.; Güntherodt, H. J.; Lang, H. P. Label free analysis of transcription factors using microcantilever arrays. Biosens. Bioelectron. 2006, 21, 1599–1605.

[21]

Etayash, H.; Khan, M. F.; Kaur, K.; Thundat, T. Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes. Nat. Commun. 2016, 7, 12947.

[22]

Huber, F.; Lang, H. P.; Glatz, K.; Rimoldi, D.; Meyer, E.; Gerber, C. Fast diagnostics of BRAF mutations in biopsies from malignant melanoma. Nano Lett. 2016, 16, 5373–5377.

[23]

Hansen, K. M.; Thundat, T. Microcantilever biosensors. Methods 2005, 37, 57–64.

[24]

Kasas, S.; Malovichko, A.; Villalba, M. I.; Vela, M. E.; Yantorno, O.; Willaert, R. G. Nanomotion detection-based rapid antibiotic susceptibility testing. Antibiotics 2021, 10, 287.

[25]

Wang, Y.; Yan, T. H.; Mei, K. N.; Rao, D. P.; Wu, W. J.; Chen, Y.; Peng, Y. P.; Wang, J. Y.; Wu, S. Q.; Zhang, Q. C. Nanomechanical assay for ultrasensitive and rapid detection of SARS-CoV-2 based on peptide nucleic acid. Nano Res. 2023, 16, 1183–1195.

[26]

Rao, D. P.; Mei, K. N.; Yan, T. H.; Wang, Y.; Wu, W. J.; Chen, Y.; Wang, J. Y.; Zhang, Q. C.; Wu, S. Q. Nanomechanical sensor for rapid and ultrasensitive detection of tumor markers in serum using nanobody. Nano Res. 2022, 15, 1003–1012.

[27]

Li, C.; Zhang, G. P.; Wu, S. Q.; Zhang, Q. C. Aptamer-based microcantilever-array biosensor for profenofos detection. Anal. Chim. Acta 2018, 1020, 116–122.

[28]

Wang, J. H.; McIvor, M. J.; Elliott, C. T.; Karoonuthaisiri, N.; Segatori, L.; Biswal, S. L. Rapid detection of pathogenic bacteria and screening of phage-derived peptides using microcantilevers. Anal. Chem. 2014, 86, 1671–1678.

[29]

Nugaeva, N.; Gfeller, K. Y.; Backmann, N.; Lang, H. P.; Düggelin, M.; Hegner, M. Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens. Bioelectron. 2005, 21, 849–856.

[30]

Gil-Santos, E.; Ramos, D.; Jana, A.; Calleja, M.; Raman, A.; Tamayo, J. Mass sensing based on deterministic and stochastic responses of elastically coupled nanocantilevers. Nano Lett. 2009, 9, 4122–4127.

[31]

Kosaka, P. M.; Pini, V.; Ruz, J. J.; da Silva, R. A.; González, M. U.; Ramos, D.; Calleja, M.; Tamayo, J. Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor. Nat. Nanotechnol. 2014, 9, 1047–1053.

[32]

Sungkanak, U.; Sappat, A.; Wisitsoraat, A.; Promptmas, C.; Tuantranont, A. Ultrasensitive detection of Vibrio cholerae O1 using microcantilever-based biosensor with dynamic force microscopy. Biosens. Bioelectron. 2010, 26, 784–789.

[33]

Mei, K. N.; Yan, T. H.; Wang, Y.; Rao, D. P.; Peng, Y. P.; Wu, W. J.; Chen, Y.; Ren, M.; Yang, J.; Wu, S. Q. et al. Magneto-nanomechanical array biosensor for ultrasensitive detection of oncogenic exosomes for early diagnosis of cancers. Small 2023, 19, e2205445.

[34]

Rao, D. P.; Yan, T. H.; Qiao, Z. H.; Wang, Y.; Peng, Y. P.; Tu, H.; Wu, S. Q.; Zhang, Q. C. Relay-type sensing mode: A strategy to push the limit on nanomechanical sensor sensitivity based on the magneto lever. Nano Res. 2023, 16, 3231–3239.

[35]

Patil, P. O.; Pandey, G. R.; Patil, A. G.; Borse, V. B.; Deshmukh, P. K.; Patil, D. R.; Tade, R. S.; Nangare, S. N.; Khan, Z. G.; Patil, A. M. et al. Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review. Biosens. Bioelectron. 2019, 139, 111324.

[36]

Wang, Y.; Li, S. S.; Yang, H. Y.; Luo, J. Progress in the functional modification of graphene/graphene oxide: A review. RSC Adv. 2020, 10, 15328–15345.

[37]

Zhang, Z.; Zhang, J.; Zhang, B. L.; Tang, J. L. Mussel-inspired functionalization of graphene for synthesizing Ag-polydopamine-graphenenanosheets as antibacterial materials. Nanoscale 2013, 5, 118–123.

[38]

Tian, B.; Han, Y. Y.; Fock, J.; Strömberg, M.; Leifer, K.; Hansen, M. F. Self-assembled magnetic nanoparticle-graphene oxide nanotag for optomagnetic detection of DNA. ACS Appl. Nano Mater. 2019, 2, 1683–1690.

[39]

Pham, X. H.; Hahm, E.; Kim, H. M.; Son, B. S.; Jo, A.; An, J.; Tran Thi, T. A.; Nguyen, D. Q.; Jun, B. H. Silica-coated magnetic iron oxide nanoparticles grafted onto graphene oxide for protein isolation. Nanomaterials 2020, 10, 117.

[40]

Nolte, H.; Schilde, C.; Kwade, A. Determination of particle size distributions and the degree of dispersion in nanocomposites. Compos. Sci. Technol. 2012, 72, 948–958.

[41]

Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 2012, 7, 144.

[42]

Kang, D. K.; Ali, M. M.; Zhang, K. X.; Huang, S. S.; Peterson, E.; Digman, M. A.; Gratton, E.; Zhao, W. A. Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection. Nat. Commun. 2014, 5, 5427.

Nano Research
Article number: 94907290
Cite this article:
Qiao Z, Mei K, Wang Y, et al. Ultra-sensitive magnetic nanomechanical array sensor based on graphene oxide for single bacterial cell detection. Nano Research, 2025, 18(4): 94907290. https://doi.org/10.26599/NR.2025.94907290
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return