PDF (11.5 MB)
Collect
Submit Manuscript
Show Outline
Figures (4)

Research Article | Open Access

Biocompatible copper single-atom site nanozyme for parallel tumor therapy

Haining Zhou1,§Hui Peng5,§Yugui Lian3Ting Sun4 ()Chang Su2 ()Zhiyuan Wang6
Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
Department of Radiation Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
Department of Colorectal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
Center for Clinical Laboratory, General Hospital of the Yangtze River Shipping Wuhan Brain Hospital, Wuhan 430010, China
Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

§ Haining Zhou and Hui Peng contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
The Cu-based single atom site catalysts (SAs) nanozyme with Cu-N3O active center anchored on hollow-structured carbon nanosphere displays an outstanding Fenton activity and a remarkable near infrared spectroscopy (NIR)-photothermal activity. The in vitro and in vivo experiments both demonstrate that Cu-N,O/C nanozyme possesses the ability for killing cancer cell and suppressing tumor growth.

Abstract

Reasonable design and construction of artificial enzymes with excellent catalytic activity, good stability and superior biocompatibility is essential for tumor therapy. Single-atom site catalysts (SAs) with well-defined atomic structure and electronic coordination environments have been regarded as a new type of nanozyme that can exhibit excellent catalytic activity like natural enzymes. Here, we constructed a copper-based single-atom site nanozyme (named Cu-N,O/C) that stabilized in hollow carbon nanosphere, and the electronic structure of the single copper active center was precisely controlled by regulating the coordination of nitrogen and oxygen. The well-designed Cu-N3O active center enables the Cu-N,O/C nanozyme to exhibit multiple extraordinary enzyme-mimicking activities by synchronously catalyzing the generation of reactive oxygen species (ROS), which can effectively inhibit the growth of tumor cell in vitro and in vivo, and the therapeutic effect pronounced enhanced in the weak acidic tumor environment. In addition, the remarkable near infrared spectroscopy (NIR)-photothermal conversion activity of Cu-N,O/C nanozyme significantly enhances the efficiency of cancer cell killing. Therefore, single-atom site nanozyme possesses significant therapeutic efficacy for tumor therapy through multiple ROS and photothermal activity.

Electronic Supplementary Material

Download File(s)
7292_ESM.pdf (3.9 MB)

References

[1]

Idris, N. M.; Gnanasammandhan, M. K.; Zhang, J.; Ho, P. C.; Mahendran, R.; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012, 18, 1580–1585.

[2]

Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

[3]

Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

[4]

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

[5]

Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

[6]

Wang, Y. Q.; Huang, Y. J.; Fu, Y.; Guo, Z. X.; Chen, D.; Cao, F. X.; Ye, Q.; Duan, Q. Q.; Liu, M.; Wang, N. et al. Reductive damage induced autophagy inhibition for tumor therapy. Nano Res. 2023, 16, 5226–5236.

[7]

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

[8]

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

[9]

Wang, Z. Y.; Li, Z. Y.; Sun, Z. L.; Wang, S. R.; Ali, Z.; Zhu, S. H.; Liu, S.; Ren, Q. S.; Sheng, F. G.; Wang, B. D. et al. Visualization nanozyme based on tumor microenvironment "unlocking" for intensive combination therapy of breast cancer. Sci. Adv. 2020, 6, eabc8733.

[10]

Zhu, D. M.; Ling, R. Y.; Chen, H.; Lyu, M.; Qian, H. S.; Wu, K. L.; Li, G. X.; Wang, X. W. Biomimetic copper single-atom nanozyme system for self-enhanced nanocatalytic tumor therapy. Nano Res. 2022, 15, 7320–7328.

[11]

Peng, H.; Jiang, Q.; Mao, W.; Hu, Z.; Wang, Q.; Yu, Z.; Zhang, L.; Wang, X.; Zhuang, C.B.; Mai, J.; Wang, Z.Y.; Sun, T. Fe-HCOF-PEG2000 as a hypoxia-tolerant photosensitizer to trigger ferroptosis and enhance ROS-based cancer therapy. Int. J. Nanomed. 2024, 19, 1016510183.

[12]

Luo, Y.; He, X. J.; Du, Q. Y.; Xu, L.; Xu, J.; Wang, J. R.; Zhang, W. L.; Zhong, Y. X.; Guo, D. J.; Liu, Y. et al. Metal-based smart nanosystems in cancer immunotherapy. Exploration 2024, 4, 20230134.

[13]

Sun, H. J.; Zhou, Y.; Ren, J. S.; Qu, X. G. Carbon nanozymes: Enzymatic properties, catalytic mechanism, and applications. Angew. Chem., Int. Ed. 2018, 57, 9224–9237.

[14]

Lian, M. L.; Xue, Z. J.; Qiao, X. Z.; Liu, C.; Zhang, S.; Li, X.; Huang, C. H.; Song, Q.; Yang, W. S.; Chen, X. et al. Movable hollow nanoparticles as reactive oxygen scavengers. Chem 2019, 5, 2378–2387.

[15]

Liang, Y.; Liu, Y. L.; Lei, P. P.; Zhang, Z.; Zhang, H. J. Tumor microenvironment-responsive modular integrated nanocomposites for magnetically targeted and photothermal enhanced catalytic therapy. Nano Res. 2023, 16, 9826–9834.

[16]

Kang, Y.; Li, C.; Shi, H. L.; Zhang, A. M.; Huang, C. S.; Zhou, C. H.; Jia, N. Q. Photothermally enhanced dual enzyme-mimic activity of gold-palladium hybrid nanozyme for cancer therapy. Chin. J. Chem. 2023, 41, 3189–3196.

[17]

Chen, D.; Xia, Z. M.; Guo, Z. X.; Gou, W. Y.; Zhao, J. L.; Zhou, X. M.; Tan, X. H.; Li, W. B.; Zhao, S. J.; Tian, Z. M. et al. Bioinspired porous three-coordinated single-atom Fe nanozyme with oxidase-like activity for tumor visual identification via glutathione. Nat. Commun. 2023, 14, 7127.

[18]

Wang, X. Z.; Ren, X. F.; Yang, J.; Zhao, Z. C.; Zhang, X. Y.; Yang, F.; Zhang, Z. Y.; Chen, P.; Li, L. P.; Zhang, R. P. Mn-single-atom nano-multizyme enabled NIR-II photoacoustically monitored, photothermally enhanced ROS storm for combined cancer therapy. Biomater. Res. 2023, 27, 125.

[19]

Wang, X. Y.; Chen, Q.; Zhu, Y. F.; Wang, K. R.; Chang, Y. L.; Wu, X. W.; Bao, W. C.; Cao, T. C.; Chen, H. R.; Zhang, Y. et al. Destroying pathogen-tumor symbionts synergizing with catalytic therapy of colorectal cancer by biomimetic protein-supported single-atom nanozyme. Signal Transduct. Target. Ther. 2023, 8, 277.

[20]

Wei, G.; Liu, S. J.; Peng, Y. K.; Wei, H. On the specificity of nanozymes: A perspective. Chin. J. Chem. 2024, 42, 1515–1522.

[21]

Ren, G. Y.; Lu, M. J.; Zhao, Z. Q.; Qin, F. J.; Li, K.; Chen, W. X.; Lin, Y. Q. Cobalt single-atom nanozyme Co-administration with ascorbic acid enables redox imbalance for tumor catalytic ablation. ACS Biomater. Sci. Eng. 2023, 9, 1066–1076.

[22]

Wang, X. W.; Shi, Q. Q.; Zha, Z. B.; Zhu, D. D.; Zheng, L. R.; Shi, L. X.; Wei, X. W.; Lian, L.; Wu, K. L.; Cheng, L. Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Bioact. Mater. 2021, 6, 4389–4401.

[23]

Wang, M.; Yang, C. Z.; Chang, M. Y.; Xie, Y. L.; Zhu, G. Q.; Qian, Y. R.; Zheng, P.; Sun, Q. Q.; Lin, J.; Li, C. X. Single-atom nanozymes based nanobee vehicle for autophagy inhibition-enhanced synergistic cancer therapy. Nano Today 2023, 52, 101981.

[24]

Peng, C.; Pang, R. Y.; Li, J.; Wang, E. R. Current advances on the single-atom nanozyme and its bioapplications. Adv. Mater. 2024, 36, 2211724.

[25]

Zhang, G. Q.; Wang, N.; Ma, Y.; Zhai, S. M.; Ngai, T.; Ni, S. L.; Jiang, X. Y.; Jiao, J. W.; Cui, J. W. Metal coordination-driven assembly of stimulator of interferon genes-activating nanoparticles for tumor chemo-immunotherapy. BMEMat 2024, 2, e12077.

[26]

Wang, Z. H.; Wu, F. G. Emerging single-atom catalysts/nanozymes for catalytic biomedical applications. Adv. Healthc. Mater. 2022, 11, 2101682.

[27]

He, W. Y.; Wu, J. H.; Liu, J. L.; Li, J. Single-atom nanozymes for catalytic therapy: Recent advances and challenges. Adv. Funct. Mater. 2024, 34, 2312116.

[28]

Xing, Y. X.; Wang, L.; Wang, L. C.; Huang, J. X.; Wang, S.; Xie, X. Y.; Zhu, J.; Ding, T.; Cai, K. Y.; Zhang, J. X. Flower-like nanozymes with large accessibility of single atom catalysis sites for ROS generation boosted tumor therapy. Adv. Funct. Mater. 2022, 32, 2111171.

[29]

Jiang, B.; Guo, Z. J.; Liang, M. M. Recent progress in single-atom nanozymes research. Nano Res. 2023, 16, 1878–1889.

[30]

Cai, S. F.; Zhang, W.; Yang, R. Emerging single-atom nanozymes for catalytic biomedical uses. Nano Res. 2023, 16, 13056–13076.

[31]

Tao, N.; Chen, S. H.; Mahdinloo, S.; Zhang, Q. Y.; Lan, T. F.; Saiding, Q.; Chen, S. Y.; Xiong, Y.; Tao, W.; Ouyang, J. A pH-responsive single-atom nanozyme for photothermal-augmented nanocatalytic tumor therapy. Nano Today 2024, 57, 102371.

[32]

Shen, J.; Chen, J.; Qian, Y. P.; Wang, X. Q.; Wang, D. S.; Pan, H. G.; Wang, Y. G. Atomic engineering of single-atom nanozymes for biomedical applications. Adv. Mater. 2024, 36, 2313406.

[33]

Chen, Y. J.; Jiang, B.; Hao, H. G.; Li, H. J.; Qiu, C. Y.; Liang, X.; Qu, Q. Y.; Zhang, Z. D.; Gao, R.; Duan, D. M. et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angew. Chem., Int. Ed. 2023, 62, e202301879.

[34]

Jiang, P.; Zhang, L. D.; Liu, X. L.; Ye, C. L.; Zhu, P.; Tan, T.; Wang, D. S.; Wang, Y. G. Tuning oxidant and antioxidant activities of ceria by anchoring copper single-site for antibacterial application. Nat. Commun. 2024, 15, 1010.

[35]

Ou, H. H.; Qian, Y. P.; Yuan, L. T.; Li, H.; Zhang, L. D.; Chen, S. H.; Zhou, M.; Yang, G. D.; Wang, D. S.; Wang, Y. G. Spatial position regulation of Cu single atom site realizes efficient nanozyme photocatalytic bactericidal activity. Adv. Mater. 2023, 35, 2305077.

[36]

Lu, X. Y.; Gao, S. S.; Lin, H.; Yu, L. D.; Han, Y. H.; Zhu, P. A.; Bao, W. C.; Yao, H. L.; Chen, Y.; Shi, J. L. Bioinspired copper single-atom catalysts for tumor parallel catalytic therapy. Adv. Mater. 2020, 32, 2002246.

[37]

Zhu, Y.; Wang, W. Y.; Cheng, J. J.; Qu, Y. T.; Dai, Y.; Liu, M. M.; Yu, J. N.; Wang, C. M.; Wang, H. J.; Wang, S. C. et al. Stimuli-responsive manganese single-atom nanozyme for tumor therapy via integrated cascade reactions. Angew. Chem., Int. Ed. 2021, 60, 9480–9488.

[38]

Yang, Q. Y.; Liu, J. W.; Cai, W. T.; Liang, X.; Zhuang, Z. C.; Liao, T.; Zhang, F. X.; Hu, W. K.; Liu, P. X.; Fan, S. J. et al. Non-heme iron single-atom nanozymes as peroxidase mimics for tumor catalytic therapy. Nano Lett. 2023, 23, 8585–8592.

[39]

Wang, W. Y.; Zhu, Y.; Zhu, X. R.; Zhao, Y. F.; Xue, Z. G.; Xiong, C.; Wang, Z. Y.; Qu, Y. T.; Cheng, J. J.; Chen, M. et al. Biocompatible ruthenium single-atom catalyst for cascade enzyme-mimicking therapy. ACS Appl. Mater. Interfaces 2021, 13, 45269–45278.

[40]

Bai, J. X.; Feng, Y. H.; Li, W. M.; Cheng, Z. R.; Rosenholm, J. M.; Yang, H. L.; Pan, G. Q.; Zhang, H. B.; Geng, D. C. Alternative copper-based single-atom nanozyme with superior multienzyme activities and NIR-II responsiveness to fight against deep tissue infections. Research 2023, 6, 0031.

[41]

Zhong, S. J.; Xiong, C.; Zhao, Y. C.; Yao, S. C.; Hu, Q. H.; Wang, S. B.; Zhao, Q. Y.; Li, L. L. Self-driven electricity modulates d-band electrons of copper single-atom nanozyme for boosting cancer therapy. Adv. Funct. Mater. 2023, 33, 2305625.

[42]

Lin, L. H.; Li, H.; Gu, H. F.; Sun, Z. Y.; Huang, J.; Qian, Z. N.; Li, H.; Liu, J. Z.; Xi, H. Y.; Wu, P. F. et al. Asymmetrically coordinated single-atom iron nanozymes with Fe–N1C2 structure: A peroxidase mimetic for melatonin detection. Nano Res. 2023, 16, 4751–4757.

[43]

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

[44]

Chan, M. H.; Chen, B. G.; Huang, W. T.; Su, T. Y.; Hsiao, M.; Liu, R. S. Tunable single-atom nanozyme catalytic system for biological applications of therapy and diagnosis. Mater. Today Adv. 2023, 17, 100342.

[45]

Xiong, W. F.; Li, H. F.; Wang, H. M.; Yi, J. D.; You, H. H.; Zhang, S. Y.; Hou, Y.; Cao, M. N.; Zhang, T.; Cao, R. Hollow mesoporous carbon sphere loaded Ni–N4 single-atom: Support structure study for CO2 electrocatalytic reduction catalyst. Small 2020, 16, 2003943.

[46]

Xu, B. L.; Li, S. S.; Zheng, L. R.; Liu, Y. H.; Han, A. L.; Zhang, J.; Huang, Z. J.; Xie, H. J.; Fan, K. L.; Gao, L. Z. et al. A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy. Adv. Mater. 2022, 34, 2107088.

[47]

Lv, Q. Y.; Chi, K.; Shi, X. L.; Liu, M. D.; Li, X. Y.; Zhou, C.; Shi, L.; Fan, H. L.; Liu, H.; Liu, J. et al. Nanozyme-like single-atom catalyst combined with artesunate achieves photothermal-enhanced nanocatalytic therapy in the near-infrared biowindow. Acta Biomater. 2023, 158, 686–697.

Nano Research
Article number: 94907292
Cite this article:
Zhou H, Peng H, Lian Y, et al. Biocompatible copper single-atom site nanozyme for parallel tumor therapy. Nano Research, 2025, 18(4): 94907292. https://doi.org/10.26599/NR.2025.94907292
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return