Two-dimensional nanomaterials were commonly used as lubrication additives. However, the high demand for the load-bearing capacity limited their industrial applications. This study proposed a new strategy to overcome this limitation by depositing silver (Ag) nanoparticles on hexagonal boron nitride (hBN) nanosheets via dopamine through the reduction reaction of silver ions, and the Ag modified hBN nanosheets (hBN-Ag) were used as additives in aqueous ethylene glycol solution. The results showed that the superlubricity state with a minimum coefficient of friction (COF) of 0.004 at a maximum contact pressure of 1.20 GPa was achieved without the running-in period. The realization of superlubricity was attributed to the synergic effect of Ag nanoparticles and hBN nanosheets, where Ag nanoparticles were attached to the hBN nanosheets by dopamine, enhancing the load-bearing capacity of the hBN nanosheets. Simultaneously, the Ag modified hBN nanosheets were more easily adsorbed and deposited on the friction interface, generating the tribofilm containing hBN-Ag nanosheets through the tribochemical reaction, which reduced the direct contact of the friction pair and provided a low shear strength to generate extremely low friction. The Ag modified hBN nanosheets induced extremely low friction and wear, contributing to the development of lubricants with high load-bearing pressure and low wear rate.
Saravanan, P.; Selyanchyn, R.; Tanaka, H.; Darekar, D.; Staykov, A.; Fujikawa, S.; Lyth, S. M.; Sugimura, J. Macroscale superlubricity of multilayer polyethylenimine/graphene oxide coatings in different gas environments. ACS Appl. Mater. Interfaces 2016, 8, 27179–27187.
Han, T. Y.; Zhang, C. H.; Luo, J. B. Macroscale superlubricity enabled by hydrated alkali metal ions. Langmuir 2018, 34, 11281–11291.
Feng, X. F.; Kwon, S.; Park, J. Y.; Salmeron, M. Superlubric sliding of graphene nanoflakes on graphene. ACS Nano 2013, 7, 1718–1724.
Kawai, S.; Benassi, A.; Gnecco, E.; Söde, H.; Pawlak, R.; Feng, X. L.; Müllen, K.; Passerone, D.; Pignedoli, C. A.; Ruffieux, P. et al. Superlubricity of graphene nanoribbons on gold surfaces. Science 2016, 351, 957–961.
Liu, S. W.; Wang, H. P.; Xu, Q.; Ma, T. B.; Yu, G.; Zhang, C. H.; Geng, D. C.; Yu, Z. W.; Zhang, S. G.; Wang, W. Z. et al. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere. Nat. Commun. 2017, 8, 14029.
Chen, X. C.; Li, J. J. Superlubricity of carbon nanostructures. Carbon 2020, 158, 1–23.
Li, J. J.; Gao, T. Y.; Luo, J. B. Superlubricity of graphite induced by multiple transferred graphene nanoflakes. Adv. Sci. (Weinh.) 2018, 5, 1700616.
Li, J. J.; Li, J. F.; Luo, J. B. Superlubricity of graphite sliding against graphene nanoflake under ultrahigh contact pressure. Adv. Sci. (Weinh.) 2018, 5, 1800810.
Liu, Z.; Yang, J. R.; Grey, F.; Liu, J. Z.; Liu, Y. L.; Wang, Y. B.; Yang, Y. L.; Cheng, Y.; Zheng, Q. S. Observation of microscale superlubricity in graphite. Phys. Rev. Lett. 2012, 108, 205503.
Dienwiebel, M.; Verhoeven, G. S.; Pradeep, N.; Frenken, J. W. M.; Heimberg, J. A.; Zandbergen, H. W. Superlubricity of graphite. Phys. Rev. Lett. 2004, 92, 126101.
Zhang, R. F.; Ning, Z. Y.; Zhang, Y. Y.; Zheng, Q. S.; Chen, Q.; Xie, H. H.; Zhang, Q.; Qian, W. Z.; Wei, F. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat. Nanotechnol. 2013, 8, 912–916.
Li, H.; Wang, J. H.; Gao, S.; Chen, Q.; Peng, L. M.; Liu, K. H.; Wei, X. L. Superlubricity between MoS2 monolayers. Adv. Mater. 2017, 29, 1701474.
Li, J. J.; Zhang, C. H.; Luo, J. B. Superlubricity behavior with phosphoric acid-water network induced by rubbing. Langmuir 2011, 27, 9413–9417.
Li, J. J.; Zhang, C. H.; Ma, L. R.; Liu, Y. H.; Luo, J. B. Superlubricity achieved with mixtures of acids and glycerol. Langmuir 2013, 29, 271–275.
Ma, Q.; He, T.; Khan, A. M.; Wang, Q.; Chung, Y. W. Achieving macroscale liquid superlubricity using glycerol aqueous solutions. Tribol. Int. 2021, 160, 107006.
Chen, Z.; Liu, Y. H.; Zhang, S. H.; Luo, J. B. Controllable superlubricity of glycerol solution via environment humidity. Langmuir 2013, 29, 11924–11930.
Ma, Q.; Liang, M. D.; Xu, X.; Yan, C. P.; Wang, H. F. Towards direct superlubricity and negligible wear with polyalcohol lubricant mixtures of ethylene glycol and glycerol for steel tribopairs. Appl. Surf. Sci. 2024, 663, 160151.
Wang, H. D.; Liu, Y. H.; Li, J. J.; Luo, J. B. Investigation of superlubricity achieved by polyalkylene glycol aqueous solutions. Adv. Mater. Interfaces 2016, 3, 1600531.
Hua, J.; Björling, M.; Larsson, R.; Shi, Y. J. Controllable superlubricity achieved with mixtures of green ionic liquid and glycerol aqueous solution via humidity. J. Mol. Liq. 2022, 345, 117860.
Zheng, Z. W.; Liu, X. L.; Yu, H. X.; Chen, H. J.; Feng, D. P.; Qiao, D. Insight into macroscale superlubricity of polyol aqueous solution induced by protic ionic liquid. Friction 2022, 10, 2000–2017.
Zheng, Q. K.; Chhattal, M.; Bai, C. N.; Zheng, Z. W.; Qiao, D.; Gong, Z. B.; Zhang, J. Y. Superlubricity of PTFE triggered by green ionic liquids. Appl. Surf. Sci. 2023, 614, 156241.
Ge, X. Y.; Li, J. J.; Luo, R.; Zhang, C. H.; Luo, J. B. Macroscale superlubricity enabled by the synergy effect of graphene-oxide nanoflakes and ethanediol. ACS Appl. Mater. Interfaces 2018, 10, 40863–40870.
Ge, X. Y.; Chai, Z. Y.; Shi, Q. Y.; Liu, Y. F.; Wang, W. Z. Graphene superlubricity: A review. Friction 2023, 11, 1953–1973.
Liu, Y. F.; Li, J. J.; Ge, X. Y.; Yi, S.; Wang, H. D.; Liu, Y. H.; Luo, J. B. Macroscale superlubricity achieved on the hydrophobic graphene coating with glycerol. ACS Appl. Mater. Interfaces 2020, 12, 18859–18869.
Liu, Y. F.; Ge, X. Y.; Li, J. J. Graphene lubrication. Appl. Mater. Today 2020, 20, 100662.
Yi, S.; Li, J. J.; Liu, Y. F.; Ge, X. Y.; Zhang, J.; Luo, J. B. In-situ formation of tribofilm with Ti3C2T x MXene nanoflakes triggers macroscale superlubricity. Tribol. Int. 2021, 154, 106695.
Zeng, Q. F.; Yu, F.; Dong, G. N. Superlubricity behaviors of Si3N4/DLC films under PAO oil with nano boron nitride additive lubrication. Surf. Interface Anal. 2013, 45, 1283–1290.
Wang, W.; Xie, G. X.; Luo, J. B. Superlubricity of black phosphorus as lubricant additive. ACS Appl. Mater. Interfaces 2018, 10, 43203–43210.
Song, J.; Dai, Z. D.; Li, J. Y.; Tong, X.; Zhao, H. C. Polydopamine-decorated boron nitride as nano-reinforcing fillers for epoxy resin with enhanced thermomechanical and tribological properties. Mater. Res. Express 2018, 5, 075029.
Songfeng, E.; Ye, X. Y.; Wang, M. G.; Huang, J. Z.; Ma, Q.; Jin, Z. F.; Ning, D. D.; Lu, Z. Q. Enhancing the tribological properties of boron nitride by bioinspired polydopamine modification. Appl. Surf. Sci. 2020, 529, 147054.
Roy, A. K.; Park, B.; Lee, K. S.; Park, S. Y.; In, I. Boron nitride nanosheets decorated with silver nanoparticles through mussel-inspired chemistry of dopamine. Nanotechnology 2014, 25, 445603.
Song, H. J.; Wang, Z. Q.; Yang, J.; Jia, X. H.; Zhang, Z. Z. Facile synthesis of copper/polydopamine functionalized graphene oxide nanocomposites with enhanced tribological performance. Chem. Eng. J. 2017, 324, 51–62.
Ténégal, F.; de la Rocque, A. G.; Dufour, G.; Sénémaud, C.; Doucey, B.; Bahloul-Hourlier, D.; Goursat, P.; Mayne, M.; Cauchetier, M. Structural determination of sintered Si3N4/SiC nanocomposite using the XPS differential charge effect. J. Electron. Spectrosc. Relat. Phenomena 2000, 109, 241–248.
Yi, S.; Chen, X. C.; Li, J. J.; Liu, Y. F.; Ding, S. L.; Luo, J. B. Macroscale superlubricity of Si-doped diamond-like carbon film enabled by graphene oxide as additives. Carbon 2021, 176, 358–366.
Ge, X. Y.; Li, J. J.; Wang, H. D.; Zhang, C. H.; Liu, Y. H.; Luo, J. B. Macroscale superlubricity under extreme pressure enabled by the combination of graphene-oxide nanosheets with ionic liquid. Carbon 2019, 151, 76–83.
Liu, Y.; Yu, S.; Li, J.; Ge, X.; Zhao, Z.; Wang, W. Quantum dots of graphene oxide as nano-additives trigger macroscale superlubricity with an extremely short running-in period. Mater. Today Nano 2022, 18, 100219.
Sun, S. Y.; Yi, S.; Li, J. J.; Ding, Z. M.; Song, W.; Luo, J. B. Lithium citrate triggered macroscopic superlubricity with near-zero wear on an amorphous carbon film. ACS Appl. Mater. Interfaces 2023, 15, 19705–19714.
Xu, J. G.; Kato, K. Formation of tribochemical layer of ceramics sliding in water and its role for low friction. Wear 2000, 245, 61–75.
Ge, X. Y.; Li, J. J.; Zhang, C. H.; Liu, Y. H.; Luo, J. B. Superlubricity and antiwear properties of in situ-formed ionic liquids at ceramic interfaces induced by tribochemical reactions. ACS Appl. Mater. Interfaces 2019, 11, 6568–6574.
Liu, Y. F.; Li, J. F.; Li, J. J.; Yi, S.; Ge, X. Y.; Zhang, X.; Luo, J. B. Shear-induced interfacial structural conversion triggers macroscale superlubricity: From black phosphorus nanoflakes to phosphorus oxide. ACS Appl. Mater. Interfaces 2021, 13, 31947–31956.