PDF (13.1 MB)
Collect
Submit Manuscript
Show Outline
Figures (6)

Tables (1)
Table 1
Research Article | Open Access

Synergistic fibrillization engineering in donor and acceptor phases enables high-performance all-polymer solar cells

Bin Zhang1()Yushou Zhao1Xiaofeng Qin1Aiqin Li1Xinling Li1Wenming Li1Weile Guo1Xiaolan Qin1Zhicai He3Yong Hua4Menglan Lv1()Liming Ding2()
Engineering Research Center for Energy Conversion and Storage Technology of Guizhou, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
School of Materials and Energy, Yunnan University, Kunming 650091, China
Show Author Information

Graphical Abstract

View original image Download original image
Through synergistic fibrillization engineering between polymer donors and acceptors, the morphology of all-polymer solar cells is precisely controlled, thus achieving high-performance devices.

Abstract

Recently, all-polymer solar cells (all-PSCs) have become an important organic photovoltaic technology, ascribing to their unique characteristics of high stability and mechanical endurance. However, the morphology control between polymer donor and polymer acceptor suffers from tough difficulties, resulting from the nature of rigid planarity and chain entanglement in the conjugated polymer backbones. In this work, we utilize an additive, 1-chloro-naphthalene (CN), to regulate polymer chain stacking and orientation in D18:PY-IT system, resulting in the formation of versatile nano-scale polymer fibrillization between donor and acceptor phases. Consequently, the CN-modified D18:PY-IT blend film shows improved molecular stacking characteristics and distinct nano-scale bi-continuous phase separation. Attributing to the incorporation of CN additive in a bulk-heterojunction (BHJ) D18:PY-IT system, it exhibits higher photovoltaic performance than the as-cast and only thermal annealing (TA) treated devices, where the CN-based device provides a power conversion efficiency (PCE) of 17.31%, an open-circuit voltage (VOC) of 0.955 V, a short-circuit current density (JSC) of 24.16 mA·cm−2, and a fill factor (FF) of 74.99%, respectively. This is one of the highest photovoltaic performances reported in the D18:PY-IT based binary BHJ all-PSCs. Hence, it is evident that the morphology in all-PSCs can be feasibly modulated via incorporating appropriate additive into active layer for achieving excellent photovoltaic performance.

Electronic Supplementary Material

Download File(s)
7295_ESM.pdf (867.5 KB)

References

[1]

Wu, M. H.; Ma, B.; Li, S. S.; Han, J. Q.; Zhao, W. C. Powering the future: A critical review of research progress in enhancing stability of high‐efficiency organic solar cells. Adv. Funct. Mater. 2023, 33, 2305445.

[2]

Chen, C.; Wang, L.; Xia, W. Y.; Qiu, K.; Guo, C. H.; Gan, Z. R.; Zhou, J.; Sun, Y. D.; Liu, D.; Li, W. et al. Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20%. Nat. Commun. 2024, 15, 6865.

[3]

Wei, N.; Chen, J. N.; Cheng, Y. T.; Bian, Z. Q.; Liu, W. L.; Song, H. M.; Guo, Y. W.; Zhang, W. K.; Liu, Y. H.; Lu, H. et al. Constructing multiscale fibrous morphology to achieve 20% efficiency organic solar cells by mixing high and low molecular weight D18. Adv. Mater. 2024, 36, 2408934.

[4]

Chen, Z. Y.; Ge, J. F.; Song, W.; Tong, X. Y.; Liu, H.; Yu, X. L.; Li, J.; Shi, J. Y.; Xie, L.; Han, C. C. et al. 20.2% efficiency organic photovoltaics employing a π-extension quinoxaline-based acceptor with ordered arrangement. Adv. Mater. 2024, 36, 2406690.

[5]

Guan, S. T.; Li, Y. K.; Xu, C.; Yin, N.; Xu, C. R.; Wang, C. X.; Wang, M. T.; Xu, Y. X.; Chen, Q.; Wang, D. W. et al. Self-assembled interlayer enables high-performance organic photovoltaics with power conversion efficiency exceeding 20%. Adv. Mater. 2024, 36, 2400342.

[6]

Thompson, B. C.; Fréchet, J. M. J. Polymer-fullerene composite solar cells. Angew. Chem., Int. Ed. 2008, 47, 58–77.

[7]

Jørgensen, M.; Norrman, K.; Gevorgyan, S. A.; Tromholt, T.; Andreasen, B.; Krebs, F. C. Stability of polymer solar cells. Adv. Mater. 2012, 24, 580–612.

[8]

Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324–1338.

[9]

Liu, Q. S.; Jiang, Y. F.; Jin, K.; Qin, J. Q.; Xu, J. G.; Li, W. T.; Xiong, J.; Liu, J. F.; Xiao, Z.; Sun, K. et al. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275.

[10]

Qin, J. Q.; Zhang, L. X.; Zuo, C. T.; Xiao, Z.; Yuan, Y. B.; Yang, S. F.; Hao, F.; Cheng, M.; Sun, K.; Bao, Q. Y. et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J. Semicond. 2021, 42, 010501.

[11]

Meng, X. Y.; Jin, K.; Xiao, Z.; Ding, L. M. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J. Semicond. 2021, 42, 100501.

[12]

Zhang, M. J.; Guo, X.; Ma, W.; Ade, H.; Hou, J. H. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv. Mater. 2015, 27, 4655–4660.

[13]

Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, G. C.; Yip, H. L.; Lau, T. K.; Lu, X. H.; Zhu, C.; Peng, H. J.; Johnson, P. A. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

[14]

Song, J. L.; Zhu, L.; Li, C.; Xu, J. Q.; Wu, H. B.; Zhang, X. N.; Zhang, Y.; Tang, Z.; Liu, F.; Sun, Y. M. High-efficiency organic solar cells with low voltage loss induced by solvent additive strategy. Matter 2021, 4, 2542–2552.

[15]

Cui, Y.; Yao, H. F.; Zhang, J. Q.; Xian, K. H.; Zhang, T.; Hong, L.; Wang, Y. M.; Xu, Y.; Ma, K. Q.; An, C. B. et al. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 2020, 32, 1908205.

[16]

Wang, W.; Wu, Q.; Sun, R.; Guo, J.; Wu, Y.; Shi, M. M.; Yang, W. Y.; Li, H. N.; Min, J. Controlling molecular mass of low-band-gap polymer acceptors for high-performance all-polymer solar cells. Joule 2020, 4, 1070–1086.

[17]

Luo, Z. H.; Liu, T.; Ma, R. J.; Xiao, Y. Q.; Zhan, L. L.; Zhang, G. Y.; Sun, H. L.; Ni, F.; Chai, G. D.; Wang, J. W. et al. Precisely controlling the position of bromine on the end group enables well-regular polymer acceptors for all-polymer solar cells with efficiencies over 15%. Adv. Mater. 2020, 32, 2005942.

[18]

Wu, B. Q.; Zhang, Y.; Tian, S. Z.; Oh, J.; Yang, M. Q.; Pan, L. H.; Yin, B. Y.; Yang, C.; Duan, C. H.; Huang, F. et al. Non-fused polymerized small molecular acceptors for efficient all-polymer solar cells. Sol. RRL 2022, 6, 2101034.

[19]

Wu, B. Q.; Li, Y. L.; Liu, K. Z.; Kim, S.; Yuan, X. Y.; Pan, L. H.; Zhou, X.; Tian, S. Z.; Yang, C.; Huang, F. et al. An asymmetric polymerized small molecular acceptor with temperature-dependent aggregation and superior batch-to-batch reproducibility for efficient all-polymer solar cells. Nano Energy 2024, 128, 109874.

[20]

Zhang, L.; Jia, T.; Pan, L. H.; Wu, B. Q.; Wang, Z. Y.; Gao, K.; Liu, F.; Duan, C. H.; Huang, F.; Cao, Y. 15.4% Efficiency all-polymer solar cells. Sci. China Chem. 2021, 64, 408–412.

[21]

Zhang, B.; Zhao, Y. S.; Xu, C. D.; Feng, C.; Li, W. M.; Qin, X. F.; Lv, M. L.; Luo, X. Y.; Qin, X. L.; Li, A. Q. et al. Perylene diimide-based low-cost and thickness-tolerant electron transport layer enables polymer solar cells approaching 19% efficiency. Adv. Funct. Mater. 2024, 34, 2400903.

[22]

Facchetti, A. Polymer donor–polymer acceptor (all-polymer) solar cells. Mater. Today 2013, 16, 123–132.

[23]

Wu, B. Q.; Yin, B. Y.; Duan, C. H.; Ding, L. M. All-polymer solar cells. J. Semicond. 2021, 42, 080301.

[24]

Song, J. L.; Li, C.; Ma, H. S.; Han, B. Y.; Wang, Q. Q.; Wang, X. C.; Wei, D. H.; Bu, L. J.; Yang, R. Q.; Yan, H. et al. Optimizing double-fibril network morphology via solid additive strategy enables binary all-polymer solar cells with 19.50% efficiency. Adv. Mater. 2024, 36, 2406922.

[25]

Chen, T. Q.; Zhong, Y. Y.; Duan, T. N.; Tang, X.; Zhao, W. K.; Wang, J. Y.; Lu, G. H.; Long, G. K.; Zhang, J. B.; Han, K. et al. Asymmetrified benzothiadiazole-based solid additives enable all-polymer solar cells with efficiency over 19%. Angew. Chem. 2025, 137, e202412983.

[26]

Wang, Z. T.; Wang, X.; Tu, L. J.; Wang, H.; Du, M. Z.; Dai, T. T.; Guo, Q.; Shi, Y. Q.; Zhou, E. J. Dithienoquinoxalineimide-based polymer donor enables all-polymer solar cells over 19% efficiency. Angew. Chem., Int. Ed. 2024, 63, e202319755.

[27]

Kang, H.; Lee, W.; Oh, J.; Kim, T.; Lee, C.; Kim, B. J. From fullerene-polymer to all-polymer solar cells: The importance of molecular packing, orientation, and morphology control. Acc. Chem. Res. 2016, 49, 2424–2434.

[28]

Zhao, Y. S.; Wu, J. Y.; Li, W. M.; Qin, X. F.; Lv, M. L.; Hua, Y.; Zhu, W. G.; He, Z. C.; Zhang, B. Morphology control realizes fast charge dissociation and transport in high-performance all-polymer solar cells. ACS Appl. Energy Mater. 2024, 7, 4180–4189.

[29]

Cheng, C.; Wu, Y. L.; Cendra, C.; Schneider, S.; Treiber, J.; Agarwala, P.; Gomez, E. D.; Bao, Z. N.; Takacs, C.; Toney, M. F. et al. Impact of dilute DIO additive on local microstructure of fluorinated, pNDI-based polymer solar cells. Adv. Mater. 2024, 36, 2409502.

[30]

Miao, Y. W.; Sun, Y. N.; Zou, W. T.; Zhang, X.; Kan, Y. Y.; Zhang, W. Q.; Jiang, X. Y.; Wang, X. C.; Yang, R. Q.; Hao, X. T. et al. Isomerization engineering of solid additives enables highly efficient organic solar cells via manipulating molecular stacking and aggregation of active layer. Adv. Mater. 2024, 36, 2406623.

[31]

Feng, W. Y.; Chen, T. Q.; Li, Y. L.; Duan, T. N.; Jiang, X.; Zhong, C.; Zhang, Y. X.; Yu, J. F.; Lu, G. H.; Wan, X. J. et al. Binary all-polymer solar cells with a perhalogenated-thiophene-based solid additive surpass 18% efficiency. Angew. Chem., Int. Ed. 2024, 63, e202316698.

[32]

Zhang, Y.; Wu, B. Q.; He, Y. K.; Deng, W. Y.; Li, J. W.; Li, J. Y.; Qiao, N.; Xing, Y. F.; Yuan, X. Y.; Li, N. et al. Layer-by-layer processed binary all-polymer solar cells with efficiency over 16% enabled by finely optimized morphology. Nano Energy 2022, 93, 106858.

[33]

Li, Z. Y.; Liang, Y. F.; Qian, X. T.; Ying, L.; Cao, Y. Suppressing non-radiative loss via a low-cost solvent additive enables high-stable all-polymer solar cells with 16.13% efficiency. Chem. Eng. J. 2022, 446, 136877.

[34]

Sheng, H.; Liu, S. Z.; Kang, X.; Niu, J. N.; Adewale, A. A.; Wen, S. G.; Yang, C. M.; Bao, X. C.; Sun, M. L. A benzobisoxazole-based polymer assisting high efficiency polymer solar cells. Nano Energy 2024, 126, 109648.

[35]

Zhang, W. Q.; Sun, C. K.; Angunawela, I.; Meng, L.; Qin, S. C.; Zhou, L. Y.; Li, S. M.; Zhuo, H. M.; Yang, G.; Zhang, Z. G. et al. 16.52% efficiency all-polymer solar cells with high tolerance of the photoactive layer thickness. Adv. Mater. 2022, 34, 2108749.

[36]

Shen, Y. F.; Zhang, J. Q.; Tian, C. Y.; Qiu, D. D.; Wei, Z. X. Slot-die coated large-area flexible all-polymer solar cells by non-halogenated solvent. Nano Res. 2023, 16, 13008–13013.

[37]

Mahmood, A.; Wang, J. L. A review of grazing incidence small- and wide-angle X-ray scattering techniques for exploring the film morphology of organic solar cells. Sol. RRL 2020, 4, 2000337.

[38]

Li, D. H.; Deng, N.; Fu, Y. W.; Guo, C. H.; Zhou, B. J.; Wang, L.; Zhou, J.; Liu, D.; Li, W.; Wang, K. et al. Fibrillization of non-fullerene acceptors enables 19% efficiency pseudo-bulk heterojunction organic solar cells. Adv. Mater. 2023, 35, 2208211.

[39]

Zhu, L.; Zhang, M.; Xu, J. Q.; Li, C.; Yan, J.; Zhou, G. Q.; Zhong, W. K.; Hao, T. Y.; Song, J. L.; Xue, X. N. et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663.

[40]

Liu, X.; Zhang, C. H.; Duan, C. H.; Li, M. M.; Hu, Z. C.; Wang, J.; Liu, F.; Li, N.; Brabec, C. J.; Janssen, R. A. J. et al. Morphology optimization via side chain engineering enables all-polymer solar cells with excellent fill factor and stability. J. Am. Chem. Soc. 2018, 140, 8934–8943.

[41]

He, C. L.; Pan, Y. W.; Ouyang, Y. N.; Shen, Q.; Gao, Y.; Yan, K. R.; Fang, J.; Chen, Y. Y.; Ma, C. Q.; Min, J. et al. Manipulating the D:A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics. Energy Environ. Sci. 2022, 15, 2537–2544.

[42]

Chen, Q. L.; Huang, H.; Hu, D.; Zhang, C.; Xu, X. J.; Lu, H.; Wu, Y. G.; Yang, C. L.; Bo, Z. S. Improving the performance of layer-by-layer processed organic solar cells via introducing a wide-bandgap dopant into the upper acceptor layer. Adv. Mater. 2023, 35, 2211372.

[43]

Wang, X. J.; Yi, S. W.; He, Z. C.; Ouyang, X. H.; Wu, H. B.; Zhu, W. G.; Zhang, B.; Cao, Y. An environmentally friendly natural polymer as a universal interfacial modifier for fullerene and non-fullerene polymer solar cells. Sustain. Energ. Fuels 2020, 4, 1234–1241.

[44]

Feng, H. R.; Dai, Y.; Guo, L. H.; Wang, D.; Dong, H.; Liu, Z. H.; Zhang, L.; Zhu, Y.; Su, C.; Chen, Y. S. et al. Exploring ternary organic photovoltaics for the reduced nonradiative recombination and improved efficiency over 17.23% with a simple large-bandgap small molecular third component. Nano Res. 2022, 15, 3222–3229.

[45]

MacKenzie, R. C. I.; Shuttle, C. G.; Chabinyc, M. L.; Nelson, J. Extracting microscopic device parameters from transient photocurrent measurements of P3HT:PCBM solar cells. Adv. Energy Mater. 2012, 2, 662–669.

[46]

Street, R. A. Localized state distribution and its effect on recombination in organic solar cells. Phys. Rev. B 2011, 84, 075208.

[47]

Sae-Kung, C.; Wright, B. F.; Clarke, T. M.; Wallace, G. G.; Mozer, A. J. Effects of interfacial layers on the open circuit voltage of polymer/fullerene bulk heterojunction devices studied by charge extraction techniques. ACS Appl. Mater. Interfaces 2019, 11, 21030–21041.

[48]

Wu, Z. H.; Sun, C.; Dong, S.; Jiang, X. F.; Wu, S. P.; Wu, H. B.; Yip, H. L.; Huang, F.; Cao, Y. n-Type water/alcohol-soluble naphthalene diimide-based conjugated polymers for high-performance polymer solar cells. J. Am. Chem. Soc. 2016, 138, 2004–2013.

[49]

Ma, R. J.; Zhou, K. K.; Sun, Y. N.; Liu, T.; Kan, Y. Y.; Xiao, Y. Q.; Peña, T. A. D.; Li, Y. X.; Zou, X. H.; Xing, Z. S. et al. Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter 2022, 5, 725–734.

[50]

Zhang, T.; Xu, Y.; Yao, H. F.; Zhang, J. Q.; Bi, P. Q.; Chen, Z. H.; Wang, J. W.; Cui, Y.; Ma, L. J.; Xian, K. H. et al. Suppressing the energetic disorder of all-polymer solar cells enables over 18% efficiency. Energy Environ. Sci. 2023, 16, 1581–1589.

[51]

Sun, Y. N.; Nian, L.; Kan, Y. Y.; Ren, Y.; Chen, Z. H.; Zhu, L.; Zhang, M.; Yin, H.; Xu, H. J.; Li, J. F. et al. Rational control of sequential morphology evolution and vertical distribution toward 17.18% efficiency all-small-molecule organic solar cells. Joule 2022, 6, 2835–2848.

[52]

Kan, Y. Y.; Sun, Y. N.; Ren, Y.; Xu, Y. X.; Jiang, X. Y.; Shen, H. J.; Geng, L. L.; Li, J. F.; Cai, P.; Xu, H. J. et al. Amino-functionalized graphdiyne derivative as a cathode interface layer with high thickness tolerance for highly efficient organic solar cells. Adv. Mater. 2024, 36, 2312635.

Nano Research
Article number: 94907295
Cite this article:
Zhang B, Zhao Y, Qin X, et al. Synergistic fibrillization engineering in donor and acceptor phases enables high-performance all-polymer solar cells. Nano Research, 2025, 18(4): 94907295. https://doi.org/10.26599/NR.2025.94907295
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return