PDF (11.7 MB)
Collect
Submit Manuscript
Research Article | Open Access

Hierarchically porous N-doped carbon confined single-atom Fe catalyst for efficient electrochemical CO2 reduction

Guanghuan Ma1Yang Chen1 ()Hui Li2,3Ying Sun1Hua Fan4Shuoshuo Jiang1Xin Cui1Tianyi Ma2,3 ()
Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang 110036, China
Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC 3000, Australia
Aqualux AU Pty Ltd, 12 Kanangra Cres, Clontarf, NSW 2093, Australia
Show Author Information

Graphical Abstract

View original image Download original image
The shape effect of Fe-N-C single-atom catalysts from nanotubes to nanosheets to three dimensional porous rhombohedra is investigated. The hierarchically porous Fe-N-C single-atom catalyst shows excellent electrochemical CO2 reduction performance due to its accelerated desorption of CO.

Abstract

Electrochemical CO2 reduction reaction (CO2RR) is a promising process for reducing CO2 emissions and producing high-value chemicals. However, this process remains hindered by diffusion-limited mass transfer, low activity, and high overpotentials. Here, we controllably prepared hierarchically porous nitrogen-doped carbon, carbon nanosheets, and carbon nanotubes confined single-atom Fe catalysts for electrochemical CO2 reduction. The hierarchically porous Fe-N-C (Fe-HP) exhibited prominent performance with a Faradaic efficiency of CO (FECO) up to 80% and a CO partial current density (jCO) of −5.2 mA·cm−2 at −0.5 V vs. reversible hydrogen electrode (RHE), far outperforming the single-atom Fe on N-C nanosheets (Fe-NS) and N-C nanotubes (Fe-NT). The detailed characterizations and kinetic analysis revealed that the hierarchically porous structure accelerated the mass transfer and electron transfer processes toward single-atom Fe sites, promoting the desorption of CO and thereby enhancing CO2 reduction efficiency. This study provides a promising approach to designing efficient single-atom catalysts with porous structures for energy conversion applications.

Electronic Supplementary Material

Download File(s)
7297_ESM.pdf (1.4 MB)

References

[1]

Turner, J. A. A realizable renewable energy future. Science 1999, 285, 687–689.

[2]

Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

[3]

Piao, S. L.; Ciais, P.; Huang, Y.; Shen, Z. H.; Peng, S. S.; Li, J. S.; Zhou, L. P.; Liu, H. Y.; Ma, Y. C.; Ding, Y. H. et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51.

[4]

Falkowski, P.; Scholes, R. J.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Högberg, P.; Linder, S. et al. The global carbon cycle: A test of our knowledge of earth as a system. Science 2000, 290, 291–296.

[5]

Zhang, J.; Guo, C. X.; Fang, S. S.; Zhao, X. T.; Li, L.; Jiang, H. Y.; Liu, Z. Y.; Fan, Z. Q.; Xu, W. G.; Xiao, J. P. et al. Accelerating electrochemical CO2 reduction to multi-carbon products via asymmetric intermediate binding at confined nanointerfaces. Nat. Commun. 2023, 14, 1298.

[6]

Li, L.; Li, X. D.; Sun, Y. F.; Xie, Y. Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem. Soc. Rev. 2022, 51, 1234–1252.

[7]

Fang, W. S.; Lu, R. H.; Li, F. M.; He, C. H.; Wu, D.; Yue, K. H.; Mao, Y.; Guo, W.; You, B.; Song, F. et al. Low-coordination nanocrystalline copper-based catalysts through theory-guided electrochemical restructuring for selective CO2 reduction to ethylene. Angew. Chem., Int. Ed. 2024, 63, e202319936.

[8]

Ye, L.; Ying, Y. R.; Sun, D. R.; Zhang, Z. Y.; Fei, L. F.; Wen, Z. H.; Qiao, J. L.; Huang, H. T. Highly efficient porous carbon electrocatalyst with controllable N-species content for selective CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 3244–3251.

[9]

Akter, T.; Barile, C. J. Membrane-controlled CO2 electrocatalysts with switchable C2 product selectivity and high faradaic efficiency for ethanol. J. Mater. Chem. A 2023, 11, 11354–11363.

[10]

Wei, B.; Xiong, Y. S.; Zhang, Z. Y.; Hao, J. H.; Li, L. H.; Shi, W. D. Efficient electrocatalytic reduction of CO2 to HCOOH by bimetallic In-Cu nanoparticles with controlled growth facet. Appl. Catal. B 2021, 283, 119646.

[11]

Pan, Q.; Chen, Y.; Jiang, S. S.; Cui, X.; Ma, G. H.; Ma, T. Y. Insight into the active sites of M-N-C single-atom catalysts for electrochemical CO2 reduction. EnergyChem 2023, 5, 100114.

[12]

Jin, S.; Hao, Z. M.; Zhang, K.; Yan, Z. H.; Chen, J. Advances and challenges for the electrochemical reduction of CO2 to CO: From fundamentals to industrialization. Angew. Chem., Int. Ed. 2021, 60, 20627–20648.

[13]

Zhang, Q. C.; Liu, D.; Zhang, Y. P.; Guo, Z. L.; Chen, M. P.; Chen, Y. Y.; Jin, B.; Song, Y. Z.; Pan, H. Insight into coupled Ni-Co dual-metal atom catalysts for efficient synergistic electrochemical CO2 reduction. J. Energy Chem. 2023, 87, 509–517.

[14]

Ping, D.; Huang, S. G.; Wu, S. D.; Zhang, Y. F.; Yi, F.; Han, L. F.; Wang, S. W.; Wang, H.; Yang, X. Z.; Guo, D. J. et al. LDHs-based bifunctional electrocatalyst for effective tunable syngas generation via CO2 reduction. Int. J. Hydrogen Energy 2022, 47, 23653–23660.

[15]

Abdinejad, M.; Dao, C.; Zhang, X. A.; Kraatz, H. B. Enhanced electrocatalytic activity of iron amino porphyrins using a flow cell for reduction of CO2 to CO. J. Energy Chem. 2021, 58, 162–169.

[16]

Cui, T. T.; Li, L. X.; Ye, C. L.; Li, X. Y.; Liu, C. X.; Zhu, S. H.; Chen, W.; Wang, D. S. Heterogeneous single atom environmental catalysis: Fundamentals, applications, and opportunities. Adv. Funct. Mater. 2022, 32, 2108381.

[17]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[18]

Chen, Y.; Lin, J.; Jia, B. H.; Wang, X. D.; Jiang, S. Y.; Ma, T. Y. Isolating single and few atoms for enhanced catalysis. Adv. Mater. 2022, 34, 2201796.

[19]

Sykes, E. C. H.; Christopher, P.; Li, J. Fundamental insights into heterogeneous single-atom catalysis. J. Chem. Phys. 2021, 155, 210401.

[20]

Chu, T. S.; Wang, G. Y.; Zhang, X. Y.; Jia, Y. Y.; Dai, S.; Liu, X. Z.; Zhang, L.; Yang, X.; Zhang, B. W.; Xuan, F. Z. High-density dual-structure single-atom Pt electrocatalyst for efficient hydrogen evolution and multimodal sensing. Nano Lett. 2024, 24, 9666–9674.

[21]

Zhou, L.; Tian, P. F.; Zhang, B. W.; Xuan, F. Z. Data-driven rational design of single-atom materials for hydrogen evolution and sensing. Nano Res. 2023, 17, 3352–3358.

[22]

Chen, Y. Q.; Zhang, J. R.; Yang, L. J.; Wang, X. Z.; Wu, Q.; Hu, Z. Recent advances in non-precious metal-nitrogen-carbon single-site catalysts for CO2 electroreduction reaction to CO. Electrochem. Energy Rev. 2022, 5, 11.

[23]

Ren, W. H.; Tan, X.; Jia, C.; Krammer, A.; Sun, Q.; Qu, J. T.; Smith, S. C.; Schueler, A.; Hu, X. L.; Zhao, C. Electronic regulation of nickel single atoms by confined nickel nanoparticles for energy-efficient CO2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202203335.

[24]

Ren, W. H.; Tan, X.; Yang, W. F.; Jia, C.; Xu, S. M.; Wang, K. X.; Smith, S. C.; Zhao, C. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 6972–6976.

[25]

Pan, F. P.; Deng, W.; Justiniano, C.; Li, Y. Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO2 reduction. Appl. Catal. B 2018, 226, 463–472.

[26]

Li, J. K.; Pršlja, P.; Shinagawa, T.; Martín Fernández, A. J.; Krumeich, F.; Artyushkova, K.; Atanassov, P.; Zitolo, A.; Zhou, Y. C.; García-Muelas, R. et al. Volcano trend in electrocatalytic CO2 reduction activity over atomically dispersed metal sites on nitrogen-doped carbon. ACS Catal. 2019, 9, 10426–10439.

[27]

Hu, X. M.; Hval, H. H.; Bjerglund, E. T.; Dalgaard, K. J.; Madsen, M. R.; Pohl, M. M.; Welter, E.; Lamagni, P.; Buhl, K. B.; Bremholm, M. et al. Selective CO2 reduction to CO in water using earth-abundant metal and nitrogen-doped carbon electrocatalysts. ACS Catal. 2018, 8, 6255–6264.

[28]

Pan, F. P.; Zhang, H. G.; Liu, K. X.; Cullen, D.; More, K.; Wang, M. Y.; Feng, Z. X.; Wang, G. F.; Wu, G.; Li, Y. Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts. ACS Catal. 2018, 8, 3116–3122.

[29]

Wang, X. S.; Pan, Y. Y.; Ning, H.; Wang, H. M.; Guo, D. L.; Wang, W. H.; Yang, Z. X.; Zhao, Q. S.; Zhang, B. X.; Zheng, L. R. et al. Hierarchically micro- and meso-porous Fe-N4O-doped carbon as robust electrocatalyst for CO2 reduction. Appl. Catal. B 2020, 266, 118630.

[30]

Li, Z.; Jiang, J. X.; Liu, X. M.; Zhu, Z. Z.; Wang, J. J.; He, Q.; Kong, Q. Q.; Niu, X. B.; Chen, J. S.; Wang, J. et al. Coupling atomically dispersed Fe-N5 sites with defective N-doped carbon boosts CO2 electroreduction. Small 2022, 18, 2203495.

[31]

Li, K.; Zhang, S. B.; Zhang, X. L.; Liu, S.; Jiang, H. S.; Jiang, T. L.; Shen, C. Y.; Yu, Y.; Chen, W. Atomic tuning of single-atom Fe-N-C catalysts with phosphorus for robust electrochemical CO2 reduction. Nano Lett. 2022, 22, 1557–1565.

[32]

Wang, X. C.; Zhang, N.; Guo, S. H.; Shang, H. S.; Luo, X.; Sun, Z. Y.; Wei, Z. H.; Lei, Y. T.; Zhang, L. L.; Wang, D. et al. p-d Orbital hybridization induced by asymmetrical FeSn dual atom sites promotes the oxygen reduction reaction. J. Am. Chem. Soc. 2024, 146, 21357–21366.

[33]

Wang, X. C.; Kang, Z. W.; Wang, D.; Zhao, Y. F.; Xiang, X.; Shang, H. S.; Zhang, B. Electronic structure regulation of the Fe-based single-atom catalysts for oxygen electrocatalysis. Nano Energy 2024, 121, 109268.

[34]

Zhang, L. L.; Zhang, N.; Shang, H. S.; Sun, Z. Y.; Wei, Z. H.; Wang, J. T.; Lei, Y. T.; Wang, X. C.; Wang, D.; Zhao, Y. F. et al. High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation. Nat. Commun. 2024, 15, 9440.

[35]

Liu, C. H.; Wu, Y.; Sun, K. A.; Fang, J. J.; Huang, A. J.; Pan, Y.; Cheong, W. C.; Zhuang, Z. W.; Zhuang, Z. B.; Yuan, Q. H. et al. Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. Chem 2021, 7, 1297–1307.

[36]

Jia, C.; Zhao, Y.; Song, S.; Sun, Q.; Meyer, Q.; Liu, S. Y.; Shen, Y. S.; Zhao, C. Highly ordered hierarchical porous single-atom Fe catalyst with promoted mass transfer for efficient electroreduction of CO2. Adv. Energy Mater. 2023, 13, 2302007.

[37]

Yu, K.; Sun, K. A.; Cheong, W. C.; Tan, X.; He, C.; Zhang, J. Q.; Li, J. Z.; Chen, C. Oxalate-assisted synthesis of hollow carbon nanocage with Fe single atoms for electrochemical CO2 reduction. Small 2023, 19, 2302611.

[38]

Chen, G. B.; Lu, R. H.; Li, C. Z.; Yu, J. M.; Li, X. D.; Ni, L. M.; Zhang, Q.; Zhu, G. Q.; Liu, S. W.; Zhang, J. X. et al. Hierarchically porous carbons with highly curved surfaces for hosting single metal FeN4 sites as outstanding oxygen reduction catalysts. Adv. Mater. 2023, 35, 2300907.

[39]

Nam, D. H.; Bushuyev, O. S.; Li, J.; De Luna, P.; Seifitokaldani, A.; Dinh, C. T.; García de Arquer, F. P.; Wang, Y. H.; Liang, Z. Q.; Proppe, A. H. et al. Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 2018, 140, 11378–11386.

[40]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[41]

Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.; Furukawa, S.; Yamauchi, Y. Thermal conversion of core-shell metal-organic frameworks: A new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 2015, 137, 1572–1580.

[42]

Fechler, N.; Fellinger, T. P.; Antonietti, M. “Salt templating”: A simple and sustainable pathway toward highly porous functional carbons from ionic liquids. Adv. Mater. 2013, 25, 75–79.

[43]

Liu, X. F.; Fechler, N.; Antonietti, M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem. Soc. Rev. 2013, 42, 8237–8265.

[44]

Mohd Adli, N.; Shan, W. T.; Hwang, S.; Samarakoon, W.; Karakalos, S.; Li, Y.; Cullen, D. A.; Su, D.; Feng, Z. X.; Wang, G. F. et al. Engineering atomically dispersed FeN4 active sites for CO2 electroreduction. Angew. Chem., Int. Ed. 2021, 60, 1022–1032.

[45]

Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.

[46]

Wang, H. J.; Wu, X. D.; Liu, G. Y.; Wu, S. Y.; Xu, R. Bimetallic MOF derived nickel nanoclusters supported by nitrogen-doped carbon for efficient electrocatalytic CO2 reduction. Nano Res. 2023, 16, 4546–4553.

[47]

Zhou, Y.; Xie, M. X.; Song, Y.; Yan, D. K.; Wang, Z. L.; Zhang, S.; Deng, C. Edge-enriched Ni-N4 atomic sites embedded enoki-mushroom-like carbon nanotubes assembling hollow fibers for CO2 conversion and flexible Zn-air battery. Energy Storage Mater. 2022, 47, 235–248.

[48]

Wang, W.; Chen, K. Y.; Sun, Y.; Zhou, S. Q.; Zhang, M.; Yuan, J. Y. Mesoporous Ni-N-C as an efficient electrocatalyst for reduction of CO2 into CO in a flow cell. Appl. Mater. Today 2022, 29, 101619.

[49]

Zhao, Y. Z.; Miao, Z. C.; Wang, F. Y.; Liang, M. F.; Liu, Y.; Wu, M.; Diao, L. C.; Mu, J. L.; Cheng, Y. Z.; Zhou, J. N-doped carbon-encapsulated nickel on reduced graphene oxide materials for efficient CO2 electroreduction to syngas with potential-independent H2/CO ratios. J. Environ. Chem. Eng. 2021, 9, 105515.

[50]

Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069.

[51]

Chen, Y.; Zhao, J.; Pan, X. L.; Li, L.; Yu, Z. N.; Wang, X. D.; Ma, T. Y.; Lin, S.; Lin, J. Tuning the inter-metal interaction between Ni and Fe atoms in dual-atom catalysts to boost CO2 electroreduction. Angew. Chem., Int. Ed. 2024, 63, e202411543.

[52]

Cao, C. S.; Zhou, S. H.; Zuo, S. W.; Zhang, H. B.; Chen, B.; Huang, J. H.; Wu, X. T.; Xu, Q.; Zhu, Q. L. Si doping-induced electronic structure regulation of single-atom Fe sites for boosted CO2 electroreduction at low overpotentials. Research 2023, 6, 0079.

[53]

Chen, G. B.; An, Y.; Liu, S. W.; Sun, F. F.; Qi, H. Y.; Wu, H. F.; He, Y. H.; Liu, P.; Shi, R.; Zhang, J. et al. Highly accessible and dense surface single metal FeN4 active sites for promoting the oxygen reduction reaction. Energy Environ. Sci. 2022, 15, 2619–2628.

[54]

Zheng, W. Z.; Chen, F.; Zeng, Q.; Li, Z. J.; Yang, B.; Lei, L. C.; Zhang, Q. H.; He, F.; Wu, X. L.; Hou, Y. A universal principle to accurately synthesize atomically dispersed metal-N4 sites for CO2 electroreduction. Nanomicro Lett. 2020, 12, 108.

[55]

Li, Y. Z.; Wei, B.; Zhu, M. H.; Chen, J. C.; Jiang, Q. K.; Yang, B.; Hou, Y.; Lei, L. C.; Li, Z. J.; Zhang, R. F. et al. Synergistic effect of atomically dispersed Ni-Zn pair sites for enhanced CO2 electroreduction. Adv. Mater. 2021, 33, 2102212.

[56]

Li, S. M.; Ceccato, M.; Lu, X. Y.; Frank, S.; Lock, N.; Roldan, A.; Hu, X. M.; Skrydstrup, T.; Daasbjerg, K. Incorporation of nickel single atoms into carbon paper as self-standing electrocatalyst for CO2 reduction. J. Mater. Chem. A 2021, 9, 1583–1592.

[57]

Chen, H. H.; Guo, X.; Kong, X. D.; Xing, Y. L.; Liu, Y.; Yu, B. L.; Li, Q. X.; Geng, Z. G.; Si, R.; Zeng, J. Tuning the coordination number of Fe single atoms for the efficient reduction of CO2. Green Chem. 2020, 22, 7529–7536.

[58]

Yang, Y.; Chen, L. Z.; Guo, Z. Y.; Liu, S. Q.; Wu, P. D.; Fang, Z.; Zhang, K.; Li, H. Remote p-d orbital hybridization via first/second-layer coordination of Fe single atoms with heteroatoms for enhanced electrochemical CO2-to-CO reduction. J. Mater. Chem. A 2024, 12, 8991–9001.

[59]

Liu, W. P.; Wang, K.; Gong, L.; Zhi, Q. J.; Jiang, R.; Liu, W. B.; Sun, T. T.; Zhang, Y. X.; Jiang, J. Z. Edge-located Fe-N4 sites on porous Graphene-like nanosheets for boosting CO2 electroreduction. Chem. Eng. J. 2022, 431, 134269.

[60]

Wang, Y. T.; Li, Y. H.; Liu, J. Z.; Dong, C. X.; Xiao, C. Q.; Cheng, L.; Jiang, H. L.; Jiang, H.; Li, C. Z. BiPO4-derived 2D nanosheets for efficient electrocatalytic reduction of CO2 to liquid fuel. Angew. Chem., Int. Ed. 2021, 60, 7681–7685.

[61]

Jiang, S. S.; Chen, Y.; Cui, X.; Sun, Y.; Ma, G. H.; Bao, Y. X.; Yao, Y. L.; Ma, T. Y. Constructing highly efficient ZnO nanocatalysts with exposed extraordinary (110) facet for CO2 electroreduction. ACS Appl. Mater. Interfaces 2024, 16, 14965–14973.

[62]

Ju, W.; Bagger, A.; Wang, X. L.; Tsai, Y. L.; Luo, F.; Möller, T.; Wang, H.; Rossmeisl, J.; Varela, A. S.; Strasser, P. Unraveling mechanistic reaction pathways of the electrochemical CO2 reduction on Fe-N-C single-site catalysts. ACS Energy Lett. 2019, 4, 1663–1671.

[63]

Leonard, N.; Ju, W.; Sinev, I.; Steinberg, J.; Luo, F.; Varela, A. S.; Roldan Cuenya, B.; Strasser, P. The chemical identity, state and structure of catalytically active centers during the electrochemical CO2 reduction on porous Fe-nitrogen-carbon (Fe-N-C) materials. Chem. Sci. 2018, 9, 5064–5073.

Nano Research
Article number: 94907297
Cite this article:
Ma G, Chen Y, Li H, et al. Hierarchically porous N-doped carbon confined single-atom Fe catalyst for efficient electrochemical CO2 reduction. Nano Research, 2025, 18(4): 94907297. https://doi.org/10.26599/NR.2025.94907297
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return