PDF (18.9 MB)
Collect
Submit Manuscript
Research Article | Open Access

Ferrocene conjugated glutathione consumption for enhanced ferroptosis therapy and chemotherapy

Limei Zhang1,§Huatai Zhu1,§Yuting Ren1Peng Ye1Jiandu Lei1,2 ()
Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China

§ Limei Zhang and Huatai Zhu contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
In this work, the “multi-machine integrated” nano prodrug micelles were successfully synthesized, which were designed to enhance ferroptosis therapy and chemotherapy.

Abstract

As the backbone of tumor therapy, chemotherapy is prone to tumor resistance due to its apoptotic pathway. Ferroptosis, as an effective form of non-apoptotic cell death, can overcome chemotherapy apoptosis-induced resistance. Therefore, the combination of chemotherapy and ferroptosis is a highly promising tumor treatment strategy. However, high glutathione (GSH) and insufficient intracellular iron content in the tumor environment limit the efficiency of ferroptosis-mediated anticancer. Not only that, simultaneous intracellular delivery of iron sources, ferroptosis inducers, and chemotherapeutic agents remains a major challenge. Here, we constructed a self-assembled nano prodrug system to co-deliver iron sources, ferroptosis inducers, and anti-cancer drugs for combined ferroptosis and chemotherapy. In the tumor microenvironment, high levels of GSH triggered redox-responsive disulfide bonding, which induced the disassembly of this nano prodrug system (PFSH@HCPT), releasing hydroxycamptothecin (HCPT), honokiol (HNK) and ferrocene (Fc). HCPT induced cell death via apoptosis and Fc triggered the Fenton reaction, which induced ferroptosis. HNK inhibited the activity of glutathione peroxidase 4 (GPX4) to enhance ferroptosis, and on the other hand, it further induced cell death via apoptosis. Meanwhile, the combined strategy of HNK-mediated resistance and ferroptosis-induced resistance mechanism further overcame the resistance of HCPT and significantly improved the therapeutic efficacy. This nano prodrug system realized the “multi-machine integrated” therapeutic efficacy and showed great therapeutic potential, which may open up a new way for effective cancer treatment.

Electronic Supplementary Material

Download File(s)
7298_ESM.pdf (5 MB)

References

[1]

Tan, H. X.; Shen, Z. Q.; Wang, X. H.; Shu, S. C.; Deng, J.; Lu, L.; Fan, Z. Y.; Hu, D. N.; Cheng, P.; Cao, X. et al. Endoplasmic reticulum-targeted biomimetic nanoparticles induce apoptosis and ferroptosis by regulating endoplasmic reticulum function in colon cancer. J. Control. Release 2024, 375, 422–437.

[2]

Wang, X.; Shao, G.; Hong, X. Y.; Shi, Y.; Zheng, Y. T.; Yu, Y. C.; Fu, C. Y. Targeting annexin A1 as a druggable player to enhance the anti-tumor role of honokiol in colon cancer through autophagic pathway. Pharmaceuticals 2023, 16, 70.

[3]

Zhang, Z. T.; Ji, Y.; Hu, N.; Yu, Q. Q.; Zhang, X. R.; Li, J.; Wu, F. L.; Xu, H. E.; Tang, Q. Y.; Li, X. L. Ferroptosis-induced anticancer effect of resveratrol with a biomimetic Nano-delivery system in colorectal cancer treatment. Asian J. Pharm. Sci. 2022, 17, 751–766.

[4]

Akakuru, O. U.; Zhang, Z. J.; Iqbal, M. Z.; Zhu, C. J.; Zhang, Y. W.; Wu, A. G. Chemotherapeutic nanomaterials in tumor boundary delineation: Prospects for effective tumor treatment. Acta Pharm. Sin. B 2022, 12, 2640–2657.

[5]

Jin, H. J.; Wang, L. Q.; Bernards, R. Rational combinations of targeted cancer therapies: Background, advances and challenges. Nat. Rev. Drug Discov. 2023, 22, 213–234.

[6]

Davodabadi, F.; Sajjadi, S. F.; Sarhadi, M.; Mirghasemi, S.; Nadali Hezaveh, M.; Khosravi, S.; Kamali Andani, M.; Cordani, M.; Basiri, M.; Ghavami, S. Cancer chemotherapy resistance: Mechanisms and recent breakthrough in targeted drug delivery. Eur. J. Pharmacol. 2023, 958, 176013.

[7]

Pang, L.; Feng, H. H.; Zhong, W.; Dong, H. N.; Shen, Y. Q.; Yu, B.; Cong, H. L. Design of crown ether based micelles and their anti-tumor properties by perturbing potassium ion homeostasis. Mater. Des. 2021, 211, 110159.

[8]

Zhang, C.; Liu, X. Y.; Jin, S. D.; Chen, Y.; Guo, R. H. Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol. Cancer 2022, 21, 47.

[9]

Hangauer, M. J.; Viswanathan, V. S.; Ryan, M. J.; Bole, D.; Eaton, J. K.; Matov, A.; Galeas, J.; Dhruv, H. D.; Berens, M. E.; Schreiber, S. L. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 2017, 551, 247–250.

[10]

Chen, Y.; Yao, Z.; Liu, P. L.; Hu, Q. D.; Huang, Y.; Ping, L.; Zhang, F.; Tang, H. L.; Wan, T.; Ping, Y. et al. A self-assembly nano-prodrug for triple-negative breast cancer combined treatment by ferroptosis therapy and chemotherapy. Acta Biomater. 2023, 159, 275–288.

[11]

Viswanathan, V. S.; Ryan, M. J.; Dhruv, H. D.; Gill, S.; Eichhoff, O. M.; Seashore-Ludlow, B.; Kaffenberger, S. D.; Eaton, J. K.; Shimada, K.; Aguirre, A. J. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 2017, 547, 453–457.

[12]

Yang, J.; Ma, S. Y.; Xu, R.; Wei, Y. W.; Zhang, J.; Zuo, T. T.; Wang, Z. H.; Deng, H. Z.; Yang, N.; Shen, Q. Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy. J. Control. Release 2021, 334, 21–33.

[13]

Xu, R.; Yang, J.; Qian, Y.; Deng, H. Z.; Wang, Z. H.; Ma, S. Y.; Wei, Y. W.; Yang, N.; Shen, Q. Ferroptosis/pyroptosis dual-inductive combinational anti-cancer therapy achieved by transferrin decorated nanoMOF. Nanoscale Horiz. 2021, 6, 348–356.

[14]

Li, J. S.; Zong, Q. Y.; Liu, Y.; Xiao, X.; Zhou, J. L.; Zhao, Z. Y.; Yuan, Y. Y. Self-catalyzed tumor ferroptosis based on ferrocene conjugated reactive oxygen species generation and a responsive polymer. Chem. Commun. 2022, 58, 3294–3297.

[15]

Gao, M.; Deng, J.; Liu, F.; Fan, A. P.; Wang, Y. J.; Wu, H. Y.; Ding, D.; Kong, D. L.; Wang, Z.; Peer, D. et al. Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy. Biomaterials 2019, 223, 119486.

[16]

Ren, Y. Q.; Mao, X. R.; Xu, H.; Dang, Q.; Weng, S. Y.; Zhang, Y. Y.; Chen, S.; Liu, S. T.; Ba, Y. H.; Zhou, Z. K. et al. Ferroptosis and EMT: Key targets for combating cancer progression and therapy resistance. Cell. Mol. Life Sci. 2023, 80, 263.

[17]

Luo, J. J.; Li, Y.; Li, Y. R.; Chen, X. F.; Du, P. Y.; Wang, Z.; Tian, A. X.; Zhao, Y. J. Reversing ferroptosis resistance in breast cancer via tailored lipid and iron presentation. ACS Nano 2023, 17, 25257–25268.

[18]

Hou, C. Y.; Yang, Y. M.; Wang, P. W.; Xie, H. M.; Jin, S. L.; Zhao, L. B.; Wu, G. H.; Xing, H.; Chen, H.; Liu, B. Y. et al. CCDC113 promotes colorectal cancer tumorigenesis and metastasis via TGF-β signaling pathway. Cell Death Dis. 2024, 15, 666.

[19]

Gong, J.; Lin, Y. Y.; Zhang, H. Q.; Liu, C. Q.; Cheng, Z.; Yang, X. W.; Zhang, J. M.; Xiao, Y. Y.; Sang, N.; Qian, X. Y. et al. Reprogramming of lipid metabolism in cancer-associated fibroblasts potentiates migration of colorectal cancer cells. Cell Death Dis. 2020, 11, 267.

[20]

Cai, M. R.; Fu, T. T.; Zhu, R. Y.; Hu, P. X.; Kong, J. H.; Liao, S. L.; Du, Y. J.; Zhang, Y. Q.; Qu, C. H.; Dong, X. et al. An iron-based metal-organic framework nanoplatform for enhanced ferroptosis and oridonin delivery as a comprehensive antitumor strategy. Acta Pharm. Sin. B 2024, 14, 4073–4086.

[21]

Luo, S. W.; Ma, D.; Wei, R. L.; Yao, W.; Pang, X. R.; Wang, Y.; Xu, X. D; Wei, X. H.; Guo, Y.; Jiang, X. Q. et al. A tumor microenvironment responsive nanoplatform with oxidative stress amplification for effective MRI-based visual tumor ferroptosis. Acta Biomater 2022, 138, 518–527.

[22]

Yang, Y. X.; Zuo, S. Y.; Li, L. X.; Kuang, X.; Li, J. B.; Sun, B. J.; Wang, S. J.; He, Z. G.; Sun, J. Iron-doxorubicin prodrug loaded liposome nanogenerator programs multimodal ferroptosis for efficient cancer therapy. Asian J. Pharm. Sci. 2021, 16, 784–793.

[23]

Liu, J. P.; Zhan, J. Z.; Zhang, Y.; Huang, L.; Yang, J.; Feng, J.; Ding, L. W.; Shen, Z. Y.; Chen, X. Y. Ultrathin clay nanoparticles-mediated mutual reinforcement of ferroptosis and cancer immunotherapy. Adv. Mater. 2024, 36, e2309562.

[24]

Han, Y. K.; Dong, Z. L.; Wang, C. J.; Li, Q. G.; Hao, Y.; Yang, Z. J.; Zhu, W. J.; Zhang, Y. Y.; Liu, Z.; Feng, L. Z. Ferrous ions doped calcium carbonate nanoparticles potentiate chemotherapy by inducing ferroptosis. J. Control. Release 2022, 348, 346–356.

[25]

Zhang, Y. R.; Song, Q. C.; Zhang, Y. Y.; Xiao, J. H.; Deng, X. T.; Xing, X.; Hu, H. Z.; Zhang, Y. Z. Iron-based nanovehicle delivering fin56 for hyperthermia-boosted ferroptosis therapy against osteosarcoma. Int. J. Nanomedicine 2024, 19, 91–107.

[26]

Xin, H.; Yuan, P. J.; Wang, Y. J.; Xiao, J. M.; Tian, G.; Fan, Y.; Zhang, G. L.; Liu, L. Highly selective and effective ferroptosis liposomal nanodrugs for synergistic antitumor therapy. Chem. Eng. J. 2024, 493, 152480.

[27]

Huang, Y.; Lin, Y.; Li, B. W.; Zhang, F.; Zhan, C. Y.; Xie, X.; Yao, Z.; Wu, C. Z.; Ping, Y.; Shen, J. L. Combination therapy to overcome ferroptosis resistance by biomimetic self-assembly Nano-prodrug. Asian J. Pharm. Sci. 2023, 18, 100844.

[28]

Wang, W. J.; Ling, Y. Y.; Zhong, Y. M.; Li, Z. Y.; Tan, C. P.; Mao, Z. W. Ferroptosis-enhanced cancer immunity by a ferrocene-appended iridium(III) diphosphine complex. Angew. Chem., Int. Ed. 2022, 61, e202115247.

[29]

Gao, Y. C.; Zhang, H. C.; Tang, L.; Li, F. F.; Yang, L.; Xiao, H. H.; Karges, J.; Huang, W. H.; Zhang, W.; Liu, C. Y. Cancer nanobombs delivering artoxplatin with a polyigniter bearing hydrophobic ferrocene units upregulate PD-L1 expression and stimulate stronger anticancer immunity. Adv. Sci. 2024, 11, e2300806.

[30]

Guo, C.; Liu, P.; Deng, G. L.; Han, Y.; Chen, Y. H.; Cai, C. J.; Shen, H.; Deng, G. P.; Zeng, S. Honokiol induces ferroptosis in colon cancer cells by regulating GPX4 activity. Am. J. Cancer Res. 2021, 11, 3039–3054.

[31]

Wang, Z. Q.; Li, X. R.; Wang, D. S.; Zou, Y.; Qu, X. Y.; He, C. Y.; Deng, Y. Q.; Jin, Y.; Zhou, Y. H.; Zhou, Y. X. et al. Concurrently suppressing multidrug resistance and metastasis of breast cancer by co-delivery of paclitaxel and honokiol with pH-sensitive polymeric micelles. Acta Biomater. 2017, 62, 144–156.

[32]

Xu, D.; Lu, Q. H.; Hu, X. Down-regulation of P-glycoprotein expression in MDR breast cancer cell MCF-7/ADR by honokiol. Cancer Lett. 2006, 243, 274–280.

[33]

Dai, S. Y.; Qin, W. X.; Yu, S.; Li, C.; Yang, Y. H.; Pei, Y. H. Honokiol and magnolol: A review of structure-activity relationships of their derivatives. Phytochemistry 2024, 223, 114132.

[34]

Le, D. T. T.; Nguyen, N. H.; Do, H. T. M.; Vu, C. M.; Nguyen, P. T. M.; Chu, H. H. Honokiol-loaded PLGA-PEG nanoparticles with solubility in water for infusion treatment of solid cancer. J. Drug Deliv. Sci. Technol. 2025, 103, 106436.

[35]

Yang, B.; Gao, J.; Pei, Q.; Xu, H. X.; Yu, H. J. Engineering prodrug nanomedicine for cancer immunotherapy. Adv. Sci. 2020, 7, 2002365.

[36]

Zhou, S.; Zhong, Q.; Wang, Y.; Hu, P.; Zhong, W.; Huang, C. B.; Yu, Z. Q.; Ding, C. D.; Liu, H. X.; Fu, J. J. Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coord. Chem. Rev. 2022, 452, 214309.

[37]

Li, Y. R.; Feng, S. M.; Dai, P. P.; Liu, F.; Shang, Y. Q.; Yang, Q.; Qin, J.; Yuchi, Z.; Wang, Z.; Zhao, Y. J. Tailored Trojan horse nanocarriers for enhanced redox-responsive drug delivery. J. Control. Release 2022, 342, 201–209.

[38]

Yao, W. H.; Liu, C. Y.; Wang, N.; Zhou, H. J.; Chen, H. L.; Qiao, W. H. An MRI-guided targeting dual-responsive drug delivery system for liver cancer therapy. J. Colloid Interface Sci. 2021, 603, 783–798.

[39]

Cheng, R.; Meng, F. H.; Deng, C.; Zhong, Z. Y. Bioresponsive polymeric nanotherapeutics for targeted cancer chemotherapy. Nano Today 2015, 10, 656–670.

[40]

Chen, J. J.; Song, Y. R.; Yang, W. Q.; Guo, J. H.; Zhang, S. H.; Wan, D.; Liu, Y. H.; Pan, J. Enzyme and reduction dual-responsive peptide micelles as nanocarriers for smart drug delivery. ACS Appl. Nano Mater. 2023, 6, 16179–16188.

[41]

Li, B. L.; Teng, J. K.; Chen, S.; Yang, J. M.; Liu, X. Q.; Zhang, J.; Zhao, Y. A dual‐stimuli responsive supramolecular nanovector anchoring folic acid ligands for targeted delivery of anti‐colorectal drug hydroxycamptothecin. J. Appl. Polym. Sci. 2023, 140, e53525.

Nano Research
Article number: 94907298
Cite this article:
Zhang L, Zhu H, Ren Y, et al. Ferrocene conjugated glutathione consumption for enhanced ferroptosis therapy and chemotherapy. Nano Research, 2025, 18(4): 94907298. https://doi.org/10.26599/NR.2025.94907298
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return