Gas sensors based on organic semiconductor materials (OSCs) have garnered significant attention due to their cost-effectiveness and ability to operate efficiently at room temperature. However, the performance of these sensors is often constrained by the grain boundaries and defects inherent in polycrystalline films typically produced by conventional methods. In this study, a novel approach was developed for fabricating large-area porous organic single-crystal films. Hydrophobic lattice structures were engineered on hydrophilic substrate surfaces, facilitating the growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) molecules by micro-spacing sublimation with liquid crystal properties. These hydrophobic lattice structures function as thermal stress release sites during the film cooling process, enabling the formation of organic single-crystal films with precisely controlled pore locations and sizes. The resulting porous films demonstrate electrical properties on stripes with those achieved through growing on bare silicon substrates, yet exhibit enhanced sensitivity, faster response times, and a lower detection limit when used as active layers in gas sensors. This technique offers a promising pathway for advancing high-performance organic gas sensors toward industrial application.
Zhou, S. X.; Zhao, Y. J.; Xun, Y. R.; Wei, Z. C.; Yang, Y.; Yan, W. T.; Ding, J. Programmable and modularized gas sensor integrated by 3D printing. Chem. Rev. 2024, 124, 3608–3643.
Mo, X. C.; Zhu, C. H.; Zhang, Z. R.; Yan, X. H.; Han, C. S.; Li, J. X.; Attfield, J. P.; Yang, M. H. Nitrogen-doped indium oxide electrochemical sensor for stable and selective NO2 detection. Adv. Mater. 2024, 36, 2409294.
Wang, Q.; Wang, M. L.; Zheng, K. P.; Ye, W. N.; Zhang, S.; Wang, B. B.; Long, X. J. High-performance room temperature ammonia sensors based on pure organic molecules featuring B–N covalent bond. Adv. Sci. 2024, 11, 2308483.
Rajeev, G.; Prieto Simon, B.; Marsal, L. F.; Voelcker, N. H. Advances in nanoporous anodic alumina-based biosensors to detect biomarkers of clinical significance: A review. Adv. Healthcare Mater. 2018, 7, 1700904.
Wang, Z.; Huang, L. Z.; Zhu, X. F.; Zhou, X.; Chi, L. F. An ultrasensitive organic semiconductor NO2 sensor based on crystalline TIPS-pentacene films. Adv. Mater. 2017, 29, 1703192.
Bangsund, J. S.; Fielitz, T. R.; Steiner, T. J.; Shi, K. C.; Van Sambeek, J. R.; Clark, C. P.; Holmes, R. J. Formation of aligned periodic patterns during the crystallization of organic semiconductor thin films. Nat. Mater. 2019, 18, 725–731.
Kim, K.; Bae, J.; Noh, S. H.; Jang, J.; Kim, S. H.; Park, C. E. Direct writing and aligning of small-molecule organic semiconductor crystals via “dragging mode” electrohydrodynamic jet printing for flexible organic field-effect transistor arrays. J. Phys. Chem. Lett. 2017, 8, 5492–5500.
Atkinson, J. T.; Su, L.; Zhang, X.; Bennett, G. N.; Silberg, J. J.; Ajo-Franklin, C. M. Real-time bioelectronic sensing of environmental contaminants. Nature 2022, 611, 548–553.
Lin, P.; Yan, F. Organic thin-film transistors for chemical and biological sensing. Adv. Mater. 2012, 24, 34–51.
Deng, W.; Lei, H. M.; Zhang, X. J.; Sheng, F. M.; Shi, J. L.; Zhang, X. L.; Liu, X. Y.; Grigorian, S.; Zhang, X. H.; Jie, J. S. Scalable growth of organic single-crystal films via an orientation filter funnel for high-performance transistors with excellent uniformity. Adv. Mater. 2022, 34, 2109818.
Zhang, X. T.; Dong, H. L.; Hu, W. P. Organic semiconductor single crystals for electronics and photonics. Adv. Mater. 2018, 30, 1801048.
Chen, Z.; Duan, S. M.; Zhang, X. T.; Geng, B. W.; Xiao, Y. L.; Jie, J. S.; Dong, H. L.; Li, L. Q.; Hu, W. P. Organic semiconductor crystal engineering for high-resolution layer-controlled 2D crystal arrays. Adv. Mater. 2022, 34, 2104166.
Cavallari, M. R.; Pastrana, L. M.; Sosa, C. D. F.; Marquina, A. M. R.; Izquierdo, J. E. E.; Fonseca, F. J.; de Amorim, C. A.; Paterno, L. G.; Kymissis, I. Organic thin-film transistors as gas sensors: A review. Materials 2021, 14, 3.
Wang, C. L.; Dong, H. L.; Jiang, L.; Hu, W. P. Organic semiconductor crystals. Chem. Soc. Rev. 2018, 47, 422–500.
Zhang, C. C.; Chen, P. L.; Hu, W. P. Organic field-effect transistor-based gas sensors. Chem. Soc. Rev. 2015, 44, 2087–2107.
Wu, X. H.; Du, R. R.; Fang, L.; Chu, Y. L.; Li, Z.; Huang, J. Grain size adjustion in organic field-effect transistors for chemical sensing performance improvement. Sci. China Mater. 2019, 62, 138–145.
Yu, S. H.; Cho, J.; Sim, K. M.; Ha, J. U.; Chung, D. S. Morphology-driven high-performance polymer transistor-based ammonia gas sensor. ACS Appl. Mater. Interfaces 2016, 8, 6570–6576.
Peng, B. Y.; Huang, S. Y.; Zhou, Z. W.; Chan, P. K. L. Solution-processed monolayer organic crystals for high-performance field-effect transistors and ultrasensitive gas sensors. Adv. Funct. Mater. 2017, 27, 1700999.
Kwak, D. H.; Seo, Y.; Anthony, J. E.; Kim, S.; Hur, J.; Chae, H.; Park, H. J.; Kim, B. G.; Lee, E.; Ko, S. et al. Enhanced gas sensing performance of organic field-effect transistors by modulating the dimensions of triethylsilylethynyl-anthradithiophene microcrystal arrays. Adv. Mater. Interfaces 2020, 7, 1901696.
Song, J.; Cui, X. Y.; Liu, P.; Shi, Y. H.; Wang, X. J.; Li, M.; Zhou, Y. Y.; Yang, J. E.; Liu, H. R.; Yan, Y. et al. Organic nanowire sensor with seeing, smelling and heat sensation capabilities. Chem. Eng. J. 2024, 486, 150378.
Wang, Y.; Zhang, J. Y.; Zhang, S. Q.; Huang, J. OFET chemical sensors: Chemical sensors based on ultrathin organic field-effect transistors. Polym. Int. 2021, 70, 414–425.
Xiao, Y. L.; Deng, W.; Hong, J. J.; Ren, X. B.; Zhang, X. J.; Shi, J. L.; Sheng, F. M.; Zhang, X. H.; Jie, J. S. Water-surface-mediated precise patterning of organic single-crystalline films via double-blade coating for high-performance organic transistors. Adv. Funct. Mater. 2023, 33, 2213788.
Yuan, Y. B.; Giri, G.; Ayzner, A. L.; Zoombelt, A. P.; Mannsfeld, S. C. B.; Chen, J. H.; Nordlund, D.; Toney, M. F.; Huang, J. S.; Bao, Z. N. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 2014, 5, 3005.
Yao, J. R.; Tian, X. Z.; Li, B.; Wang, Z. F.; Zhang, X. L.; Jie, J. S.; Yang, F. X.; Li, R. J.; Hu, W. P. Nonclassical growth of atomically flat two-dimensional organic single crystals on a liquid surface through fusion. Adv. Electron. Mater. 2023, 9, 2201027.
Jeong, G.; Cheon, H. J.; Shin, S. Y.; Wi, E.; Kyokunzire, P.; Cheon, H.; Van Tran, V.; Vu, T. T.; Chang, M. Improved NO2 gas sensing performance of nanoporous conjugated polymer (CP) thin films by incorporating preformed CP nanowires. Dyes Pigm. 2023, 214, 111235.
Huang, L. Z.; Wang, Z.; Chen, J. H.; Wang, B. H.; Chen, Y.; Huang, W.; Chi, L. F.; Marks, T. J.; Facchetti, A. Porous semiconducting polymers enable high-performance electrochemical transistors. Adv. Mater. 2021, 33, 2007041.
Zhang, X. N.; Wang, B. H.; Huang, L. Z.; Huang, W.; Wang, Z.; Zhu, W. G.; Chen, Y.; Mao, Y. L.; Facchetti, A.; Marks, T. J. Breath figure-derived porous semiconducting films for organic electronics. Sci. Adv. 2020, 6, eaaz1042.
Lu, J. J.; Liu, D. P.; Zhou, J. C.; Chu, Y. L.; Chen, Y. T.; Wu, X. H.; Huang, J. Porous organic field-effect transistors for enhanced chemical sensing performances. Adv. Funct. Mater. 2017, 27, 1700018.
Tran, V. V.; Jeong, G.; Wi, E.; Lee, D.; Chang, M. Design and fabrication of ultrathin nanoporous donor–acceptor copolymer-based organic field-effect transistors for enhanced VOC sensing performance. ACS Appl. Mater. Interfaces 2023, 15, 21270–21283.
Chen, L.; Hu, Y. Z.; Huang, H. X.; Liu, C.; Wu, D.; Xia, J. L. Direct laser patterning of organic semiconductors for high performance OFET-based gas sensors. J. Mater. Chem. C 2023, 11, 7088–7097.
Gao, L.; Liu, C. J.; Peng, Y. J.; Deng, J. Y.; Hou, S. H.; Cheng, Y. H.; Huang, W.; Yu, J. S. Ultrasensitive flexible NO2 gas sensors via multilayer porous polymer film. Sens. Actuators B: Chem. 2022, 368, 132113.
Li, H. Y.; Shi, Y. J.; Han, G. C.; Liu, J.; Zhang, J.; Li, C. L.; Liu, J.; Yi, Y. P.; Li, T.; Gao, X. K. et al. Monolayer two-dimensional molecular crystals for an ultrasensitive OFET-based chemical sensor. Angew. Chem., Int. Ed. 2020, 59, 4380–4384.
Fu, B. B.; Yang, F. X.; Sun, L. J.; Zhao, Q.; Ji, D. Y.; Sun, Y. J.; Zhang, X. T.; Hu, W. P. Challenging bendable organic single crystal and transistor arrays with high mobility and durability toward flexible electronics. Adv. Mater. 2022, 34, 2203330.
Zhang, Y. J.; Guo, Y.; Song, L.; Qian, J.; Jiang, S.; Wang, Q. J.; Wang, X. R.; Shi, Y.; Wang, X. M.; Li, Y. Directly writing 2D organic semiconducting crystals for high-performance field-effect transistors. J. Mater. Chem. C 2017, 5, 11246–11251.
Jo, P. S.; Vailionis, A.; Park, Y. M.; Salleo, A. Scalable fabrication of strongly textured organic semiconductor micropatterns by capillary force lithography. Adv. Mater. 2012, 24, 3269–3274.
Ye, X.; Liu, Y.; Han, Q. X.; Ge, C.; Cui, S. Y.; Zhang, L. L.; Zheng, X. X.; Liu, G. F.; Liu, J.; Liu, D. et al. Microspacing in-air sublimation growth of organic crystals. Chem. Mater. 2018, 30, 412–420.
Lin, Q. L.; Ye, X.; Guo, Q.; Zheng, X. X.; Han, Q. X.; Zhang, L. L.; Cui, S. Y.; Li, C. C.; Jiang, J. K.; Liu, Y. et al. Fabrication of wafer-scale organic single-crystal films with uniform in-plane orientation via wetting-assisted in-air sublimation for high-performance transistor arrays. Chem. Mater. 2022, 34, 1030–1040.
Lin, Q. L.; Ye, X.; Guo, Q.; Zheng, X. X.; Han, Q. X.; Li, C. C.; Jiang, J. K.; Liu, Y.; Tao, X. T. Homogeneously oriented organic single-crystalline patterns grown by microspacing in-air sublimation. Small Methods 2023, 7, 2201374.
Schweicher, G.; Liu, G. F.; Fastré, P.; Resel, R.; Abbas, M.; Wantz, G.; Geerts, Y. H. Directional crystallization of C8-BTBT-C8 thin films in a temperature gradient. Mater. Chem. Front. 2021, 5, 249–258.
Tsujita, K.; Maruyama, S.; Shibata, Y.; Koganezawa, T.; Kaminaga, K.; Fujikake, H.; Matsumoto, Y. Directional lateral crystallization of vacuum-deposited C8-BTBT thin films via liquid crystal phase by a seeded horizontal temperature gradient cooling technique. CrystEngComm 2023, 25, 64–71.
Han, M. J.; Lee, D. W.; Lee, E. K.; Kim, J. Y.; Jung, J. Y.; Kang, H.; Ahn, H.; Shin, T. J.; Yoon, D. K.; Park, J. I. Molecular orientation control of liquid crystal organic semiconductor for high-performance organic field-effect transistors. ACS Appl. Mater. Interfaces 2021, 13, 11125–11133.
Wang, W. C.; Zhong, D. Y.; Zhu, J.; Kalischewski, F.; Dou, R. F.; Wedeking, K.; Wang, Y.; Heuer, A.; Fuchs, H.; Erker, G. et al. Patterned nucleation control in vacuum deposition of organic molecules. Phys. Rev. Lett. 2007, 98, 225504.
Yen, T. Y.; Hung, Y. H.; Lee, Y. Z.; Ho, Y. T.; Lan, Y. W.; Wu, C. H.; Hung, K. M.; Lo, K. Y. Gas adsorption mechanism on 2D materials: The hyperpolarizability evolution analyzed by nonlinear optics. Adv. Funct. Mater. 2024, 34, 2406005.
Iqbal, H. F.; Waldrip, M.; Chen, H.; McCulloch, I.; Jurchescu, O. D. Elucidating the role of water-related traps in the operation of polymer field-effect transistors. Adv. Electron. Mater. 2021, 7, 2100393.
Yin, Y.; Wang, X. P.; Xue, D.; Lu, J.; Zhang, Y. Y.; Gong, W. J.; Yan, C.; Wang, Z.; Wang, L.; Chi, L. F. et al. Bulk trapping organic semiconductor with amino-additive enabling ultrasensitive NO2 sensors. ACS Appl. Mater. Interfaces 2024, 16, 23684–23694.
Wang, Z.; Hu, J.; Lu, J.; Zhu, X. F.; Zhou, X.; Huang, L. Z.; Chi, L. F. Charge transport manipulation via interface doping: Achieving ultrasensitive organic semiconductor gas sensors. ACS Appl. Mater. Interfaces 2023, 15, 8355–8366.