Many individuals suffer from stroke, osteoarthritis, or accidental hand injuries, making hand rehabilitation greatly significant. The current hand rehabilitation therapy requires repetitive task-oriented hand exercises, relying on exoskeleton mechanical gloves integrated with different sensors and actuators. However, these conventional mechanical gloves require wearing heavy mechanical components that need weight-bearing and increase hand burden. Additionally, these devices are usually structurally complex, complicated to operate, and require specialized medical institutions. Here, a Virtual Reality (VR) hand rehabilitation system is developed by integrating deep-learning-assisted electromyography (EMG) recognition and VR human-machine interfaces (HMIs). By applying a wet-adhesive, self-healable, and conductive ionic hydrogel electrode array assisted by deep learning, the system can realize 14 Jebsen hand rehabilitation gestures recognition with an accuracy of 97.9%. The recognized gestures further communicate with the VR platform for real-time interaction in a virtual scenario to accomplish VR hand rehabilitation. Compared with present hand rehabilitation devices, the proposed system enables patients to perform immersive hand exercises in real-life scenarios without the need for hand-worn weights, and offers rehabilitation training without time and location limitations. This system could bring great breakthroughs for the development of a load-free hand rehabilitation system available in home-based therapy.
Powell, M. P.; Verma, N.; Sorensen, E.; Carranza, E.; Boos, A.; Fields, D. P.; Roy, S.; Ensel, S.; Barra, B.; Balzer, J. et al. Epidural stimulation of the cervical spinal cord for post-stroke upper-limb paresis. Nat. Med. 2023, 29, 689–699.
Hunter, D. J.; Schofield, D.; Callander, E. The individual and socioeconomic impact of osteoarthritis. Nat. Rev. Rheumatol. 2014, 10, 437–441.
Liu, Y.; Xie, W. C.; Tang, Z. B.; Tan, Z. F.; He, Y. Z.; Luo, J.; Wang, X. L. A reconfigurable integrated smart device for real-time monitoring and synergistic treatment of rheumatoid arthritis. Sci. Adv. 2024, 10, eadj0604.
Li, T. F.; Zhao, H.; Li, H. F.; Zhang, Z. B.; Han, F.; Fang, P.; Li, G. L.; Xie, R. J.; Li, Q. S.; Gao, X. H. et al. Dual-modal stretchable sensing patches for in situ monitoring of electromyography and acoustic myography. Adv. Funct. Mater. 2024, 34, 2409780.
Wang, H.; Ding, Q. L.; Luo, Y. B.; Wu, Z. X.; Yu, J. H.; Chen, H. Z.; Zhou, Y. B.; Zhang, H.; Tao, K.; Chen, X. L. et al. High-performance hydrogel sensors enabled multimodal and accurate human-machine interaction system for active rehabilitation. Adv. Mater. 2024, 36, 2309868.
Luo, J. Z.; Li, Y. S.; He, M.; Wang, Z. M.; Li, C. Y.; Liu, D.; An, J.; Xie, W. Q.; He, Y. Q.; Xiao, W. F. et al. Rehabilitation of total knee arthroplasty by integrating conjoint isometric myodynamia and real-time rotation sensing system. Adv. Sci. 2022, 9, 2105219.
Li, S. Y.; Liu, A. D.; Qiu, W.; Wang, Y. M.; Liu, G. Q.; Liu, J. R.; Shi, Y. T.; Li, Y. X.; Li, J. N.; Cai, W. J. et al. An all-protein multisensory highly bionic skin. ACS Nano 2024, 18, 4579–4589.
Siviy, C.; Baker, L. M.; Quinlivan, B. T.; Porciuncula, F.; Swaminathan, K.; Awad, L. N.; Walsh, C. J. Opportunities and challenges in the development of exoskeletons for locomotor assistance. Nat. Biomed. Eng. 2023, 7, 456–472.
Sui, M. L.; Ouyang, Y. M.; Jin, H.; Chai, Z. Y.; Wei, C. Y.; Li, J. Y.; Xu, M.; Li, W. H.; Wang, L.; Zhang, S. W. A soft-packaged and portable rehabilitation glove capable of closed-loop fine motor skills. Nat. Mach. Intell. 2023, 5, 1149–1160.
Zhang, X. B.; Mo, X. Y.; Li, C. B.; Li, F. L.; Jin, J.; Xie, P.; Yao, G.; Lin, Y.; Yao, D. Z.; Xu, P. A wearable master-slave rehabilitation robot based on an epidermal array electrode sleeve and multichannel electromyography network. Adv. Intell. Syst. 2023, 5, 2200313.
Ben-Tzvi, P.; Ma, Z. Sensing and force-feedback exoskeleton (SAFE) robotic glove. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 992–1002.
Han, Y. L.; Xu, Q.; Wu, F. Design of wearable hand rehabilitation glove with bionic fiber-reinforced actuator. IEEE J. Transl. Eng. Health Med. 2022, 10, 2100610.
Tang, Z. C.; Wang, H.; Cui, Z. X.; Jin, X. N.; Zhang, L. K.; Peng, Y. X.; Xing, B. X. An upper-limb rehabilitation exoskeleton system controlled by MI recognition model with deep emphasized informative features in a VR scene. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 4390–4401.
Dragusanu, M.; Iqbal, M. Z.; Baldi, T. L.; Prattichizzo, D.; Malvezzi, M. Design, development, and control of a hand/wrist exoskeleton for rehabilitation and training. IEEE Trans. Robot. 2022, 38, 1472–1488.
Verdel, D.; Bruneau, O.; Sahm, G.; Vignais, N.; Berret, B. The value of time in the invigoration of human movements when interacting with a robotic exoskeleton. Sci. Adv. 2023, 9, eadh9533.
Tran, P.; Jeong, S.; Herrin, K. R.; Desai, J. P. Review: Hand exoskeleton systems, clinical rehabilitation practices, and future prospects. IEEE Trans. Med. Robot. Bion. 2021, 3, 606–622.
Zhu, M. L.; Sun, Z. D.; Zhang, Z. X.; Shi, Q. F.; He, T. Y. Y.; Liu, H. C.; Chen, T.; Lee, C. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci. Adv. 2020, 6, eaaz8693.
Molinaro, D. D.; Kang, I.; Young, A. J. Estimating human joint moments unifies exoskeleton control, reducing user effort. Sci. Robot. 2024, 9, eadi8852.
Chen, X. S.; Gong, L.; Wei, L.; Yeh, S. C.; Xu, L. D.; Zheng, L. R.; Zou, Z. A wearable hand rehabilitation system with soft gloves. IEEE Trans. Ind. Informat. 2021, 17, 943–952.
Gao, S.; He, T. Y. Y.; Zhang, Z. X.; Ao, H. R.; Jiang, H. Y.; Lee, C. A motion capturing and energy harvesting hybridized lower-limb system for rehabilitation and sports applications. Adv. Sci. 2021, 8, 2101834.
Kim, J. J.; Wang, Y.; Wang, H. Y.; Lee, S.; Yokota, T.; Someya, T. Skin electronics: Next-generation device platform for virtual and augmented reality. Adv. Funct. Mater. 2021, 31, 2009602.
Amin, F.; Waris, A.; Syed, S.; Amjad, I.; Umar, M.; Iqbal, J.; Omer Gilani, S. Effectiveness of immersive virtual reality-based hand rehabilitation games for improving hand motor functions in subacute stroke patients. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 2060–2069.
Huang, Y.; Zhou, J. K.; Ke, P. C.; Guo, X.; Yiu, C. K.; Yao, K. M.; Cai, S. Y.; Li, D. F.; Zhou, Y.; Li, J. et al. A skin-integrated multimodal haptic interface for immersive tactile feedback. Nat. Electron. 2023, 6, 1020–1031.
Xiao, X.; Fang, Y. S.; Xiao, X.; Xu, J.; Chen, J. Machine-learning-aided self-powered assistive physical therapy devices. ACS Nano 2021, 15, 18633–18646.
Jha, C. K.; Shukla, Y.; Mukherjee, R.; Rathva, P.; Joshi, M.; Jain, D. A glove-based virtual hand rehabilitation system for patients with post-traumatic hand injuries. IEEE Trans. Biomed. Eng. 2024, 71, 2033–2041.
Oh, J.; Kim, S.; Lee, S.; Jeong, S.; Ko, S. H.; Bae, J. A liquid metal based multimodal sensor and haptic feedback device for thermal and tactile sensation generation in virtual reality. Adv. Funct. Mater. 2021, 31, 2007772.
Zhu, M. L.; Sun, Z. D.; Lee, C. Soft modular glove with multimodal sensing and augmented haptic feedback enabled by materials’ multifunctionalities. ACS Nano 2022, 16, 14097–14110.
Yang, S. J.; Cheng, J. H.; Shang, J.; Hang, C.; Qi, J.; Zhong, L. N.; Rao, Q. Y.; He, L.; Liu, C. Q.; Ding, L. et al. Stretchable surface electromyography electrode array patch for tendon location and muscle injury prevention. Nat. Commun. 2023, 14, 6494.
Kumar, D. K.; Pah, N. D.; Bradley, A. Wavelet analysis of surface electromyography. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 400–406.
Lin, Y.; Li, Q. S.; Ding, C.; Wang, J. Y.; Yuan, W.; Liu, Z. Y.; Su, W. M.; Cui, Z. High-resolution and large-size stretchable electrodes based on patterned silver nanowires composites. Nano Res. 2022, 15, 4590–4598.
Zhao, Q. N.; Gribkova, E.; Shen, Y. Y.; Cui, J. L.; Naughton, N.; Liu, L. S.; Seo, J.; Tong, B. X.; Gazzola, M.; Gillette, R. et al. Highly stretchable and customizable microneedle electrode arrays for intramuscular electromyography. Sci. Adv. 2024, 10, eadn7202.
Jeon, J.; Park, J. W. Stretchable electrodes for interconnects in soft electronics. Nano Lett. 2024, 24, 9553–9560.
Farina, D.; Jiang, N.; Rehbaum, H.; Holobar, A.; Graimann, B.; Dietl, H.; Aszmann, O. C. The extraction of neural information from the surface EMG for the control of upper-limb prostheses: Emerging avenues and challenges. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 797–809.
Zhang, Q.; Lambeth, K.; Sun, Z. Y.; Dodson, A.; Bao, X. F.; Sharma, N. Evaluation of a fused sonomyography and electromyography-based control on a cable-driven ankle exoskeleton. IEEE Trans. Robot. 2023, 39, 2183–2202.
Wang, S. Y.; Wang, X.; Zhang, W. F.; Shi, X. H.; Song, D. K.; Zhang, Y.; Zhao, Y.; Zhao, Z. H.; Liu, N. Electronic tattoos based on large-area Mo2C grown by chemical vapor deposition for electrophysiology. Nano Res. 2023, 16, 4100–4106.
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444.
Wainberg, M.; Merico, D.; Delong, A.; Frey, B. J. Deep learning in biomedicine. Nat. Biotechnol. 2018, 36, 829–838.
Ran, X.; Luo, F. Y.; Lin, Z. M.; Zhu, Z. Y.; Liu, C. J.; Chen, B. Blood pressure monitoring via double sandwich-structured triboelectric sensors and deep learning models. Nano Res. 2022, 15, 5500–5509.
Li, N.; Wang, Z. S.; Yang, X. R.; Zhang, Z. Y.; Zhang, W. D.; Sang, S. B.; Zhang, H. L. Deep-learning-assisted thermogalvanic hydrogel e-skin for self-powered signature recognition and biometric authentication. Adv. Funct. Mater. 2024, 34, 2314419.
Fang, Y. S.; Xu, J.; Xiao, X.; Zou, Y. J.; Zhao, X.; Zhou, Y. H.; Chen, J. A deep-learning-assisted on-mask sensor network for adaptive respiratory monitoring. Adv. Mater. 2022, 34, 2200252.
Liu, Y.; Li, C.; Yu, L. X.; Wu, Z. W.; Fan, S. C.; Lv, R. T. Ultra-high sensitivity fiber optic microphone with corrugated graphene-oxide diaphragm for voice recognition. Nano Res. 2024, 17, 7593–7602.
Zhang, P. P.; Guo, W. B.; Guo, Z. H.; Ma, Y.; Gao, L.; Cong, Z. F.; Zhao, X. J.; Qiao, L. J.; Pu, X.; Wang, Z. L. Dynamically crosslinked dry ion-conducting elastomers for soft iontronics. Adv. Mater. 2021, 33, 2101396.
Ding, H. Y.; Liang, X. X.; Wang, Q.; Wang, M. M.; Li, Z. J.; Sun, G. X. A semi-interpenetrating network ionic composite hydrogel with low modulus, fast self-recoverability and high conductivity as flexible sensor. Carbohydr. Polym. 2020, 248, 116797.
Kong, B.; Liu, R.; Hu, X. J.; Li, M. Y.; Zhou, X. T.; Zhao, Y. J.; Kong, T. T. Cornea-inspired ultrasound-responsive adhesive hydrogel patches for keratitis treatment. Adv. Funct. Mater. 2024, 34, 2310544.
Zhang, J.; Chen, X. M.; Lin, J. S.; Zhang, P.; Lei, I. M.; Tao, Y.; Zhang, J. J.; Luo, T.; Liu, J. Hydrogel bioadhesives harnessing nanoscale phase separation for Achilles tendon repairing. Nano Res. 2024, 17, 778–787.
Yang, C. C.; Ji, C. C.; Guo, F. J.; Mi, H. Y.; Wang, Y. W.; Qiu, J. S. Wireless sensor system based on organohydrogel ionic skin for physiological activity monitoring. ACS Appl. Mater. Interfaces 2024, 16, 25181–25193.
Wang, S. H.; Wang, Z. M.; Zhang, L.; Song, Z. Q.; Liu, H.; Xu, X. Sweat-adaptive adhesive hydrogel electronics enabled by dynamic hydrogen bond networks. Chem. Eng. J. 2024, 492, 152290.
Li, X.; Zhu, P. C.; Zhang, S. C.; Wang, X. C.; Luo, X. P.; Leng, Z. W.; Zhou, H.; Pan, Z. F.; Mao, Y. C. A self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable kirigami-structured liquid metal paper for multifunctional e-skin. ACS Nano 2022, 16, 5909–5919.
Leng, Z. W.; Zhu, P. C.; Wang, X. C.; Wang, Y. F.; Li, P. S.; Huang, W.; Li, B. C.; Jin, R.; Han, N. N.; Wu, J. et al. Sebum-membrane-inspired protein-based bioprotonic hydrogel for artificial skin and human-machine merging interface. Adv. Funct. Mater. 2023, 33, 2211056.
Li, Y.; Gu, Y. Z.; Qian, S.; Zheng, S. W.; Pang, Y. C.; Wang, L. L.; Liu, B. G.; Liu, S. J.; Zhao, Q. An injectable, self-healable, and reusable PEDOT:PSS/PVA hydrogel patch electrode for epidermal electronics. Nano Res. 2024, 17, 5479–5490.
Xu, Y. D.; Zhao, G. G.; Zhu, L.; Fei, Q. H.; Zhang, Z.; Chen, Z. Y.; An, F. F.; Chen, Y. Y.; Ling, Y.; Guo, P. J. et al. Pencil-paper on-skin electronics. Proc. Natl. Acad. Sci. USA 2020, 117, 18292–18301.