PDF (43.6 MB)
Collect
Submit Manuscript
Research Article | Open Access

Synergistic regulation of morphology and electronic coupling of dual-ligand NiFe MOF for efficient electrocatalysis in multi-electrolyte water splitting

Shuyan FanXinping HanLing LiYan XuWenyue GaoYan ZhangZhu GaoCuijuan Wang ()
School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
Show Author Information

Graphical Abstract

View original image Download original image
Our study achieves efficient electrocatalysis for the electrooxidation reaction in multi-electrolyte systems by synergistically modulating structure and electronic coupling through rational design.

Abstract

Our study achieves efficient electrocatalysis for the electrooxidation reaction in multi-electrolyte systems by synergistically modulating structure and electronic coupling through rational design. We establish novel principles for controlling the morphology and performance of metal-organic frameworks (MOFs): Formation of nano-flower structure requires co-existence of Ni site and Fc ligand, doping of Fe sites promotes three-dimensional (3D) crystal morphology development, which marks a pioneering advance in the field. Among them, the bimetallic dual-ligand MOF: NiFe-BDC/Fc (NFBF)(6:2) exhibits outstanding electrocatalytic performance (210 mV at 10 mA·cm−2). Operando Raman spectroscopy and X-ray absorption fine structure (XAFS) reveal the electronic restructuring feature of NFBF(6:2) during the catalytic oxygen evolution reaction (OER) process. Combined with density functional theory (DFT) calculations, which identify Ni as the catalytic active site, these investigations uncover significant electronic migration and redistribution, substantially reducing the reaction energy barrier and accelerating the catalytic process. Comprehensive exploration demonstrates that NFBF(6:2) not only performs well under various multi-electrolyte conditions but also maintains a nearly consistent catalytic mechanism. Furthermore, when applied to overall water splitting, (+) NFBF(6:2) || NFBF(6:2) (−) achieves significant catalytic effects in both alkaline freshwater (1.40 V at 10 mA·cm−2) and seawater (1.44 V at 10 mA·cm−2) electrolyzers. This work highlights the crucial role of electronic coupling in optimizing electrocatalytic performance and offers new insights for addressing mitigating environmental pollution, embodying substantial practical and research potential.

Electronic Supplementary Material

Download File(s)
7305_ESM.pdf (3.2 MB)

References

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Zhang, Y.; Mu, X. Q.; Liu, Z. Y.; Zhao, H. Y.; Zhuang, Z. C.; Zhang, Y. F.; Mu, S. C.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Twin-distortion modulated ultra-low coordination PtRuNi-O x catalyst for enhanced hydrogen production from chemical wastewater. Nat. Commun. 2024, 15, 10149.

[3]

Dawood, F.; Anda, M.; Shafiullah, G. M. Hydrogen production for energy: An overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869.

[4]

Chen, F. J.; Mu, X. Q.; Zhou, J. L.; Wang, S. C.; Liu, Z. Y.; Zhou, D. Y.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Engineering the active sites of MOF-derived catalysts: From oxygen activation to activate metal-air batteries. Chin. J. Chem. 2024, 42, 2520–2535.

[5]

Ji, Z. J.; Song, Y. J.; Zhao, S. H.; Li, Y.; Liu, J.; Hu, W. P. Pathway manipulation via Ni, Co, and V ternary synergism to realize high efficiency for urea electrocatalytic oxidation. ACS Catal. 2022, 12, 569–579.

[6]

Mu, X. Q.; Yu, M.; Liu, X. Y.; Liao, Y. R.; Chen, F. J.; Pan, H. Z.; Chen, Z. Y.; Liu, S. L.; Wang, D. S.; Mu, S. C. High-entropy ultrathin amorphous metal-organic framework-stabilized Ru(Mo) dual-atom sites for water oxidation. ACS Energy Lett. 2024, 9, 5763–5770.

[7]

Ye, K.; Wang, G.; Cao, D. X.; Wang, G. X. Recent advances in the electro-oxidation of urea for direct urea fuel cell and urea electrolysis. Top. Curr. Chem. (Cham) 2018, 376, 42.

[8]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[9]

Wang, L. G.; Li, J. L.; Ji, S. F.; Xiong, Y. L.; Wang, D. S. Microenvironment engineering of covalent organic framework based single/dual-atom catalysts toward sustainable energy conversion and storage. Energy Environ. Sci. 2024, 17, 8482–8528.

[10]

Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of Silane to Silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.

[11]

Wang, L. G.; Su, H.; Tan, G. Y.; Xin, J. J.; Wang, X. G.; Zhang, Z.; Li, Y. P.; Qiu, Y.; Li, X. H.; Li, H. S. et al. Boosting efficient and sustainable alkaline water oxidation on a W-CoOOH-TT pair-sites catalyst synthesized via topochemical transformation. Adv. Mater. 2024, 36, 2302642.

[12]

Meng, S. Y.; Li, G.; Wang, P.; He, M.; Sun, X. H.; Li, Z. X. Rare earth-based MOFs for photo/electrocatalysis. Mater. Chem. Front. 2023, 7, 806–827.

[13]

Gao, Y.; Yang, C. D.; Sun, F. L.; He, D. P.; Wang, X. Q.; Chen, J.; Zheng, X. B.; Liu, R. C.; Pan, H. G.; Wang, D. S. Ligand-tuning metallic sites in molecular complexes for efficient water oxidation. Angew. Chem., Int. Ed. 2025, 64, e202415755.

[14]

Wu, Q.; Gao, Q. P.; Shan, B.; Wang, W. Z.; Qi, Y. P.; Tai, X. S.; Wang, X.; Zheng, D. D.; Yan, H.; Ying, B. W. et al. Recent advances in self-supported transition-metal-based electrocatalysts for seawater oxidation. Acta Phys.-Chim. Sin. 2023, 39, 2303012.

[15]

Wang, L. G.; Su, H.; Zhang, Z.; Xin, J. J.; Liu, H.; Wang, X. G.; Yang, C. Y.; Liang, X.; Wang, S. W.; Liu, H. et al. Co-Co dinuclear active sites dispersed on zirconium-doped heterostructured Co9S8/Co3O4 for high-current-density and durable acidic oxygen evolution. Angew. Chem., Int. Ed. 2023, 62, e202314185.

[16]

Zheng, X. B.; Yang, J. R.; Li, P.; Wang, Q. S.; Wu,J. B.; Zhang, E. H.; Chen, S. H.; Zhuang, Z. C.; Lai, W. H.; Dou, S. X. et al. Ir-Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. Sci. Adv. 2023, 9, eadi8025.

[17]

Zheng, X. B.; Yang, J. R.; Xu, X.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Wang, G. X. Deciphering cationic and anionic overoxidation: Key insights into the intrinsic structural degradation of catalysts. Adv. Energy Mater. 2024, 14, 2401227.

[18]

Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

[19]

Wang, Y.; Ma, F. Y.; Zhang, G. Q.; Zhang, J. W.; Zhao, H.; Dong, Y. M.; Wang, D. S. Precise synthesis of dual atom sites for electrocatalysis. Nano Res. 2024, 17, 9397–9427.

[20]

Zheng, X. B.; Yang, J. R.; Li, P.; Jiang, Z. L.; Zhu, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Sun, W. P.; Dou, S. X. et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew. Chem., Int. Ed. 2023, 62, e202217449.

[21]

Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

[22]

Xu, X. F.; Deng, Q. M.; Chen, H. C.; Humayun, M.; Duan, D. L.; Zhang, X; Sun, H. C.; Ao, X.; Xue, X. Y.; Nikiforov, A. et al. Metal-organic frameworks offering tunable binary active sites toward highly efficient urea oxidation electrolysis. Research 2022, 2022, 9837109.

[23]

Zhang, K.; Liu, C. L.; Graham, N.; Zhang, G.; Yu, W. Z. Modulation of dual centers on cobalt-molybdenum oxides featuring synergistic effect of intermediate activation and radical mediator for electrocatalytic urea splitting. Nano Energy 2021, 87, 106217.

[24]

Cai, M. M.; Zhu, Q.; Wang, X. Y.; Shao, Z. Y.; Yao, L.; Zeng, H.; Wu, X. F.; Chen, J.; Huang, K. K.; Feng, S. H. Formation and stabilization of NiOOH by introducing α-FeOOH in LDH: Composite electrocatalyst for oxygen evolution and urea oxidation reactions. Adv. Mater. 2023, 35, 2209338.

[25]

Liu, D. M.; Xu, H.; Wang, C.; Ye, C. Q.; Yu, R.; Du, Y. K. In situ etch engineering of Ru doped NiFe(OH) x /NiFe-MOF nanocomposites for boosting the oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 24670–24676.

[26]

Zhang, Y.; Shen, X. P.; Song, C. S.; Ji, Z. Y.; Du, F. H. Sulfur-doped NiFe(CN)5NO nanoparticles as efficient electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2023, 11, 8904–8911.

[27]

Hu, J. S.; Xu, Q. L.; Wang, X. Y.; Huang, X. H.; Zhou, C. H.; Ye, Y.; Zhang, L.; Pang, H. Charge-transfer-regulated bimetal ferrocene-based organic frameworks for promoting electrocatalytic oxygen evolution. Carbon Energy 2023, 5, e315.

[28]

He, F.; Zhao, Y. J.; Yang, X. X.; Zheng, S. X.; Yang, B.; Li, Z. J.; Kuang, Y. B.; Zhang, Q. H.; Lei, L. C.; Qiu, M. et al. Metal-organic frameworks with assembled bifunctional microreactor for charge modulation and strain generation toward enhanced oxygen electrocatalysis. ACS Nano 2022, 16, 9523–9534.

[29]

Liu, J. Z.; Yang, J. F.; Song, Y. Y.; Sun, J. W.; Tian, Y. W.; Chen, Q.; Zhang, X. Y.; Zhang, L. X. Introducing non-bridging ligand in metal-organic framework-based electrocatalyst enabling reinforced oxygen evolution in seawater. J. Colloid Interface Sci. 2023, 643, 17–25.

[30]

Li, P.; Li, W. Q.; Huang, Y. Q.; Huang, Q. H.; Tian, S. H. 3D hierarchical-architectured nanoarray electrode for boosted and sustained urea electro-oxidation. Small 2023, 19, 2300725

[31]

Feng, S. W.; Fan, S. Y.; Li, L.; Sun, Z. Y.; Tang, H. W.; Xu, Y.; Fang, L.; Wang, C. J. Using hollow dodecahedral NiCo-LDH with multi-active sites to modify BiVO4 photoanode facilitates the photoelectrochemical water splitting performance. Nano Res. Energy 2024, 3, e9120117.

[32]

Tang, H. W.; Sun, Z. Y.; Fan, S. Y.; Feng, S. W.; Li, L.; Fang, L.; Wang, C. J. Fe-doped CoNi layered hydrogencarbonate hierarchical nano-array assisted growth of ZIF-67 as an efficient OER/UOR bifunctional catalyst reaction for overall urea-water electrolysis. Chem. Eng. J. 2024, 491, 152023.

[33]

Wang, Z.; Xu, J.; Yang, J. H.; Xue, Y. H.; Dai, L. M. Ultraviolet/ozone treatment for boosting OER activity of MOF nanoneedle arrays. Chem. Eng. J. 2022, 427, 131498.

[34]

Zhang, X.; Luo, J. S.; Wan, K.; Plessers, D.; Sels, B.; Song, J. X.; Chen. L. G.; Zhang, T.; Tang, P. Y.; Morante, J. R. et al. From rational design of a new bimetallic MOF family with tunable linkers to OER catalysts. J. Mater. Chem. A 2019, 7, 1616–1628.

[35]

Bian, Q. N.; Guo, B. S.; Tan, D. X.; Zhang, D.; Kong, W. Q.; Wang, C. B.; Feng, Y. Y. Constructing CoNi-LDH/Fe MOF/NF heterostructure catalyst for energy-efficient OER and UOR at high current density. ACS Appl. Mater. Interfaces 2024, 16, 14742–14749.

[36]

Dinda, S.; Karmakar, A.; Ghoshal, D.; Kundu, S. Redox insights and OER activity in 3D-MOFs: The role of alkali metal ions. J. Mater. Chem. A 2024, 12, 8392–8404.

[37]

Liang, J.; Gao, X. T.; Guo, B.; Ding, Y.; Yan, J. W.; Guo, Z. X.; Tse, E. C. M.; Liu, J. X. Ferrocene-based metal-organic framework nanosheets as a robust oxygen evolution catalyst. Angew. Chem. Int., Ed. 2021, 60, 12770–12774.

[38]

Wu, J.; Yu, Z. J.; Zhang, Y. Y.; Niu, S. Q.; Zhao, J. Y.; Li, S. W.; Xu, P. Understanding the effect of second metal on CoM (M = Ni, Cu, Zn) metal-organic frameworks for electrocatalytic oxygen evolution reaction. Small 2021, 17, 2105150.

[39]

Chang, G. R.; Zhou, Y. T.; Wang, J. H.; Zhang, H.; Yan, P.; Wu, H. B.; Yu, X. Y. Dynamic reconstructed RuO2 /NiFeOOH with coherent interface for efficient seawater oxidation. Small 2023, 19, 2206768.

[40]

Tan, W. L.; McNeill, C. R. X-ray diffraction of photovoltaic perovskites: Principles and applications. Appl. Phys. Rev. 2022, 9, 021310.

[41]

Wen, Z. W.; Kim, W.; Yoo, S. J.; Chae, C. G.; Seo, H. B.; Bak, I. G.; Changez, M.; Lee, J. S. Highly ordered supramolecular structure built from poly(4-(4-vinylphenylpyridine)) and 1,1′ferrocenedicarboxylic acid via hydrogen bonding. Polym. Chem. 2020, 11, 2666–2673.

[42]

Liu, Y. J.; Li, B. B.; Liu, Y. Y.; Cheng, X. F.; Liang, X. M.; Zhang, J. H.; Zhu, G. X. Sheet-like units of ferrocene-based coordination compounds for oxygen evolution. Colloids Surf. A: Physicochem. Eng. Aspects 2022, 654, 130070.

[43]

Chen, K.; Cao, Y. H.; Yadav, S.; Kim, G. C.; Han, Z.; Wang, W. M.; Zhang, W. J.; Dao, V.; Lee, I. H. Electronic structure reconfiguration of nickel-cobalt layered double hydroxide nanoflakes via engineered heteroatom and oxygen-vacancies defect for efficient electrochemical water splitting. Chem. Eng. J. 2023, 463, 142396.

[44]

Lin, R. J.; Kang, L. Q.; Zhao, T. Q.; Feng, J. R.; Celorrio, V.; Zhang, G. H.; Cibin, G.; Kucernak, A.; Brett. D. J. L.; Corà, F. et al. Identification and manipulation of dynamic active site deficiency-induced competing reactions in electrocatalytic oxidation processes. Energy Environ. Sci. 2022, 15, 2386–2396.

[45]

Wei, J.; Xia, D. S.; Wei, Y. P.; Zhu, X. Y.; Li, J.; Gan, L. Probing the oxygen reduction reaction intermediates and dynamic active site structures of molecular and pyrolyzed Fe-N-C electrocatalysts by in situ Raman spectroscopy. ACS Catal. 2022, 12, 7811–7820.

[46]

Bai, L. C.; Lee, S.; Hu, X. L. Spectroscopic and electrokinetic evidence for a bifunctional mechanism of the oxygen evolution reaction. Angew. Chem. Int. Ed. 2021, 60, 3095–3103.

[47]

Zhao, L.; Yan, J. H.; Huang, H. J.; Du, X.; Chen, H.; He, X.; Li, W. X.; Fang, W.; Wang, D. H.; Zeng, X. H. et al. Regulating electronic structure of bimetallic NiFe-THQ conductive metal organic frameworks to boost catalytic activity for oxygen evolution reaction. Adv. Funct. Mater. 2024, 34, 2310902.

[48]

Sun, S. F.; Zhou, X.; Cong, B. W.; Hong, W. Z.; Chen, G. Tailoring the d-Band Centers Endows (Ni x Fe1– x )2P nanosheets with efficient oxygen evolution catalysis. ACS Catal. 2020, 10, 9086–9097.

Nano Research
Article number: 94907305
Cite this article:
Fan S, Han X, Li L, et al. Synergistic regulation of morphology and electronic coupling of dual-ligand NiFe MOF for efficient electrocatalysis in multi-electrolyte water splitting. Nano Research, 2025, 18(5): 94907305. https://doi.org/10.26599/NR.2025.94907305
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return