PDF (13.2 MB)
Collect
Submit Manuscript
Research Article | Open Access

Rational construction of enzyme-like stereoselective magnetic chiral nanozymes

Xuan Chen1,2,§Shenli Wang3,§Xiaoxiao Zhang4Stefanos Mourdikoudis5Chengxiao Song1Leung Siu Lun4Juan Xie1Wing-leung Wong4Jorge Perez-Juste5Isabel Pastoriza-Santos5 ()Kwok-Yin Wong4 ()Guangchao Zheng1,2 ()
Colloidal Physics Group, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450001, China
Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
CINBIO, Universidade de Vigo, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain

§ Xuan Chen and Shenli Wang contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
Different morphologies of chiral cobalt superstructures (CoSSs) can be synthesized by adjusting the concentration of the precursor and the polarity of the solvent. The applications of the materials coming from their peroxidase activity were investigated. As the optical activity would change under the influence of magnetic fields, the peroxidase activity of the materials was also studied in the above condition.

Abstract

Recent studies support that magnetic chiral nanozymes, integrating the features of chirality, magnetism, and enzyme-like catalysis, provide new insights into the synthetic methodologies and applications of chiral nanozymes. In this study, we present the design of novel magnetic chiral cobalt superstructures (CoSSs) synthesized by the regulation of complex formation kinetics of Co3+ with chiral ligands (L- or D-tartaric acid) under varying metal-to-ligand molar ratios and solvent polarity. This approach yielded a series of CoSSs with varying symmetry from high to low. The chiral CoSSs exhibited chirality-dependent peroxidase (POD)-like activity, demonstrating a high affinity of L-CoSSs towards substrates, with a chiral selective factor of approximately 1.37. In addition, the magneto-optical effects of the chiral CoSSs significantly enhanced their chiroptical performance from ultraviolet–visible (UV–vis) to near-infrared region. Under a magnetic field, the affinity of chiral CoSSs for substrates increases, while the chiral selective factor was modified to 0.76. This research on magnetic chiral CoSSs nanozymes opens promising new avenues for the application of artificial enzymes in fields, such as antibacterial technology, drug delivery, and biocatalysis.

Electronic Supplementary Material

Download File(s)
7307_ESM.pdf (2.9 MB)

References

[1]

Zheng, G. C.; He, J. J.; Kumar, V.; Wang, S. L.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M.; Wong, K. Y. Discrete metal nanoparticles with plasmonic chirality. Chem. Soc. Rev. 2021, 50, 3738–3754.

[2]

Ma, W.; Xu, L. G.; De Moura, A. F.; Wu, X. L.; Kuang, H.; Xu, C. L.; Kotov, N. A. Chiral inorganic nanostructures. Chem. Rev. 2017, 117, 8041–8093.

[3]

Zhang, Y. R.; Wu, D. R.; Wang-Iverson, D. B.; Tymiak, A. A. Enantioselective chromatography in drug discovery. Drug Discov. Today 2005, 10, 571–577.

[4]

Monard, D. Thrombin and its inhibitors. Science 1992, 257, 145–146.

[5]

Lee, H. E.; Ahn, H. Y.; Mun, J.; Lee, Y. Y.; Kim, M.; Cho, N. H.; Chang, K.; Kim, W. S.; Rho, J.; Nam, K. T. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360–365.

[6]

Xu, L. G.; Wang, X. X.; Wang, W. W.; Sun, M. Z.; Choi, W. J.; Kim, J. Y.; Hao, C. L.; Li, S.; Qu, A. H.; Lu, M. R. et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 2022, 601, 366–373.

[7]

Zhao, Y. W.; Xie, J.; Tian, Y. Z.; Mourdikoudis, S.; Fiuza-Maneiro, N.; Du, Y. L.; Polavarapu, L.; Zheng, G. C. Colloidal chiral carbon dots: An emerging system for chiroptical applications. Adv. Sci. 2024, 11, 2305797.

[8]

González-Rubio, G.; Mosquera, J.; Kumar, V.; Pedrazo-Tardajos, A.; Llombart, P.; Solís, D. M.; Lobato, I.; Noya, E. G.; Guerrero-Martínez, A.; Taboada, J. M. et al. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science 2020, 368, 1472–1477.

[9]

Ding, K.; Ai, J.; Deng, Q. Z.; Huang, B.; Zhou, C.; Duan, T. W.; Duan, Y. Y.; Han, L.; Jiang, J. G.; Che, S. N. Chiral mesostructured BiOBr films with circularly polarized colour response. Angew. Chem., Int. Ed. 2021, 60, 19024–19029.

[10]

Yeom, J.; Yeom, B.; Chan, H.; Smith, K. W.; Dominguez-Medina, S.; Bahng, J. H.; Zhao, G. P.; Chang, W. S.; Chang, S. J.; Chuvilin, A. et al. Chiral templating of self-assembling nanostructures by circularly polarized light. Nat. Mater. 2015, 14, 66–72.

[11]

Zheng, G. C.; Jiao, S. L.; Zhang, W.; Wang, S. L.; Zhang, Q. H.; Gu, L.; Ye, W. X.; Li, J. J.; Ren, X. C.; Zhang, Z. C. et al. Fine-tune chiroptical activity in discrete chiral Au nanorods. Nano Res. 2022, 15, 6574–6581.

[12]

Duan, Y. Y.; Che, S. A. Chiral mesostructured inorganic materials with optical chiral response. Adv. Mater. 2023, 35, 2205088.

[13]

Kim, Y.; Yeom, B.; Arteaga, O.; Yoo, S. J.; Lee, S. G.; Kim, J. G.; Kotov, N. A. Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale. Nat. Mater. 2016, 15, 461–468.

[14]

Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

[15]

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

[16]

Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

[17]

Chen, J. Q.; Liu, X. Y.; Zheng, G. C.; Feng, W.; Wang, P.; Gao, J.; Liu, J. B.; Wang, M. Z.; Wang, Q. Y. Detection of glucose based on noble metal nanozymes: Mechanism, activity regulation, and enantioselective recognition. Small 2023, 19, 2205924.

[18]

Bornscheuer, U. T.; Huisman, G. W.; Kazlauskas, R. J.; Lutz, S.; Moore, J. C.; Robins, K. Engineering the third wave of biocatalysis. Nature 2012, 485, 185–194.

[19]

Zhang, X. Y.; An, Z. H.; An, J.; Tian, X. Bioinspired chiral nanozymes: Synthesis strategies, classification, biological effects and biomedical applications. Coord. Chem. Rev. 2024, 502, 215601.

[20]

Zhou, Y.; Sun, H. J.; Xu, H. C.; Matysiak, S.; Ren, J. S.; Qu, X. G. Mesoporous encapsulated chiral nanogold for use in enantioselective reactions. Angew. Chem., Int. Ed. 2018, 57, 16791–16795.

[21]

Zhang, Y.; Cui, T. T.; Yang, J.; Huang, Y.; Ren, J. S.; Qu, X. G. Chirality-dependent reprogramming of macrophages by chiral nanozymes. Angew. Chem., Int. Ed. 2023, 62, e202307076.

[22]

Dong, K.; Xu, C.; Ren, J. S.; Qu, X. G. Chiral nanozymes for enantioselective biological catalysis. Angew. Chem., Int. Ed. 2022, 61, e202208757.

[23]

Eslami, S.; Gibbs, J. G.; Rechkemmer, Y.; Van Slageren, J.; Alarcón-Correa, M.; Lee, T. C.; Mark, A. G.; Rikken, G. L. J. A.; Fischer, P. Chiral nanomagnets. ACS Photonics 2014, 1, 1231–1236.

[24]

Liu, X.; Du, Y. L.; Mourdikoudis, S.; Zheng, G. C.; Wong, K. Y. Chiral magnetic oxide nanomaterials: Magnetism meets chirality. Adv. Opt. Mater. 2023, 11, 2202859.

[25]

Li, C.; Li, S.; Zhao, J.; Sun, M. Z.; Wang, W. W.; Lu, M. R.; Qu, A. H.; Hao, C. L.; Chen, C.; Xu, C. L. et al. Ultrasmall magneto-chiral cobalt hydroxide nanoparticles enable dynamic detection of reactive oxygen species in vivo. J. Am. Chem. Soc. 2022, 144, 1580–1588.

[26]

Zhang, H. Y.; Hao, C. L.; Xu, L. G.; Xu, C. L.; Kuang, H. Chiral-solvent-mediated manganese-based hierarchical supraparticles with chiroptical activity. Small 2022, 18, 2202741.

[27]

Yeom, J.; Santos, U. S.; Chekini, M.; Cha, M.; De Moura, A. F.; Kotov, N. A. Chiromagnetic nanoparticles and gels. Science 2018, 359, 309–314.

[28]

Wang, G. Y.; Hao, C. L.; Chen, C.; Kuang, H.; Xu, C. L.; Xu, L. G. Six-pointed star chiral cobalt superstructures with strong antibacterial activity. Small 2022, 18, 2204219.

[29]

Mohanty, R.; Parida, K. Carbamide-mediated facile sol–gel synthesis of porous flower-like ZnCo2O4 microspheres for high-performance asymmetric coin cell supercapacitors. Electrochim. Acta 2024, 491, 144327.

[30]

Branzi, L.; Fitzsimmons, L.; Gun’ko, Y. K. Bottom-up synthesis of highly chiral 1T molybdenum disulfide nanosheets. Angew. Chem., Int. Ed. 2024, 63, e202409313.

[31]

Duan, Y. Y.; Liu, X.; Han, L.; Asahina, S.; Xu, D. D.; Cao, Y. Y.; Yao, Y.; Che, S. N. Optically active chiral CuO “nanoflowers”. J. Am. Chem. Soc. 2014, 136, 7193–7196.

[32]

Shi, J.; Li, J.; Huang, X. J.; Tan, Y. W. Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedra. Nano Res. 2011, 4, 448–459.

[33]

Song, Y.; Kim, S.; Heller, M. J.; Huang, X. H. DNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization. Nat. Commun. 2018, 9, 281.

[34]

Madon, R. J.; Iglesia, E. Catalytic reaction rates in thermodynamically non-ideal systems. J. Mol. Catal. A: Chem. 2000, 163, 189–204.

[35]

Gould, N. S.; Li, S.; Cho, H. J.; Landfield, H.; Caratzoulas, S.; Vlachos, D.; Bai, P.; Xu, B. J. Understanding solvent effects on adsorption and protonation in porous catalysts. Nat. Commun. 2020, 11, 1060.

[36]

Liu, X.; Du, Y. L.; Wang, S. L.; Huang, Y.; Tian, Y. Z.; García-Lojo, D.; Pérez-Juste, I.; Pérez-Juste, J.; Pastoriza-Santos, I.; Zheng, G. C. Histidine-mediated synthesis of chiral cobalt oxide nanoparticles for enantiomeric discrimination and quantification. Small 2023, 19, 2205187.

[37]

Chang, J. H.; Qin, X. R.; Li, S. Y.; He, F.; Gai, S. L.; Ding, H.; Yang, P. P. Combining cobalt ferrite nanozymes with a natural enzyme to reshape the tumor microenvironment for boosted cascade enzyme-like activities. ACS Appl. Mater. Interfaces 2022, 14, 45217–45228.

[38]

Zhou, Y.; Wei, W. L.; Cui, F. C.; Yan, Z. Q.; Sun, Y. H.; Ren, J. S.; Qu, X. G. Construction of a chiral artificial enzyme used for enantioselective catalysis in live cells. Chem. Sci. 2020, 11, 11344–11350.

[39]

Zhou, Y.; Wei, Y.; Ren, J. S.; Qu, X. G. A chiral covalent organic framework (COF) nanozyme with ultrahigh enzymatic activity. Mater. Horiz. 2020, 7, 3291–3297.

[40]

Zhang, R. F.; Zhou, Y. L.; Yan, X. Y.; Fan, K. L. Advances in chiral nanozymes: A review. Microchim. Acta 2019, 186, 782.

[41]

Dong, J. L.; Song, L. N.; Yin, J. J.; He, W. W.; Wu, Y. H.; Gu, N.; Zhang, Y. Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. Acs Appl. Mater. Interfaces 2014, 6, 1959–1970.

[42]

Govorov, A. O.; Fan, Z. Y.; Hernandez, P.; Slocik, J. M.; Naik, R. R. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett. 2010, 10, 1374–1382.

[43]
Nordén, B.; Rodger, A.; Dafforn, T. Linear Dichroism and Circular Dichroism; Royal Society of Chemistry: Cambridge, 2010.
[44]

Bai, T.; Ai, J.; Liao, L. Y.; Luo, J. W.; Song, C.; Duan, Y. Y.; Han, L.; Che, S. A. Chiral mesostructured NiO films with spin polarisation. Angew. Chem., Int. Ed. 2021, 60, 9421–9426.

[45]

Adhikari, Y.; Liu, T. H.; Wang, H. L.; Hua, Z. Q.; Liu, H. Y.; Lochner, E.; Schlottmann, P.; Yan, B. H.; Zhao, J. H.; Xiong, P. Interplay of structural chirality, electron spin and topological orbital in chiral molecular spin valves. Nat. Commun. 2023, 14, 5163.

[46]

Zhao, Q.; Zhang, M.; Gao, Y. X.; Dong, H. L.; Zheng, L. R.; Zhang, Y. T.; Ouyang, J.; Na, N. Rearranging spin electrons by axial-ligand-induced orbital splitting to regulate enzymatic activity of single-atom nanozyme with destructive d–π conjugation. J. Am. Chem. Soc. 2024, 146, 14875–14888.

Nano Research
Article number: 94907307
Cite this article:
Chen X, Wang S, Zhang X, et al. Rational construction of enzyme-like stereoselective magnetic chiral nanozymes. Nano Research, 2025, 18(4): 94907307. https://doi.org/10.26599/NR.2025.94907307
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return