Bionic micro/nanomotor systems, which combine biomimetic design with the motion performance, have shown great potential in many fields. However, so far, it remains a challenge to design and fabricate biomimetic micro/nanomotors with high flexibility to perform complex tasks in complicated and changeable environments. In this work, inspired by the suckerfishes (guest)–shark (host) motion behavior, we designed and prepared a kind of intelligent two-stage micro@nanomotor with weak acid-triggered release of nanomotor. When the suckerfishes, who clinged to the surface of large fish or the bottom of boat and marched with them, reached bait-rich waters, they detached from the host to engage in foraging behavior. Inspired by the suckerfishes–shark system and the coordinated bond interaction, a large amount of Janus Au-Pt nanomotors with hydrogen peroxide (H2O2)-driven capacity, analogous to suckerfishes, were attached onto immovable yolk–shell structured polydopamine-mesoporous silica (PDA-MS) micromotor as the host to create two-stage PDA-MS@Au-Pt micro@nanomotor. PDA-MS@Au-Pt micro@nanomotor moved directionally by self-thermophoresis under the propulsion of near infrared ray (NIR) light with low power density. When the PDA-MS@Au-Pt entered into the weak acidic environment formed by a low concentration of H2O2, most small Au-Pt nanomotors were detached from the surface of PDA-MS due to the weak acidic sensitivity of the coordinated bond, and then performed self-diffusiophoresis in the environment containing a low concentration of H2O2 as a chemical fuel. This bionic intelligent system, which consists of a large-sized micromotor and lots of small-sized nanomotors, should provide a new insight for active two-stage cargo delivery.
Chen, C. R.; Ding, S. C.; Wang, J. Materials consideration for the design, fabrication and operation of microscale robots. Nat. Rev. Mater. 2024, 9, 159–172.
Chang, X. C.; Feng, Y. W.; Guo, B.; Zhou, D. K.; Li, L. Q. Nature-inspired micro/nanomotors. Nanoscale 2022, 14, 219–238.
Bente, K.; Codutti, A.; Bachmann, F.; Faivre, D. Biohybrid and bioinspired magnetic microswimmers. Small 2018, 14, 1704374.
Lyu, X. L.; Chen, J. Y.; Zhu, R. T.; Liu, J. Y.; Fu, L. S.; Moran, J. L.; Wang, W. Active synthetic microrotors: Design strategies and applications. ACS Nano 2023, 17, 11969–11993.
Soto, F.; Karshalev, E.; Zhang, F. Y.; de Avila, B. E. F.; Nourhani, A.; Wang, J. Smart materials for microrobots. Chem. Rev. 2022, 122, 5365–5403.
Li, T. L.; Li, J. X.; Zhang, H. T.; Chang, X. C.; Song, W. P.; Hu, Y. N.; Shao, G. B.; Sandraz, E.; Zhang, G. Y.; Li, L. Q. et al. Magnetically propelled fish-like nanoswimmers. Small 2016, 12, 6098–6105.
Mhanna, R.; Qiu, F. M.; Zhang, L.; Ding, Y.; Sugihara, K.; Zenobi-Wong, M.; Nelson, B. J. Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery. Small 2014, 10, 1953–1957.
Chen, C. R.; Chang, X. C.; Teymourian, H.; Ramírez-Herrera, D. E.; de Ávila, B. E. F.; Lu, X. L.; Li, J. X.; He, S.; Fang, C. C.; Liang, Y. Y. et al. Bioinspired chemical communication between synthetic nanomotors. Angew. Chem., Int. Ed. 2018, 57, 241–245.
Liu, D.; Sun, D. Y.; Zhou, J. X.; Liu, H. R.; Guo, R. R.; Wang, B.; Ma, W. J.; Yang, Z. Z.; Lu, Y. Bionic morphological design and interface-free fabrication of halfmoon microrobots with enhanced motion performance. Chem. Eng. J. 2023, 452, 139464.
Palagi, S.; Mark, A. G.; Reigh, S. Y.; Melde, K.; Qiu, T.; Zeng, H.; Parmeggiani, C.; Martella, D.; Sanchez-Castillo, A.; Kapernaum, N. et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 2016, 15, 647–653.
Feng, J. M.; Zou, J. J.; Li, X. Y.; Du, X. Biomimetic submicromotor with NIR light triggered motion and cargo release. Nanoscale 2023, 15, 16687–16696.
Qiao, M. H.; Xing, Y.; Xie, L.; Kong, B.; Kleitz, F.; Li, X. Y.; Du, X. Temperature-regulated core swelling and asymmetric shrinkage for tunable yolk@shell polydopamine@mesoporous silica nanostructures. Small 2022, 18, 2205576.
Wang, Z. M.; Zhang, M. Q.; Du, X. Construction of yolk@shell nanocomposite particles with controlled multisized pore structures by monomicelle confined assembly. ACS Nano 2024, 18, 27511–27523.
Gao, C. B.; Zheng, H. Q.; Xing, L.; Shu, M. H.; Che, S. N. Designable coordination bonding in mesopores as a pH-responsive release system. Chem. Mater. 2010, 22, 5437–5444.
Jin, R. H.; Liu, Z. N.; Bai, Y. K.; Zhou, Y. S.; Gooding, J. J.; Chen, X. Core-satellite mesoporous silica-gold nanotheranostics for biological stimuli triggered multimodal cancer therapy. Adv. Funct. Mater. 2018, 28, 1801961.
Xing, Y.; Zhou, M. Y.; Xu, T. L.; Tang, S. S.; Fu, Y.; Du, X.; Su, L.; Wen, Y. Q.; Zhang, X. J.; Ma, T. Y. Core@satellite Janus nanomotors with pH-responsive multi-phoretic propulsion. Angew. Chem., Int. Ed. 2020, 59, 14368–14372.
Feng, J. M.; Li, X. Y.; Xu, T. L.; Zhang, X. J.; Du, X. Photothermal-driven micro/nanomotors: From structural design to potential applications. Acta Biomater. 2024, 173, 1–35.
Santiago, I.; Jiang, L. Y.; Foord, J.; Turberfield, A. J. Self-propulsion of catalytic nanomotors synthesised by seeded growth of asymmetric platinum-gold nanoparticles. Chem. Commun. 2018, 54, 1901–1904.
Wu, W. L.; Li, J. B.; Zou, S.; Guo, J. W.; Zhou, H. Y. Construction of Au@Pt core-satellite nanoparticles based on in-situ reduction of polymeric ionic liquid protected gold nanoparticles. Front. Mater. Sci. 2017, 11, 42–50.
Alarcón-Correa, M.; Walker, D.; Qiu, T.; Fischer, P. Nanomotors. Eur. Phys. J. Spec. Top. 2016, 225, 2241–2254.
Yang, X. C.; Zhang, X. X.; Yang, Z. Y.; Cheng, L. L.; Liu, X.; Cao, S. X.; Yue, H. Y.; Cao, Y.; Wang, K. N.; Zhang, Y. R. “Two-stage rocket-propelled” strategy boosting theranostic efficacy with mitochondria-specific type I-II photosensitizers. ACS Appl. Mater. Interfaces 2024, 16, 9816–9825.
Zheng, Z. L.; Chen, Q.; Rong, S.; Dai, R.; Jia, Z.; Peng, X. Y.; Zhang, R. P. Two-stage activated nano-truck enhanced specific aggregation and deep delivery for synergistic tumor ablation. Nanoscale 2020, 12, 15845–15856.
Chen, X. K.; Zhang, X. D.; Liu, Y.; Chen, Y.; Zhao, Y. L. Upconversion nanoparticle-anchored metal-organic framework nanostructures for remote-controlled cancer optogenetic therapy. J. Am. Chem. Soc. 2024, 146, 34475–34490.
Huang, Y. X.; Wu, C. J.; Chen, J. Y.; Tang, J. Y. Colloidal self-assembly: From passive to active systems. Angew. Chem. ,Int. Ed. 2024, 63, e202313885.
Gu, Q.; Zhu, J.; Weng, G. J.; Li, J. J.; Zhao, J. W. Core-satellite nanostructures and their biomedical applications. Microchim. Acta 2022, 189, 470.