PDF (16 MB)
Collect
Submit Manuscript
Research Article | Open Access

Enzyme-like adaptive Fe-oxo-Co motifs boost oxygen reduction reaction for efficient Zn-air batteries

Tian Xia1,2Jiawei Wan2,3 ()Xu Zhou1,2Yilei He1Fengmei Su2,3Bifa Ji4Yongping Zheng4 ()Dan Wang2,3,5 ()Ranbo Yu1,5 ()
Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Advanced Energy Storage Technology Research Center Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
College of Chemistry and Environment Engineering, Shenzhen University, Shenzhen 518060, China
Show Author Information

Graphical Abstract

View original image Download original image
This work reports a dynamically adjustable mono-oxygen-bridged asymmetric dual-atomic metal catalyst, in which the active Fe-oxo-Co motif demonstrate platinium-like oxygen reduction reaction (ORR) activity with a half-wave potential of 0.92 V vs. RHE in alkaline condition and a maximum power density of 228 mW·cm−2 in Zn-air batteries. The Fe-oxo ligands can act as electron regulators for neighboring Co sites, which optimize and promote the d-orbitals of Co metal shift towards lower energy levels, thereby weakening the adsorption of oxygen species, facilitating the progress of the ORR.

Abstract

Enzyme-like metal atomic site catalysts are promising alternatives of platinum group metals for oxygen reduction reaction (ORR) in fuel cell application. The local coordination structure at metal atomic sites plays a dominant role in optimizing the adsorption/desorption of oxygen intermediates to enhance ORR, but there is still a significant challenge in achieving. Herein, we report a type of stable and dynamically adjustable mono-oxygen-bridged asymmetric dual-atomic metal catalyst, in which the active Fe-oxo-Co motif demonstrates platinium-like ORR activity with a half-wave potential of 0.92 V vs. RHE in alkaline condition and a maximum power density of 228 mW·cm−2 in Zn-air batteries. Theoretical calculations reveal that the Fe-oxo ligands can act as electron regulators for neighboring Co sites, which optimize and promote the d-orbitals of Co metal shift towards lower energy levels, thereby weakening the adsorption of oxygen species, facilitating the progress of the ORR. More interestingly, the Fe–oxo–Co bond will dynamically change its strength to adaptively facilitate the intermediate steps during the ORR process. The design strategy towards enzyme-like adaptive behavior of active Fe-oxo-Co motifs brings significant hope for achieveing high performance fuel cell cathode materials.

Electronic Supplementary Material

Download File(s)
7311_ESM.pdf (5.1 MB)

References

[1]

Bai, Y.; Deng, D. N.; Wang, J. X.; Wang, Y. C.; Chen, Y. B.; Zheng, H. R.; Liu, M. J.; Zheng, X. R.; Jiang, J. B.; Zheng, H. T. et al. Inhibited passivation by bioinspired cell membrane Zn interface for Zn-air batteries with extended temperature adaptability. Adv. Mater. 2024, 36, 2411404.

[2]

Deng, D. N.; Wu, J.; Feng, Q. G.; Zhao, X.; Liu, M. J.; Bai, Y.; Wang, J. X.; Zheng, X. R.; Jiang, J. B.; Zhuang, Z. C. et al. Highly reversible zinc-air batteries at −40 °C enabled by anion-mediated biomimetic fat. Adv. Funct. Mater. 2024, 34, 2308762.

[3]

Wang, Y.; Wu, J.; Tang, S. T.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe–Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[4]

Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

[5]

Wang, X. X.; Swihart, M. T.; Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2019, 2, 578–589.

[6]

Yan, D. Q.; Zhang, L.; Shen, L.; Hu, R. Y.; Xiao, W. P.; Yang, X. F. Pd nanoparticles embedded in N-enriched MOF-derived architectures for efficient oxygen reduction reaction in alkaline media. Green Energy Environ. 2023, 8, 1205–1215.

[7]

Zhao, Y. S.; Wan, J. W.; Yang, N. L.; Yu, R. B.; Wang, D. sp-Hybridized nitrogen doped graphdiyne for high-performance Zn-air batteries. Mater. Chem. Front. 2021, 5, 7987–7992.

[8]

Rittle, J.; Green, M. T. Cytochrome P450 compound I: Capture, characterization, and C–H bond activation kinetics. Science 2010, 330, 933–937.

[9]

Meunier, B.; de Visser, S. P.; Shaik, S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem. Rev. 2004, 104, 3947–3980.

[10]

Xu, G. Y.; Liu, Q.; Yan, H. Recent advances of single-atom catalysts for electro-catalysis. Chem. Res. Chin. Univ. 2022, 38, 1146–1150.

[11]

Chen, X. Y.; Wan, J. W.; Zheng, M.; Wang, J.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Fu, X. Z.; Yu, R. B. Engineering single atomic ruthenium on defective nickel vanadium layered double hydroxide for highly efficient hydrogen evolution. Nano Res. 2023, 16, 4612–4619.

[12]

Chen, X. Y.; Wan, J. W.; Chai, J.; Zhang, L.; Zhang, F.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Yu, R. B. Nickel-iron in the second coordination shell boost single-atomic-site iridium catalysts for high-performance urea electrooxidation. Nano Res. 2024, 17, 3919–3926.

[13]

Yuan, C. Z.; Wang, S.; San Hui, K.; Wang, K. X.; Li, J. F.; Gao, H. X.; Zha, C. Y.; Zhang, X. M.; Dinh, D. A.; Wu, X. L. et al. In situ immobilizing atomically dispersed Ru on oxygen-defective Co3O4 for efficient oxygen evolution. ACS Catal. 2023, 13, 2462–2471.

[14]

Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

[15]

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

[16]

Zheng, H. R.; Deng, D. N.; Zheng, X. R.; Chen, Y. B.; Bai, Y.; Liu, M. J.; Jiang, J. B.; Zheng, H. T.; Wang, Y. C.; Wang, J. X. et al. Highly reversible Zn-air batteries enabled by tuned valence electron and steric hindrance on atomic Fe-N4–C sites. Nano Lett. 2024, 24, 4672–4681.

[17]

Gao, Y.; Liu, B. Z.; Wang, D. S. Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application. Adv. Mater. 2023, 35, 2209654.

[18]

Li, J. J.; Jiang, Y. F.; Wang, Q.; Xu, C. Q.; Wu, D. J.; Banis, M. N.; Adair, K. R.; Doyle-Davis, K.; Meira, D. M.; Finfrock, Y. Z. et al. A general strategy for preparing pyrrolic-N4 type single-atom catalysts via pre-located isolated atoms. Nat. Commun. 2021, 12, 6806.

[19]

Douka, A. I.; Yang, H.; Huang, L.; Zaman, S.; Yue, T.; Guo, W.; You, B.; Xia, B. Y. Transition metal/carbon hybrids for oxygen electrocatalysis in rechargeable zinc-air batteries. EcoMat 2021, 3, e12067.

[20]

Wan, J. W.; Zhao, Z. H.; Shang, H. S.; Peng, B.; Chen, W. X.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Cao, R.; Sarangi, R. et al. In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 2020, 142, 8431–8439.

[21]

Ji, B. F.; Gou, J. L.; Zheng, Y. P.; Zhou, X. L.; Kidkhunthod, P.; Wang, Y. H.; Tang, Q. Y.; Tang, Y. B. Metalloid-cluster ligands enabling stable and active FeN4–Te n motifs for the oxygen reduction reaction. Adv. Mater. 2022, 34, 2202714.

[22]

Tu, H. L.; Zhang, H. X.; Song, Y. H.; Liu, P. Z.; Hou, Y.; Xu, B. S.; Liao, T.; Guo, J. J.; Sun, Z. Q. Electronic asymmetry engineering of Fe–N–C electrocatalyst via adjacent carbon vacancy for boosting oxygen reduction reaction. Adv. Sci. 2023, 10, 2305194.

[23]

Tang, T. M.; Wang, Z. L.; Guan, J. Q. Optimizing the electrocatalytic selectivity of carbon dioxide reduction reaction by regulating the electronic structure of single-atom M–N–C materials. Adv. Funct. Mater. 2022, 32, 2111504.

[24]

Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

[25]

Fan, Z. Z.; Luo, R. C.; Zhang, Y. X.; Zhang, B.; Zhai, P. L.; Zhang, Y. T.; Wang, C.; Gao, J. F.; Zhou, W.; Sun, L. C. et al. Oxygen-bridged indium-nickel atomic pair as dual-metal active sites enabling synergistic electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202216326.

[26]

Gao, Y.; Yang, C. D.; Sun, F. L.; He, D. P.; Wang, X. Q.; Chen, J.; Zheng, X. B.; Liu, R. C.; Pan, H. G.; Wang, D. S. Ligand-tuning metallic sites in molecular complexes for efficient water oxidation. Angew. Chem., Int. Ed. 2025, 64, e202415755.

[27]

Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)–Ru–P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 62, e202308800.

[28]

Wang, Y. C.; Li, Q.; Wang, M.; Ou, H. Z.; Deng, D. N.; Zheng, H. R.; Bai, Y.; Zheng, L. R.; Chen, Z. Y.; Li, W. J. et al. Pumping electrons from oxygen-bridged cobalt for low-charging-voltage Zn-air batteries. Nano Lett. 2024, 24, 13653–13661.

[29]

Liu, M. H.; Zhang, J.; Su, H.; Jiang, Y. L.; Zhou, W. L.; Yang, C. Y.; Bo, S. W.; Pan, J.; Liu, Q. H. In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction. Nat. Commun. 2024, 15, 1675.

[30]

Zhu, E. Z.; Shi, C. Y.; Yu, J.; Jin, H. D.; Zhou, L. X.; Yang, X. K.; Xu, M. L. Simultaneous regulation of thermodynamic and kinetic behavior on FeN3P1 single-atom configuration by Fe2P for efficient bifunctional ORR/OER. Appl. Catal. B: Environ. Energy 2024, 347, 123796.

[31]

Li, R. Z.; Zhang, Z. D.; Liang, X.; Shen, J.; Wang, J.; Sun, W. M.; Wang, D. S.; Jiang, J. C.; Li, Y. D. Polystyrene waste thermochemical hydrogenation to ethylbenzene by a N-bridged Co, Ni dual-atom catalyst. J. Am. Chem. Soc. 2023, 145, 16218–16227.

[32]

Sun, B. W.; Zhang, S. Y.; Yang, H. Z.; Zhang, T. Y.; Dong, Q. J.; Zhang, W. X.; Ding, J.; Liu, X. G.; Wang, L.; Han, X. P. et al. Revealing the active sites in atomically dispersed multi-metal-nitrogen-carbon catalysts. Adv. Funct. Mater. 2024, 34, 2315862.

[33]

Zhou, Q. X.; Xue, W. D.; Cui, X.; Wang, P. F.; Zuo, S. J.; Mo, F.; Li, C. Z.; Liu, G. L.; Ouyang, S. H.; Zhan, S. H. et al. Oxygen-bridging Fe, Co dual-metal dimers boost reversible oxygen electrocatalysis for rechargeable Zn-air batteries. Proc. Natl. Acad. Sci. USA 2024, 121, e2404013121.

[34]

Zheng, X. B.; Yang, J. R.; Li, P.; Jiang, Z. L.; Zhu, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Sun, W. P.; Dou, S. X. et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew. Chem., Int. Ed. 2023, 62, e202217449.

[35]

Li, Y. Z.; Sun, H.; Ren, L. T.; Sun, K.; Gao, L. Y.; Jin, X. R.; Xu, Q. Z.; Liu, W.; Sun, X. M. Asymmetric coordination regulating D-orbital spin-electron filling in single-atom iron catalyst for efficient oxygen reduction. Angew. Chem., Int. Ed. 2024, 63, e202405334.

[36]

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

[37]

Shi, K. X.; Wang, K. X.; Li, T.; Li, J. H.; Ren, J.; Li, X.; Min, Y. G.; Lu, Z. G.; Tan, W.; Liu, Q. B. Apically guiding electron/mass transfer reaction induced by Ag/FeN x Mott–Schottky effect within a hollow star reactor toward high performance zinc-air batteries. J. Energy Chem. 2024, 95, 106–116.

[38]

Xu, C. X.; Chen, L.; Zhou, H. H.; Qin, S. F.; Hou, Z. H.; Chen, Y. Y.; Sun, J. L.; Xu, J. W.; Huang, Z. Y. PVDF-assisted pyrolysis strategy for corrugated plate oxygen electrocatalysis nanoreactor: Simultaneously realizing efficient active sites and rapid mass transfer. J. Energy Chem. 2024, 97, 612–621.

[39]

Guo, X. M.; Shi, J.; Li, M.; Zhang, J. H.; Zheng, X. J.; Liu, Y. J.; Xi, B. J.; An, X. G.; Duan, Z. Y.; Fan, Q. Q. et al. Modulating coordination of iron atom clusters on N, P, S triply-doped hollow carbon support towards enhanced electrocatalytic oxygen reduction. Angew. Chem., Int. Ed. 2023, 62, e202314124.

[40]

Zhao, Y. J.; Zhu, L. Y.; Tang, J.; Fu, L.; Jiang, D.; Wei, X. Q.; Nara, H.; Asahi, T.; Yamauchi, Y. Enhancing electrocatalytic performance via thickness-tuned hollow N-doped mesoporous carbon with embedded co nanoparticles for oxygen reduction reaction. ACS Nano 2024, 18, 373–382.

[41]

Hu, Y. Z.; Guo, X. Y.; Shen, T.; Zhu, Y.; Wang, D. L. Hollow porous carbon-confined atomically ordered PtCo3 intermetallics for an efficient oxygen reduction reaction. ACS Catal. 2022, 12, 5380–5387.

Nano Research
Article number: 94907311
Cite this article:
Xia T, Wan J, Zhou X, et al. Enzyme-like adaptive Fe-oxo-Co motifs boost oxygen reduction reaction for efficient Zn-air batteries. Nano Research, 2025, 18(4): 94907311. https://doi.org/10.26599/NR.2025.94907311
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return