The quasi-metallic two-layer monolayer stacking with a monoclinic crystallographic system (2M) phase of transition metal dichalcogenides (TMDs) is a notable polymorph. It has unique physicochemical properties such as superconductivity, topological insulator behavior, and significant spin-orbit coupling effects. The synthesis and exploration of 2M phase TMDs not only broaden the spectrum of physical properties associated with TMDs but also herald novel prospects and formidable challenges within the realms of materials science, electronics, and the burgeoning field of quantum computing. Therefore, it is necessary to conduct a comprehensive review of the existing research findings on 2M-phase TMDs to provide valuable guidance for future development. In this review, a comprehensive overview of synthesis strategies for 2M-phase TMDs is offered. Furthermore, their novel properties, such as superconductivity and topological properties are discussed in detail and explore the application prospects in the fields of optics and catalysis. Finally, this review provides an outlook on future development directions, anticipated challenges, and potential opportunities for 2M-phase TMDs from fundamental to application. This review aims to provide in-depth insights into 2M-phase TMDs for the scientific and engineering communities and to guide further development in this emerging field.
Komsa, H. P.; Krasheninnikov, A. V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys. Rev. B 2013, 88, 085318.
Debbichi, L.; Eriksson, O.; Lebègue, S. Electronic structure of two-dimensional transition metal dichalcogenide bilayers from ab initio theory. Phys. Rev. B 2014, 89, 205311.
Brumme, T.; Calandra, M.; Mauri, F. First-principles theory of field-effect doping in transition-metal dichalcogenides: Structural properties, electronic structure, Hall coefficient, and electrical conductivity. Phys. Rev. B 2015, 91, 155436.
Latzke, D. W.; Zhang, W. T.; Suslu, A.; Chang, T. R.; Lin, H.; Jeng, H. T.; Tongay, S.; Wu, J. Q.; Bansil, A.; Lanzara, A. Electronic structure, spin-orbit coupling, and interlayer interaction in bulk MoS2 and WS2. Phys. Rev. B 2015, 91, 235202.
Liu, G. B.; Xiao, D.; Yao, Y. G.; Xu, X. D.; Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2643–2663.
Wei, W.; Dai, Y.; Niu, C. W.; Huang, B. B. Controlling the electronic structures and properties of in-plane transition-metal dichalcogenides quantum wells. Sci. Rep. 2015, 5, 17578.
Wei, W.; Dai, Y.; Sun, Q. L.; Yin, N.; Han, S. H.; Huang, B. B.; Jacob, T. Electronic structures of in-plane two-dimensional transition-metal dichalcogenide heterostructures. Phys. Chem. Chem. Phys. 2015, 17, 29380–29386.
Zhao, W. J.; Ribeiro, R. M.; Eda, G. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets. Acc. Chem. Res. 2015, 48, 91–99.
Lu, N.; Zhang, C. X.; Lee, C. H.; Oviedo, J. P.; Nguyen, M. A. T.; Peng, X.; Wallace, R. M.; Mallouk, T. E.; Robinson, J. A.; Wang, J. G. et al. Atomic and electronic structures of WTe2 probed by high resolution electron microscopy and ab initio calculations. J. Phys. Chem. C 2016, 120, 8364–8369.
Zhang, C. X.; Gong, C.; Nie, Y. F.; Min, K. A.; Liang, C. P.; Oh, Y. J.; Zhang, H. J.; Wang, W. H.; Hong, S.; Colombo, L. et al. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in Van der Waals heterostructures. 2D Mater. 2017, 4, 015026.
Zhou, K. G.; Zhao, M.; Chang, M. J.; Wang, Q.; Wu, X. Z.; Song, Y. L.; Zhang, H. L. Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets. Small 2015, 11, 694–701.
Koperski, M.; Molas, M. R.; Arora, A.; Nogajewski, K.; Slobodeniuk, A. O.; Faugeras, C.; Potemski, M. Optical properties of atomically thin transition metal dichalcogenides: Observations and puzzles. Nanophotonics 2017, 6, 1289–1308.
Sun, Y. F.; Fujisawa, K.; Lin, Z.; Lei, Y.; Mondschein, J. S.; Terrones, M.; Schaak, R. E. Low-temperature solution synthesis of transition metal dichalcogenide alloys with tunable optical properties. J. Am. Chem. Soc. 2017, 139, 11096–11105.
Cong, C. X.; Shang, J. Z.; Wang, Y. L.; Yu, T. Optical properties of 2D semiconductor WS2. Adv. Opt. Mater. 2018, 6, 1700767.
Wang, J.; Shu, H. B.; Zhao, T. F.; Liang, P.; Wang, N.; Cao, D.; Chen, X. S. Intriguing electronic and optical properties of two-dimensional Janus transition metal dichalcogenides. Phys. Chem. Chem. Phys. 2018, 20, 18571–18578.
Zheng, W. H.; Jiang, Y.; Hu, X. L.; Li, H. L.; Zeng, Z. X. S.; Wang, X.; Pan, A. L. Light emission properties of 2D transition metal dichalcogenides: Fundamentals and applications. Adv. Opt. Mater. 2018, 6, 1800420.
Ermolaev, G. A.; Stebunov, Y. V.; Vyshnevyy, A. A.; Tatarkin, D. E.; Yakubovsky, D. I.; Novikov, S. M.; Baranov, D. G.; Shegai, T.; Nikitin, A. Y.; Arsenin, A. V. et al. Broadband optical properties of monolayer and bulk MoS2. npj 2D Mater. Appl. 2020, 4, 21.
Hotovy, I.; Spiess, L.; Sojkova, M.; Kostic, I.; Mikolasek, M.; Predanocy, M.; Romanus, H.; Hulman, M.; Rehacek, V. Structural and optical properties of WS2 prepared using sulfurization of different thick sputtered tungsten films. Appl. Surf. Sci. 2018, 461, 133–138.
Pehlivan, L.; Métay, E.; Laval, S.; Dayoub, W.; Demonchaux, P.; Mignani, G.; Lemaire, M. Alternative method for the reduction of aromatic nitro to amine using TMDS-iron catalyst system. Tetrahedron 2011, 67, 1971–1976.
Chang, K.; Hai, X.; Ye, J. H. Transition metal disulfides as noble-metal-alternative co-catalysts for solar hydrogen production. Adv. Energy Mater. 2016, 6, 1502555.
Voiry, D.; Yang, J.; Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 2016, 28, 6197–6206.
Choi, S.; Kwon, K. C.; Kim, S. Y.; Jang, H. W. Tailoring catalytic activities of transition metal disulfides for water splitting. FlatChem 2017, 4, 68–80.
Er, D. Q.; Ye, H.; Frey, N. C.; Kumar, H.; Lou, J.; Shenoy, V. B. Prediction of enhanced catalytic activity for hydrogen evolution reaction in Janus transition metal dichalcogenides. Nano Lett. 2018, 18, 3943–3949.
Zhang, J.; Wu, J. J.; Zou, X. L.; Hackenberg, K.; Zhou, W.; Chen, W. B.; Yuan, J. T.; Keyshar, K.; Gupta, G.; Mohite, A. et al. Discovering superior basal plane active two-dimensional catalysts for hydrogen evolution. Mater. Today 2019, 25, 28–34.
Lin, Y. X.; Yu, M. X.; Li, X. Y.; Gao, W. C.; Wang, L. C.; Zhao, X. L.; Zhou, M.; Yao, X. J.; He, M. S.; Zhang, X. Y. Designed borophene/TMDs hybrid catalysts for enhanced hydrogen evolution reactions. J. Mater. Chem. C 2021, 9, 15877–15885.
Kwon, I. S.; Kwak, I. H.; Zewdie, G. M.; Lee, S. J.; Kim, J. Y.; Yoo, S. J.; Kim, J. G.; Park, J.; Kang, H. S. WSe2–VSe2 alloyed nanosheets to enhance the catalytic performance of hydrogen evolution reaction. ACS Nano 2022, 16, 12569–12579.
Klemm, R. A. Pristine and intercalated transition metal dichalcogenide superconductors. Phys. C: Supercond. Appl. 2015, 514, 86–94.
Shi, W.; Ye, J. T.; Zhang, Y. J.; Suzuki, R.; Yoshida, M.; Miyazaki, J.; Inoue, N.; Saito, Y.; Iwasa, Y. Superconductivity series in transition metal dichalcogenides by ionic gating. Sci. Rep. 2015, 5, 12534.
Hsu, Y. T.; Vaezi, A.; Fischer, M. H.; Kim, E. A. Topological superconductivity in monolayer transition metal dichalcogenides. Nat. Commun. 2017, 8, 14985.
Choe, D. H.; Sung, H. J.; Chang, K. J. Understanding topological phase transition in monolayer transition metal dichalcogenides. Phys. Rev. B 2016, 93, 125109.
Yao, J. D.; Zheng, Z. Q.; Yang, G. W. Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm. J. Mater. Chem. C 2016, 4, 7831–7840.
Walsh, L. A.; Hinkle, C. L. Van der Waals epitaxy: 2D materials and topological insulators. Appl. Mater. Today 2017, 9, 504–515.
Dong, X.; Lai, W.; Zhang, P. P. Semiconductor to topological insulator transition induced by stress propagation in metal dichalcogenide core–shell lateral heterostructures. Mater. Horiz. 2021, 8, 1029–1036.
Li, M. Y.; Sinev, I.; Benimetskiy, F.; Ivanova, T.; Khestanova, E.; Kiriushechkina, S.; Vakulenko, A.; Guddala, S.; Skolnick, M.; Menon, V. M. et al. Experimental observation of topological Z2 exciton-polaritons in transition metal dichalcogenide monolayers. Nat. Commun. 2021, 12, 4425.
Yang, B. W.; Lohmann, M.; Barroso, D.; Liao, I.; Lin, Z. S.; Liu, Y. W.; Bartels, L.; Watanabe, K.; Taniguchi, T.; Shi, J. Strong electron-hole symmetric Rashba spin-orbit coupling in graphene/monolayer transition metal dichalcogenide heterostructures. Phys. Rev. B 2017, 96, 041409(R).
Zhou, B. T.; Taguchi, K.; Kawaguchi, Y.; Tanaka, Y.; Law, K. T. Spin-orbit coupling induced valley Hall effects in transition-metal dichalcogenides. Commun. Phys. 2019, 2, 26.
Rossi, E.; Triola, C. Van der Waals heterostructures with spin-orbit coupling. Ann. Phys. 2020, 532, 1900344.
Ernandes, C.; Khalil, L.; Henck, H.; Zhao, M. Q.; Chaste, J.; Oehler, F.; Johnson, A. T. C.; Asensio, M. C.; Pierucci, D.; Pala, M. et al. Strain and spin-orbit coupling engineering in twisted WS2/graphene heterobilayer. Nanomaterials 2021, 11, 2921.
Rademaker, L. Spin-orbit coupling in transition metal dichalcogenide heterobilayer flat bands. Phys. Rev. B 2022, 105, 195428.
Wang, T. G.; Vila, M.; Zaletel, M. P.; Chatterjee, S. Electrical control of spin and valley in spin-orbit coupled graphene multilayers. Phys. Rev. Lett. 2024, 132, 116504.
Wilson, N. P.; Yao, W.; Shan, J.; Xu, X. D. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 2021, 599, 383–392.
Jing, F. M.; Zhang, Z. Z.; Qin, G. Q.; Luo, G.; Cao, G.; Li, H. O.; Song, X. X.; Guo, G. P. Gate-controlled quantum dots based on 2D materials. Adv. Quantum Technol. 2022, 5, 2100162.
Turunen, M.; Brotons-Gisbert, M.; Dai, Y. Y.; Wang, Y. D.; Scerri, E.; Bonato, C.; Jöns, K. D.; Sun, Z. P.; Gerardot, B. D. Quantum photonics with layered 2D materials. Nat. Rev. Phys. 2022, 4, 219–236.
Ramírez, J. G. C.; Kamal, M. Advancements in the utilization of monolayer transition metal dichalcogenides for quantum logic gates. J. Intell. Connect. Emerging Technol. 2024, 9, 1–14.
Fang, Y. Q.; Pan, J.; Zhang, D. Q.; Wang, D.; Hirose, H. T.; Terashima, T.; Uji, S.; Yuan, Y. H.; Li, W.; Tian, Z. et al. Discovery of superconductivity in 2M WS2 with possible topological surface states. Adv. Mater. 2019, 31, 1901942.
Guguchia, Z.; Gawryluk, D. J.; Brzezinska, M.; Tsirkin, S. S.; Khasanov, R.; Pomjakushina, E.; von Rohr, F. O.; Verezhak, J. A. T.; Hasan, M. Z.; Neupert, T. et al. Nodeless superconductivity and its evolution with pressure in the layered dirac semimetal 2M-WS2. npj Quantum Mater. 2019, 4, 50.
Gautam, S.; McBride, J.; Scougale, W. R.; Samarawickrama, P. I.; De Camargo Branco, D.; Yang, P. L.; Fu, Z. E.; Wang, W. Y.; Tang, J. K.; Cheng, G. J. et al. Controllable superconducting to semiconducting phase transition in topological superconductor 2M-WS2. 2D Mater. 2023, 11, 015018.
Guan, Y. C.; Ding, Y.; Fang, Y. Q.; Wang, G. W.; Zhao, S. X.; Wang, L. F.; Huang, J. T.; Chen, M. X.; Hao, J. Y.; Xu, C. Y. et al. Femtosecond laser-driven phase engineering of WS2 for nano-periodic phase patterning and sub-ppm ammonia gas sensing. Small 2023, 19, 2303654.
Kwon, I. S.; Kwak, I. H.; Kim, J. Y.; Lee, S. J.; Sial, Q. A.; Ihsan, J.; Lee, K. S.; Yoo, S. J.; Park, J.; Kang, H. S. 2H-2M phase control of WSe2 nanosheets by Se enrichment toward enhanced electrocatalytic hydrogen evolution reaction. Adv. Mater. 2024, 36, 2307867.
Che, X. L.; Deng, Y. J.; Fang, Y. Q.; Pan, J.; Yu, Y. J.; Huang, F. Q. Gate-tunable electrical transport in thin 2M-WS2 flakes. Adv. Electron. Mater. 2019, 5, 1900462.
Zhang, W. T.; Fang, Y. Q.; Zhang, Z. H.; Tian, F. B.; Huang, Y. P.; Wang, X.; Huang, X. L.; Huang, F. Q.; Cui, T. A new superconducting 3R-WS2 phase at high pressure. J. Phys. Chem. Lett. 2021, 12, 3321–3327.
Guan, Y. H.; Chen, M. X.; Ding, Y.; Fang, Y. Q.; Huang, F. Q.; Xu, C. Y.; Zhen, L.; Li, Y.; Yang, L. J.; Xu, P. Phase transformation on multilayer 2M-WS2 for improved surface-enhanced Raman scattering. ACS Nano 2024, 18, 17339–17348.
Liu, X. Y.; Zhang, P. T.; Wang, S. Y.; Fang, Y. Q.; Wu, P. H.; Xiang, Y.; Chen, J. P.; Zhao, C. D.; Zhang, X.; Zhao, W. et al. High intrinsic phase stability of ultrathin 2M WS2. Nat. Commun. 2024, 15, 1263.
Li, Y. W.; Zheng, H. J.; Fang, Y. Q.; Zhang, D. Q.; Chen, Y. J.; Chen, C.; Liang, A. J.; Shi, W. J.; Pei, D.; Xu, L. X. et al. Observation of topological superconductivity in a stoichiometric transition metal dichalcogenide 2M-WS2. Nat. Commun. 2021, 12, 2874.
Cho, S.; Huh, S.; Fang, Y. Q.; Hua, C. Q.; Bai, H.; Jiang, Z. C.; Liu, Z. T.; Liu, J. S.; Chen, Z. H.; Fukushima, Y. et al. Direct observation of the topological surface state in the topological superconductor 2M-WS2. Nano Lett. 2022, 22, 8827–8834.
Yuan, Y. H.; Pan, J.; Wang, X. T.; Fang, Y. Q.; Song, C. L.; Wang, L. L.; He, K.; Ma, X. C.; Zhang, H. J.; Huang, F. Q. et al. Evidence of anisotropic Majorana bound states in 2M-WS2. Nat. Phys. 2019, 15, 1046–1051.
Zhang, H.; Fang, Y. Q.; Wang, T.; Liu, Y. X.; Chu, J. N.; Li, Z. J.; Jiang, D.; Mu, G.; Di, Z. F.; Huang, F. Q. Anisotropic thermally activated flux-flow behavior in the layered superconductor 2M-WS2. Phys. Rev. B 2021, 103, L180503.
Xu, L. X.; Li, Y. W.; Fang, Y. Q.; Zheng, H. J.; Shi, W. J.; Chen, C.; Pei, D.; Lu, D. H.; Hashimoto, M.; Wang, M. X. et al. Topology hierarchy of transition metal dichalcogenides built from quantum spin Hall layers. Adv. Mater. 2023, 35, 2300227.
Chhowalla, M.; Liu, Z. F.; Zhang, H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem. Soc. Rev. 2015, 44, 2584–2586.
Xu, L. P.; Zhang, P.; Jiang, H. N.; Wang, X.; Chen, F. F.; Hu, Z. G.; Gong, Y. J.; Shang, L. Y.; Zhang, J. Z.; Jiang, K. et al. Large-scale growth and field-effect transistors electrical engineering of atomic-layer SnS2. Small 2019, 15, 1904116.
Song, X. Y.; Hoff, B.; Singha, R.; Stiles, J. W.; Skorupskii, G.; Khoury, J. F.; Cheng, G. M.; Kamm, F.; Uzan, A. J.; Dulovic, S. et al. Acid-assisted soft chemical route for preparing high-quality superconducting 2M-WS2. Chem. Mater. 2023, 35, 5487–5496.
Sokolikova, M. S.; Mattevi, C. Direct synthesis of metastable phases of 2D transition metal dichalcogenides. Chem. Soc. Rev. 2020, 49, 3952–3980.
Lian, C. S.; Si, C.; Duan, W. H. Anisotropic full-gap superconductivity in 2M-WS2 topological metal with intrinsic proximity effect. Nano Lett. 2020, 21, 709–715.
Wang, L. S.; Fang, Y. Q.; Huang, Y. Y.; Cheng, E. J.; Ni, J. M.; Pan, B. L.; Xu, Y.; Huang, F. Q.; Li, S. Y. Nodeless superconducting gap in the topological superconductor candidate 2M-WS2. Phys. Rev. B 2020, 102, 024523.
Zhao, C. D.; Che, X. L.; Zhang, Z.; Huang, F. Q. P-type doping in 2M-WS2 for a complete phase diagram. Dalton Trans. 2021, 50, 3862–3866.
Ugeda, M. M.; Pulkin, A.; Tang, S.; Ryu, H.; Wu, Q.; Zhang, Y.; Wong, D.; Pedramrazi, Z.; Martín-Recio, A.; Chen, Y. et al. Observation of topologically protected states at crystalline phase boundaries in single-layer WSe2. Nat. Commun. 2018, 9, 3401.
Gao, L. Flexible device applications of 2D semiconductors. Small 2017, 13, 1603994.
Singh, E.; Singh, P.; Kim, K. S.; Yeom, G. Y.; Nalwa, H. S. Flexible molybdenum disulfide (MoS2) atomic layers for wearable electronics and optoelectronics. ACS Appl. Mater. Interfaces 2019, 11, 11061–11105.
Liu, Y.; Duan, X. D.; Shin, H. J.; Park, S.; Huang, Y.; Duan, X. F. Promises and prospects of two-dimensional transistors. Nature 2021, 591, 43–53.
Taffelli, A.; Dirè, S.; Quaranta, A.; Pancheri, L. MoS2 based photodetectors: A review. Sensors 2021, 21, 2758.
Mia, A. K.; Meyyappan, M.; Giri, P. K. Two-dimensional transition metal dichalcogenide based biosensors: From fundamentals to healthcare applications. Biosensors 2023, 13, 169.
Fernandez-Garcia, M.; Martínez-Arias, A.; Hanson, J. C.; Rodriguez, J. A. Nanostructured oxides in chemistry: Characterization and properties. Chem. Rev. 2004, 104, 4063–4104.
Wang, M. R.; Pan, N. Predictions of effective physical properties of complex multiphase materials. Mater. Sci. Eng.: R: Rep. 2008, 63, 1–30.
Fu, L.; Xia, W. MAX phases as nanolaminate materials: Chemical composition, microstructure, synthesis, properties, and applications. Adv. Eng. Mater. 2021, 23, 2001191.
Whangbo, M. H.; Canadell, E. Analogies between the concepts of molecular chemistry and solid-state physics concerning structural instabilities. Electronic origin of the structural modulations in layered transition metal dichalcogenides. J. Am. Chem. Soc. 1992, 114, 9587–9600.
Benavente, E.; Santa Ana, M. A.; Mendizábal, F.; González, G. Intercalation chemistry of molybdenum disulfide. Coord. Chem. Rev. 2002, 224, 87–109.
Singh, D.; Barker, J. A. T.; Thamizhavel, A.; Paul, D. M.; Hillier, A. D.; Singh, R. P. Time-reversal symmetry breaking in the noncentrosymmetric superconductor Re6 Hf: Further evidence for unconventional behavior in the α-Mn family of materials. Phys. Rev. B 2017, 96, 180501(R).
Huang, S. J.; Hsu, Y. T. Faithful derivation of symmetry indicators: A case study for topological superconductors with time-reversal and inversion symmetries. Phys. Rev. Res. 2021, 3, 013243.
Aoki, R.; Uchida, K.; Tanaka, K. Excitation polarization-independent photo-induced restoration of inversion symmetry in Td-WTe2. AIP Adv. 2022, 12, 045309.
Kang, J. H.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 2014, 4, 031005.
Chen, C. A.; Lee, C. L.; Yang, P. K.; Tsai, D. S.; Lee, C. P. Active site engineering on two-dimensional-layered transition metal dichalcogenides for electrochemical energy applications: A mini-review. Catalysts 2021, 11, 151.
Kim, Y.; Sohn, I.; Shin, D.; Yoo, J.; Lee, S.; Yoon, H.; Park, J.; Chung, S. M.; Kim, H. Recent advances in functionalization and hybridization of two-dimensional transition metal dichalcogenide for gas sensor. Adv. Eng. Mater. 2024, 26, 2301063.
Miyazaki, S.; Kikkawa, S.; Koizumi, M. Chemical and electrochemical deintercalations of the layered compounds LiMO2 (M = Cr, Co) and NaM′O2 (M′ = Cr, Fe, Co, Ni). Synth. Met. 1983, 6, 211–217.
Arachi, Y.; Kobayashi, H.; Emura, S.; Nakata, Y.; Tanaka, M.; Asai, T.; Sakaebe, H.; Tatsumi, K.; Kageyama, H. Li de-intercalation mechanism in LiNi0.5Mn0.5O2 cathode material for Li-ion batteries. Solid State Ionics 2005, 176, 895–903.
Singh, G.; del Amo, J. M. L.; Galceran, M.; Pérez-Villar, S.; Rojo, T. Structural evolution during sodium deintercalation/intercalation in Na2/3[Fe1/2Mn1/2]O2. J. Mater. Chem. A 2015, 3, 6954–6961.
Sun, Y. F.; Terrones, M.; Schaak, R. E. Colloidal nanostructures of transition-metal dichalcogenides. Acc. Chem. Res. 2021, 54, 1517–1527.
Zhou, P. S.; Schiettecatte, P.; Vandichel, M.; Rousaki, A.; Vandenabeele, P.; Hens, Z.; Singh, S. Synthesis of colloidal WSe2 nanocrystals: Polymorphism control by precursor-ligand chemistry. Cryst. Growth Des. 2021, 21, 1451–1460.
Liu, Z. Q.; Nie, K. K.; Qu, X. Y.; Li, X. H.; Li, B. J.; Yuan, Y. L.; Chong, S. K.; Liu, P.; Li, Y. G.; Yin, Z. Y. et al. General bottom-up colloidal synthesis of nano-monolayer transition-metal dichalcogenides with high 1T′-phase purity. J. Am. Chem. Soc. 2022, 144, 4863–4873.
Wypych, F.; Schöllhorn, R. 1T-MoS2, a new metallic modification of molybdenum disulfide. J. Chem. Soc. Chem. Commun. 1992, 1386–1388.
Guzelian, A. A.; Banin, U.; Kadavanich, A. V.; Peng, X.; Alivisatos, A. P. Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots. Appl. Phys. Lett. 1996, 69, 1432–1434.
Kwon, S. G.; Hyeon, T. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc. Chem. Res. 2008, 41, 1696–1709.
de Mello Donegá, C. Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 2011, 40, 1512–1546.
Dykman, L. A.; Khlebtsov, N. G. Methods for chemical synthesis of colloidal gold. Russ. Chem. Rev. 2019, 88, 229–247.
Samarawickrama, P.; Dulal, R.; Fu, Z. E.; Erugu, U.; Wang, W. Y.; Ackerman, J.; Leonard, B.; Tang, J. K.; Chien, T.; Tian, J. F. Two-dimensional 2M-WS2 nanolayers for superconductivity. ACS Omega 2021, 6, 2966–2972.
Simon, A. Superconductivity and chemistry. Angew. Chem., Int. Ed. 1997, 36, 1788–1806.
Rahimi, M. A.; Moghaddam, A. G.; Dykstra, C.; Governale, M.; Zülicke, U. Unconventional superconductivity from magnetism in transition-metal dichalcogenides. Phys. Rev. B 2017, 95, 104515.
Goodman, B. B. Type II superconductors. Rep. Prog. Phys. 1966, 29, 445–487.
Clem, J. R. Simple model for the vortex core in a type II superconductor. J. Low Temp. Phys. 1975, 18, 427–434.
Brandt, E. H.; Indenbom, M. Type-II-superconductor strip with current in a perpendicular magnetic field. Phys. Rev. B 1993, 48, 12893–12906.
Dong, Q.; Li, S. J.; Fang, Y. Q.; Lee, Y.; Liu, R.; Liu, B.; Li, Q. J.; Liu, B. B.; Kim, J.; Kim, J. The metal-semiconductor-metal transition of 2M-WSe2 under high pressure. Appl. Mater. Today 2024, 36, 102050.
Samarawickrama, P.; McBride, J.; Gautam, S.; Fu, Z. E.; Watanabe, K.; Taniguchi, T.; Wang, W. Y.; Tang, J. K.; Ackerman, J.; Leonard, B. M. et al. Crossover from conventional to unconventional superconductivity in 2M-WS2. Nano Lett. 2024, 24, 16184–16190.
Chiao, R. Y.; Wu, Y. S. Manifestations of Berryʼs topological phase for the photon. Phys. Rev. Lett. 1986, 57, 933–936.
Ezawa, M.; Tanaka, Y.; Nagaosa, N. Topological phase transition without gap closing. Sci. Rep. 2013, 3, 2790.
Ren, Y. F.; Qiao, Z. H.; Niu, Q. Topological phases in two-dimensional materials: A review. Rep. Prog. Phys. 2016, 79, 066501.
Ma, G. C.; Xiao, M.; Chan, C. T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 2019, 1, 281–294.
Lahtinen, V.; Pachos, J. K. A short introduction to topological quantum computation. SciPost Phys. 2017, 3, 021.
Tian, W. C.; Yu, W. B.; Shi, J.; Wang, Y. K. The property, preparation and application of topological insulators: A review. Materials 2017, 10, 814.
Tokura, Y.; Kawasaki, M.; Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 2017, 13, 1056–1068.
Li, Y.; Xu, Y. First-principles discovery of novel quantum physics and materials: From theory to experiment. Comput. Mater. Sci. 2021, 190, 110262.
Li, Y. W.; Xu, L. X.; Liu, G.; Fang, Y. Q.; Zheng, H. J.; Dai, S. H.; Li, E. T.; Zhu, G.; Zhang, S. H.; Liang, S. H. et al. Evidence of strong and mode-selective electron–phonon coupling in the topological superconductor candidate 2M-WS2. Nat. Commun. 2024, 15, 6235.
Flensberg, K. Tunneling characteristics of a chain of Majorana bound states. Phys. Rev. B 2010, 82, 180516(R).
Hell, M.; Leijnse, M.; Flensberg, K. Two-dimensional platform for networks of Majorana bound states. Phys. Rev. Lett. 2017, 118, 107701.
Wang, D. F.; Kong, L. Y.; Fan, P.; Chen, H.; Zhu, S. Y.; Liu, W. Y.; Cao, L.; Sun, Y. J.; Du, S. X.; Schneeloch, J. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 2018, 362, 333–335.
Prada, E.; San-Jose, P.; de Moor, M. W. A.; Geresdi, A.; Lee, E. J. H.; Klinovaja, J.; Loss, D.; Nygård, J.; Aguado, R.; Kouwenhoven, L. P. From Andreev to Majorana bound states in hybrid superconductor-semiconductor nanowires. Nat. Rev. Phys. 2020, 2, 575–594.
Park, S.; Sim, H. S.; Recher, P. Electron-tunneling-assisted non-Abelian braiding of rotating Majorana bound states. Phys. Rev. Lett. 2020, 125, 187702.
Joseph, N. B.; Narayan, A. Topological properties of bulk and bilayer 2M WS2: A first-principles study. J. Phys.: Condens. Matter 2021, 33, 465001.
Xing, Q. X.; Zhang, J. S.; Fang, Y. Q.; Song, C. Y.; Zhao, T. Y.; Mou, Y. L.; Wang, C.; Ma, J. W.; Xie, Y. G.; Huang, S. Y. et al. Tunable anisotropic van der Waals films of 2M-WS2 for plasmon canalization. Nat. Commun. 2024, 15, 2623.
Huang, H. H.; Fan, X. F.; Singh, D. J.; Zheng, W. T. Recent progress of TMD nanomaterials: Phase transitions and applications. Nanoscale 2020, 12, 1247–1268.
Chang, L.; Sun, Z. X.; Hu, Y. H. 1T phase transition metal dichalcogenides for hydrogen evolution reaction. Electrochem. Energy Rev. 2021, 4, 194–218.
Zhai, W.; Li, Z. J.; Wang, Y. J.; Zhai, L.; Yao, Y.; Li, S. Y.; Wang, L. X.; Yang, H.; Chi, B. L.; Liang, J. Z. et al. Phase engineering of nanomaterials: Transition metal dichalcogenides. Chem. Rev. 2024, 124, 4479–4539.
Geisenhoff, J. Q.; Pan, Y. H.; Yin, H.; Paesani, F.; Schimpf, A. M. Concentration-dependent layer-stacking and the influence on phase-conversion in colloidally synthesized WSe2 nanocrystals. Chem. Mater. 2024, 36, 8834–8845.
Su, D. S.; Perathoner, S.; Centi, G. Nanocarbons for the development of advanced catalysts. Chem. Rev. 2013, 113, 5782–5816.
Xu, X. D.; Moulijn, J. A. Mitigation of CO2 by chemical conversion: Plausible chemical reactions and promising products. Energy Fuels 1996, 10, 305–325.
Zádor, J.; Taatjes, C. A.; Fernandes, R. X. Kinetics of elementary reactions in low-temperature autoignition chemistry. Prog. Energy Combust. Sci. 2011, 37, 371–421.
Rodrigues, M. T. F.; Babu, G.; Gullapalli, H.; Kalaga, K.; Sayed, F. N.; Kato, K.; Joyner, J.; Ajayan, P. M. A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2017, 2, 17108.
Safizadeh, F.; Ghali, E.; Houlachi, G. Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions-a review. Int. J. Hydrogen Energy 2015, 40, 256–274.
Strmcnik, D.; Lopes, P. P.; Genorio, B.; Stamenkovic, V. R.; Markovic, N. M. Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 2016, 29, 29–36.
Lasia, A. Mechanism and kinetics of the hydrogen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 19484–19518.
Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEMfuelcells. Energy Environ. Sci. 2011, 4, 3167–3192.
Jaouen, F.; Jones, D.; Coutard, N.; Artero, V.; Strasser, P.; Kucernak, A. Toward platinum group metal-free catalysts for hydrogen/air proton-exchange membrane fuel cells. Johnson Matthey Technol. Rev. 2018, 62, 231–255.
Rodrigues, T. S.; da Silva, A. G. M.; Camargo, P. H. C. Nanocatalysis by noble metal nanoparticles: Controlled synthesis for the optimization and understanding of activities. J. Mater. Chem. A 2019, 7, 5857–5874.
Chen, A. C.; Ostrom, C. Palladium-based nanomaterials: Synthesis and electrochemical applications. Chem. Rev. 2015, 115, 11999–12044.
Chen, J. T.; Xia, G. L.; Jiang, P.; Yang, Y.; Li, R.; Shi, R. H.; Su, J. W.; Chen, Q. W. Active and durable hydrogen evolution reaction catalyst derived from Pd-doped metal-organic frameworks. ACS Appl. Mater. Interfaces 2016, 8, 13378–13383.
Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.
Wu, Z. P.; Lu, X. F.; Zang, S. Q.; Lou, X. W. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Adv. Funct. Mater. 2020, 30, 1910274.
Liu, Y. A.; McCue, A. J.; Li, D. Q. Metal phosphides and sulfides in heterogeneous catalysis: Electronic and geometric effects. ACS Catal. 2021, 11, 9102–9127.
Xie, L. B.; Wang, L. L.; Liu, X.; Chen, J. M.; Wen, X. X.; Zhao, W. W.; Liu, S. J.; Zhao, Q. Flexible tungsten disulfide superstructure engineering for efficient alkaline hydrogen evolution in anion exchange membrane water electrolysers. Nat. Commun. 2024, 15, 5702.
Xie, L. B.; Wang, L. L.; Zhao, W. W.; Liu, S. J.; Huang, W.; Zhao, Q. WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nat. Commun. 2021, 12, 5070.
Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem. 2023, 135, e202308800.
Li, Y. P.; Niu, S. W.; Liu, P. E.; Pan, R. R.; Zhang, H. K.; Ahmad, N.; Shi, Y.; Liang, X.; Cheng, M. Y.; Chen, S. H. et al. Ruthenium nanoclusters and single atoms on α-MoC/N-doped carbon achieves low-input/input-free hydrogen evolution via decoupled/coupled hydrazine oxidation. Angew. Chem. 2024, 63, e202316755.
Mu, X. Q.; Yuan, Y. T.; Yu, M.; Hu, Y. J.; Zeng, W. H.; Peng, W.; Zhang, Y. F.; Liu, X. Y.; Liu, S. L.; Mu, S. C. Robust water/seawater-electrolysis hydrogen production at industrial-scale current densities by modulating built-in-outer electric field of catalytic substance. Nano Energy 2024, 131, 110216.
Xie, L. B.; Wang, L. L.; Liu, X.; Zhao, W. W.; Liu, S. J.; Huang, X.; Zhao, Q. Tetra-coordinated W2S3 for efficient dual-pH Hydrogen production. Angew. Chem., Int. Ed. 2024, 63, e202316306.
Yang, J. R.; Zhu, C. X.; Li, W. H.; Zheng, X. S.; Wang, D. S. Organocatalyst supported by a single-atom support accelerates both electrodes used in the chlor-alkali industry via modification of non-covalent interactions. Angew. Chem., Int. Ed. 2024, 63, e202314382.
Zhang, Y.; Mu, X. Q.; Liu, Z. Y.; Zhao, H. Y.; Zhuang, Z. C.; Zhang, Y. F.; Mu, S. C.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Twin-distortion modulated ultra-low coordination PtRuNi-O x catalyst for enhanced hydrogen production from chemical wastewater. Nat. Commun. 2024, 15, 10149.
Chen, F. J.; Mu, X. Q.; Zhou, J. L.; Wang, S. C.; Liu, Z. Y.; Zhou, D. Y.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Engineering the active sites of MOF-derived catalysts: From oxygen activation to activate metal-air batteries. Chin. J. Chem. 2024, 42, 2520–2535.
Zhang, Y. F.; Liu, L. S.; Li, Y. X.; Mu, X. Q.; Mu, S. C.; Liu, S. L.; Dai, Z. H. Strong synergy between physical and chemical properties: Insight into optimization of atomically dispersed oxygen reduction catalysts. J. Energy Chem. 2024, 91, 36–49.
Campion, A.; Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998, 27, 241–250.
Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguié, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2020, 14, 28–117.
Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A review on surface-enhanced Raman scattering. Biosensors 2019, 9, 57.
Luo, W.; Xiong, W. W.; Han, Y. N.; Yan, X.; Mai, L. Q. Application of two-dimensional layered materials in surface-enhanced Raman spectroscopy (SERS). Phys. Chem. Chem. Phys. 2022, 24, 26398–26412.
Liang, C.; Sun, Q. H.; Al-Salihy, A.; Chen, M. X.; Xu, P. Recent advances in crystal phase induced surface-enhanced Raman scattering. Chin. Chem. Lett. 2024, 35, 109306.