PDF (22.3 MB)
Collect
Submit Manuscript
Research Article | Open Access

Mild photothermal therapy-enhanced nano-ferroptosis inducer for potent treatment of advanced prostate cancer

Xiao Hu1,2,§Fei Li1,§Xin-Hang Qian1,§Yu-Sen Zhang1Shuai Ke1Yun-Xia Jin4Shuai Yuan1Yuan-Yuan Zhang1Rui Li5Lei Cao2Lang Rao2Xian-Tao Zeng1,3 ()Ling-Ling Zhang1 ()
Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
Xinjiang Key Laboratory of Solid State Physics and Devices, School of Physics Science and Technology, Xinjiang University, Urumqi 830017, China

§ Xiao Hu, Fei Li, and Xin-Hang Qian contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
In this work, mesoporous polydopamine nanoparticles (MPDA NPs) were developed to simultaneously deliver Cu+/Cu2+ ion pairs and glutathione peroxidase 4 inhibitor RSL3 to tumor sites, whose antitumor effect was tumor-specific and enhanced by mild photothermal therapy. We hope this work could provide nanomedicine scientists and clinicians with a reasonable paradigm for developing novel therapies for advanced prostate cancer.

Abstract

Androgen deprivation therapy (ADT) and androgen receptor signaling inhibitors (ARSis) often have limited efficacy in patients with advanced prostate cancer (PCa) (especially AR-negative). Inducing ferroptosis in PCa cells is an attractive therapeutic approach. In this work, mesoporous polydopamine nanoparticles (MPDA NPs) were developed to simultaneously deliver Cu+/Cu2+ ion pairs and glutathione peroxidase 4 (GPX4) inhibitor RSL3 to tumor sites for enhanced treatment of PCa. The prepared MPDA-Cu-RSL3@HA (MPCRH) NPs induced ferroptosis by promoting lipid peroxidation and regulating phospholipid profiles in PCa cells, and the above effects were further enhanced by mild photothermal therapy (mPTT) without damaging normal tissues. mPTT can promote reactive oxygen species (ROS) generation and degrade tumor extracellular matrix in vivo to promote nanodrugs intratumoral penetration. In short, this work shows the great application potential of mPTT-enhanced nano-ferroptosis inducers in the field of PCa treatment, in order to provide a reasonable paradigm for nanodrug development and PCa treatment.

Electronic Supplementary Material

Download File(s)
7314_ESM.pdf (2.7 MB)

References

[1]

Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249.

[2]

Zi, H.; Liu, M. Y.; Luo, L. S.; Huang, Q.; Luo, P. C.; Luan, H. H.; Huang, J.; Wang, D. Q.; Wang, Y. B.; Zhang, Y. Y. et al. Global burden of benign prostatic hyperplasia, urinary tract infections, urolithiasis, bladder cancer, kidney cancer, and prostate cancer from 1990 to 2021. Mil. Med. Res. 2024, 11, 64.

[3]

Ryan, C. J.; Smith, M. R.; de Bono, J. S.; Molina, A.; Logothetis, C. J.; de Souza, P.; Fizazi, K.; Mainwaring, P.; Piulats, J. M.; Ng, S. et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med. 2013, 368, 138–148.

[4]

Scher, H. I.; Fizazi, K.; Saad, F.; Taplin, M. E.; Sternberg, C. N.; Miller, K.; de Wit, R.; Mulders, P.; Chi, K. N.; Shore, N. D. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 2012, 367, 1187–1197.

[5]

Alabi, B. R.; Liu, S. Q.; Stoyanova, T. Current and emerging therapies for neuroendocrine prostate cancer. Pharmacol. Ther. 2022, 238, 108255.

[6]

Wang, W. L.; Epstein, J. I. Small cell carcinoma of the prostate: A morphologic and immunohistochemical study of 95 cases. Am. J. Surg. Pathol. 2008, 32, 65–71.

[7]

Bluemn, E. G.; Coleman, I. M.; Lucas, J. M.; Coleman, R. T.; Hernandez-Lopez, S.; Tharakan, R.; Bianchi-Frias, D.; Dumpit, R. F.; Kaipainen, A.; Corella, A. N. et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell 2017, 32, 474–489.e6.

[8]

Keer, H. N.; Kozlowski, J. M.; Tsai, Y. C.; Lee, C.; McEwan, R. N.; Grayhack, J. T. Elevated transferrin receptor content in human prostate cancer cell lines assessed in vitro and in vivo. J. Urol. 1990, 143, 381–385.

[9]

Liang, D. G.; Feng, Y.; Zandkarimi, F.; Wang, H.; Zhang, Z. D.; Kim, J.; Cai, Y. Y.; Gu, W.; Stockwell, B. R.; Jiang, X. J. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 2023, 186, 2748–2764.e22.

[10]

Wang, M. E.; Chen, J. Q.; Lu, Y.; Bawcom, A. R.; Wu, J. J.; Ou, J. H.; Asara, J. M.; Armstrong, A. J.; Wang, Q. B.; Li, L. et al. RB1-deficient prostate tumor growth and metastasis are vulnerable to ferroptosis induction via the E2F/ACSL4 axis. J. Clin. Invest. 2023, 133, e166647.

[11]

Stockwell, B. R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell 2022, 185, 2401–2421.

[12]

Rodriguez, R.; Schreiber, S. L.; Conrad, M. Persister cancer cells: Iron addiction and vulnerability to ferroptosis. Mol. Cell 2022, 82, 728–740.

[13]

Viswanathan, V. S.; Ryan, M. J.; Dhruv, H. D.; Gill, S.; Eichhoff, O. M.; Seashore-Ludlow, B.; Kaffenberger, S. D.; Eaton, J. K.; Shimada, K.; Aguirre, A. J. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 2017, 547, 453–457.

[14]

Nusinow, D. P.; Szpyt, J.; Ghandi, M.; Rose, C. M.; McDonald, E. R.; Kalocsay, M.; Jané-Valbuena, J.; Gelfand, E.; Schweppe, D. K.; Jedrychowski, M. et al. Quantitative proteomics of the cancer cell line encyclopedia. Cell 2020, 180, 387–402.e16.

[15]

Zhang, X. L.; Zhang, X.; Chen, S. T.; Liu, Y. X.; Cao, C.; Cheng, G. H.; Wang, S. Glutathione-depleting polyprodrug nanoparticle for enhanced photodynamic therapy and cascaded locoregional chemotherapy. J. Colloid Interface Sci. 2024, 670, 279–287.

[16]

Yang, W. S.; SriRamaratnam, R.; Welsch, M. E.; Shimada, K.; Skouta, R.; Viswanathan, V. S.; Cheah, J. H.; Clemons, P. A.; Shamji, A. F.; Clish, C. B. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014, 156, 317–331.

[17]

Guo, H. Y.; Wang, L. T.; Wu, W.; Guo, M. K.; Yang, L. K.; Zhang, Z. H.; Cao, L.; Pu, F. F.; Huang, X.; Shao, Z. W. Engineered biomimetic nanoreactor for synergistic photodynamic-chemotherapy against hypoxic tumor. J. Controlled Release 2022, 351, 151–163.

[18]

Chen, F.; Xing, Y. X.; Wang, Z. Q.; Zheng, X. Y.; Zhang, J. X.; Cai, K. Y. Nanoscale polydopamine (PDA) Meets π–π interactions: An interface-directed coassembly approach for mesoporous nanoparticles. Langmuir 2016, 32, 12119–12128.

[19]

Wang, Q. H.; Li, X. L.; Mao, J. Y.; Qin, X.; Yang, S. B.; Hao, J. N.; Guan, M. J.; Cao, Y. Y.; Li, Y. S. Biomimic binding affinity gradients triggered GSH-response of core-shell nanoparticles for cascade chemo/chemodynamic therapy. Adv. Healthcare Mater. 2022, 11, 2101634.

[20]

Anandan, S.; Miyauchi, M. Ce-doped ZnO (Ce x Zn1− x O) becomes an efficient visible-light-sensitive photocatalyst by co-catalyst (Cu2+) grafting. Phys. Chem. Chem. Phys. 2011, 13, 14937–14945.

[21]

Hu, W.; Yang, L. L.; Liao, H. T.; Sun, D. G.; Ouyang, X. K.; Wang, N.; Yang, G. C. Disulfiram-loaded CuO2 nanocarriers for enhanced synergistic chemodynamic chemotherapy. J. Colloid Interface Sci. 2024, 674, 9–18.

[22]

Ma, B. J.; Wang, S.; Liu, F.; Zhang, S.; Duan, J. Z.; Li, Z.; Kong, Y.; Sang, Y. H.; Liu, H.; Bu, W. B. et al. Self-assembled copper-amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 849–857.

[23]

Zhang, Y. Q.; Zhang, N.; Xing, J. H.; Sun, Y. W.; Jin, X.; Shen, C. L.; Cheng, L.; Wang, Y. Y.; Wang, X. W. In situ hydrogel based on Cu–Fe3O4 nanoclusters exploits oxidative stress and the ferroptosis/cuproptosis pathway for chemodynamic therapy. Biomaterials 2024, 311, 122675

[24]

Liu, Y. L.; Ai, K. L.; Liu, J. H.; Deng, M.; He, Y. Y.; Lu, L. H. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 2013, 25, 1353–1359.

[25]

Liu, D. D.; Dai, X. L.; Zhang, W.; Zhu, X. Y.; Zha, Z.; Qian, H. S.; Cheng, L.; Wang, X. W. Liquid exfoliation of ultrasmall zirconium carbide nanodots as a noninflammatory photothermal agent in the treatment of glioma. Biomaterials 2023, 292, 121917.

[26]

Yu, X.; Liu, J. Y.; Bauer, A.; Wei, X. Q.; Smith, S.; Ning, S. P.; Wang, C. Z. Enhancing tumor endothelial permeability using MUC18-targeted gold nanorods and mild hyperthermia. J. Colloid Interface Sci. 2024, 676, 101–109.

[27]

Xiong, Y. X.; Wang, W.; Deng, Q. Y.; Zhang, Z. J.; Wang, Q.; Yong, Z. T.; Sun, C. Y.; Yang, X. L.; Li, Z. F. Mild photothermal therapy boosts nanomedicine antitumor efficacy by disrupting DNA damage repair pathways and modulating tumor mechanics. Nano Today 2023, 49, 101767.

[28]

Valachová, K.; Hassan, M. E.; Šoltés, L. Hyaluronan: Sources, structure, features and applications. Molecules 2024, 29, 739.

[29]

Pérez, L. A.; Hernández, R.; Alonso, J. M.; Pérez-González, R.; Sáez-Martínez, V. Hyaluronic acid hydrogels crosslinked in physiological conditions: Synthesis and biomedical applications. Biomedicines 2021, 9, 1113.

[30]

Jia, X. F.; Li, J.; Wang, E. K. Cu Nanoclusters with aggregation induced emission enhancement. Small 2013, 9, 3873–3879.

[31]

Zhou, J.; Yu, Q.; Song, J.; Li, S.; Li, X. L.; Kang, B.; Chen, H. Y.; Xu, J. J. Photothermally triggered copper payload release for cuproptosis-promoted cancer synergistic therapy. Angew. Chem., Int. Ed. 2023, 62, e202213922.

[32]

Perron, N. R.; Brumaghim, J. L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 2009, 53, 75–100.

[33]

Chao, Y.; Liu, Z. Biomaterials tools to modulate the tumour microenvironment in immunotherapy. Nat. Rev. Bioeng. 2023, 1, 125–138.

[34]

Benitez, A.; Yates, T. J.; Lopez, L. E.; Cerwinka, W. H.; Bakkar, A.; Lokeshwar, V. B. Targeting hyaluronidase for cancer therapy: Antitumor activity of sulfated hyaluronic acid in prostate cancer cells. Cancer Res. 2011, 71, 4085–4095.

[35]

Tan, H. S.; Liu, Y. L.; Hou, N.; Cui, S. S.; Liu, B.; Fan, S. S.; Yu, G. P.; Han, C.; Zheng, D. C.; Li, W. Z. et al. Tumor microenvironment pH-responsive pentagonal gold prism-based nanoplatform for multimodal imaging and combined therapy of castration-resistant prostate cancer. Acta Biomater. 2022, 141, 408–417.

[36]

Ghoochani, A.; Hsu, E. C.; Aslan, M.; Rice, M. A.; Nguyen, H. M.; Brooks, J. D.; Corey, E.; Paulmurugan, R.; Stoyanova, T. Ferroptosis inducers are a novel therapeutic approach for advanced prostate cancer. Cancer Res. 2021, 81, 1583–1594.

[37]

Zhong, W. B.; Wu, K. H.; Long, Z. N.; Zhou, X. M.; Zhong, C. F.; Wang, S.; Lai, H. H.; Guo, Y. F.; Lv, D. J.; Lu, J. M. et al. Gut dysbiosis promotes prostate cancer progression and docetaxel resistance via activating NF-κB-IL6-STAT3 axis. Microbiome 2022, 10, 94.

[38]

Zeng, Z. S.; Luo, Y.; Xu, X. Y.; Shan, T.; Chen, M. X.; Huang, Z. Q.; Huang, Y. J.; Zhao, C. S. A mitochondria-targeting ROS-activated nanoprodrug for self-augmented antitumor oxidation therapy. J. Controlled Release 2023, 359, 415–427.

[39]

Kagan, V. E.; Mao, G. W.; Qu, F.; Angeli, J. P. F.; Doll, S.; Croix, C. S.; Dar, H. H.; Liu, B.; Tyurin, V. A.; Ritov, V. B. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 2017, 13, 81–90.

[40]

Yang, W. S.; Kim, K. J.; Gaschler, M. M.; Patel, M.; Shchepinov, M. S.; Stockwell, B. R. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci. USA 2016, 113, E4966–E4975.

[41]

Bersuker, K.; Hendricks, J. M.; Li, Z. P.; Magtanong, L.; Ford, B.; Tang, P. H.; Roberts, M. A.; Tong, B. Q.; Maimone, T. J.; Zoncu, R. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 2019, 575, 688–692.

[42]

Magtanong, L.; Ko, P. J.; To, M.; Cao, J. Y.; Forcina, G. C.; Tarangelo, A.; Ward, C. C.; Cho, K.; Patti, G. J.; Nomura, D. K. et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem. Biol. 2019, 26, 420–432.e9.

[43]

Zou, Y. L.; Henry, W. S.; Ricq, E. L.; Graham, E. T.; Phadnis, V. V.; Maretich, P.; Paradkar, S.; Boehnke, N.; Deik, A. A.; Reinhardt, F. et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 2020, 585, 603–608.

[44]

Kong, G.; Braun, R. D.; Dewhirst, M. W. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res. 2001, 61, 3027–3032.

Nano Research
Article number: 94907314
Cite this article:
Hu X, Li F, Qian X-H, et al. Mild photothermal therapy-enhanced nano-ferroptosis inducer for potent treatment of advanced prostate cancer. Nano Research, 2025, 18(4): 94907314. https://doi.org/10.26599/NR.2025.94907314
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return