PDF (26 MB)
Collect
Submit Manuscript
Research Article | Open Access

Facet-selective etching by pyridazine toward robust ruthenium-based oxygen evolution catalysts

Xueting Cao§Yikun Kang§Tao JiangZhe ChenYaming HaoShuangshuang ChaWei DuYefei Li ()Ming Gong ()
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China

§ Xueting Cao and Yikun Kang contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
A facet-selective etching method utilizing pyridazine has been developed for durable ruthenium-based oxygen evolution catalysts. Pyridazine selectively etched the RuO2 (110) surface during intensive electrochemical treatments, enriching the RuO2 (110) through a dynamic dissolution and repair mechanism, thus enhancing overall long-term stability for the acidic oxygen evolution reaction.

Abstract

Stable oxygen evolution reaction (OER) catalyst alternatives to the precious IrO2 catalysts are of great importance to the next-generation proton-exchange membrane (PEM) electrolyzers. RuO2-based materials are promising candidates but suffer from low stability under highly anodic potentials. Here, we reported a facet-selective etching strategy to improve the stability of polycrystalline RuO2 without significantly affecting the activity. The selective etching was enabled by the specific chemisorption of pyridazine (pyd) with contingent N atoms onto the RuO2 surface. The pyd-RuO2 catalyst, after etching, exhibited a low overpotential 247 mV at 100 mA·cm−2 and obvious stability improvement of over 200 h at 100 mA·cm−2 with only 0.63% Ru loss in acidic conditions. Combining various characterization techniques and theoretical calculations, we revealed that the crystalline RuO2 (110) facet is favorably etched by the coordination of pyridazine while protecting other surfaces, which significantly enriches the RuO2 (110) facets toward higher OER stability via the dynamic dissolution and repair mechanism in the ordered manner. This study offers alternative perspectives on the dissolution and stability mechanism of RuO2 and the facet-selective modulation of nanocrystals by ligand-driven etching.

Electronic Supplementary Material

Download File(s)
7315_ESM.pdf (4.5 MB)

References

[1]

Shih, A. J.; Monteiro, M. C. O.; Dattila, F.; Pavesi, D.; Philips, M.; Da Silva, A. H. M.; Vos, R. E.; Ojha, K.; Park, S.; Van Der Heijden, O. et al. Water electrolysis. Nat. Rev. Methods Primers 2022, 2, 84.

[2]

Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

[3]

Liu, Y. P.; Liang, X.; Chen, H.; Gao, R. Q.; Shi, L.; Yang, L.; Zou, X. X. Iridium-containing water-oxidation catalysts in acidic electrolyte. Chin. J. Catal. 2021, 42, 1054–1077.

[4]

Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.

[5]

Lin, H. Y.; Lou, Z. X.; Ding, Y. L.; Li, X. X.; Mao, F. X.; Yuan, H. Y.; Liu, P. F.; Yang, H. G. Oxygen evolution electrocatalysts for the proton exchange membrane electrolyzer: Challenges on stability. Small Methods 2022, 6, 2201130.

[6]

Zeng, F.; Mebrahtu, C.; Liao, L. F.; Beine, A. K.; Palkovits, R. Stability and deactivation of OER electrocatalysts: A review. J. Energy Chem. 2022, 69, 301–329.

[7]

Wang, Y.; Ma, F. Y.; Zhang, G. Q.; Zhang, J. W.; Zhao, H.; Dong, Y. M.; Wang, D. S. Precise synthesis of dual atom sites for electrocatalysis. Nano Res. 2024, 17, 9397–9427.

[8]

Over, H. Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: From fundamental to applied research. Chem. Rev. 2012, 112, 3356–3426.

[9]

Cherevko, S. Stability and dissolution of electrocatalysts: Building the bridge between model and “real world” systems. Curr. Opin. Electrochem. 2018, 8, 118–125.

[10]

Wen, Y. Z.; Liu, C.; Huang, R.; Zhang, H.; Li, X. B.; García de Arquer, F. P.; Liu, Z.; Li, Y. Y.; Zhang, B. Introducing brønsted acid sites to accelerate the bridging-oxygen-assisted deprotonation in acidic water oxidation. Nat. Commun. 2022, 13, 4871.

[11]

Deng, L. M.; Hung, S. F.; Lin, Z. Y.; Zhang, Y.; Zhang, C. C.; Hao, Y. X.; Liu, S. Y.; Kuo, C. H.; Chen, H. Y.; Peng, J. et al. Valence oscillation of Ru active sites for efficient and robust acidic water oxidation. Adv. Mater. 2023, 35, 2305939.

[12]

Wu, Z. Y.; Chen, F. Y.; Li, B. Y.; Yu, S. W.; Finfrock, Y. Z.; Meira, D. M.; Yan, Q. Q.; Zhu, P.; Chen, M. X.; Song, T. W. et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat. Mater. 2023, 22, 100–108.

[13]

Liu, M. H.; Chen, X. X.; Li, S. Y.; Ni, C. D.; Chen, Y. W.; Su, H. Dynamic-cycling zinc sites promote ruthenium oxide for sub-ampere electrochemical water oxidation. Nano Lett. 2024, 24, 16055–16063.

[14]

Burnett, D. L.; Petrucco, E.; Rigg, K. M.; Zalitis, C. M.; Lok, J. G.; Kashtiban, R. J.; Lees, M. R.; Sharman, J. D. B.; Walton, R. I. (M, Ru)O2 (M = Mg, Zn, Cu, Ni, Co) Rutiles and their use as oxygen evolution electrocatalysts in membrane electrode assemblies under acidic conditions. Chem. Mater. 2020, 32, 6150–6160.

[15]

Chen, S.; Huang, H.; Jiang, P.; Yang, K.; Diao, J. F.; Gong, S. P.; Liu, S.; Huang, M. X.; Wang, H.; Chen, Q. W. Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media. ACS Catal. 2020, 10, 1152–1160.

[16]

Sun, H. N.; Jung, W. Recent advances in doped ruthenium oxides as high-efficiency electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 15506–15521.

[17]

Shi, Z. P.; Li, J.; Wang, Y. B.; Liu, S. W.; Zhu, J. B.; Yang, J. H.; Wang, X.; Ni, J.; Jiang, Z.; Zhang, L. J. et al. Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers. Nat. Commun. 2023, 14, 843.

[18]

Du, K.; Zhang, L. F.; Shan, J. Q.; Guo, J. X.; Mao, J.; Yang, C. C.; Wang, C. H.; Hu, Z. P.; Ling, T. Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation. Nat. Commun. 2022, 13, 5448.

[19]

Ji, M. W.; Yang, X.; Chang, S. D.; Chen, W. X.; Wang, J.; He, D. S.; Hu, Y.; Deng, Q.; Sun, Y.; Li, B. et al. RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid. Nano Res. 2022, 15, 1959–1965.

[20]

Hubert, M. A.; Patel, A. M.; Gallo, A.; Liu, Y. Z.; Valle, E.; Ben-Naim, M.; Sanchez, J.; Sokaras, D.; Sinclair, R.; Nørskov, J. K. et al. Acidic oxygen evolution reaction activity–stability relationships in Ru-based pyrochlores. ACS Catal. 2020, 10, 12182–12196.

[21]

Boakye, F. O.; Harrath, K.; Zhang, D. T.; You, Y.; Zhang, W. B.; Wang, Z.; Zhang, H. N.; Zhu, J. X.; Long, J. C.; Zhu, J. Q. et al. Synergistic engineering of dopant and support of Ru oxide catalyst enables ultrahigh performance for acidic oxygen evolution. Adv. Funct. Mater. 2024, 34, 2408714.

[22]

Zhuang, J. H.; Wang, D. S. Recent advances of single-atom alloy catalyst: Properties, synthetic methods and electrocatalytic applications. Mater. Today Catal. 2023, 2, 100009.

[23]

Lin, C.; Li, J. L.; Li, X. P.; Yang, S.; Luo, W.; Zhang, Y. J.; Kim, S. H.; Kim, D. H.; Shinde, S. S.; Li, Y. F. et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 2021, 4, 1012–1023.

[24]

Yao, N.; Jia, H. N.; Zhu, J.; Shi, Z. P.; Cong, H. J.; Ge, J. J.; Luo, W. Atomically dispersed Ru oxide catalyst with lattice oxygen participation for efficient acidic water oxidation. Chem 2023, 9, 1882–1896.

[25]

Liu, Y.; Huang, Y.; Wu, D. J.; Jang, H.; Wu, J. H.; Li, H. R.; Li, W. X.; Zhu, F.; Kim, M. G.; Zhou, D. L. et al. Ultrathin and conformal depletion layer of core/shell heterojunction enables efficient and stable acidic water oxidation. J. Am. Chem. Soc. 2024, 146, 26897–26908.

[26]

Peng, C. L.; Zhao, W. P.; Li, Z. X.; Kuang, Z. Y.; Cheng, G. F.; Miller, J. T.; Sun, S. H.; Chen, H. R. Eutectic molten salt assisted synthesis of highly defective and flexible ruthenium oxide for efficient overall water splitting. Chem. Eng. J. 2021, 425, 131707.

[27]

He, W. D.; Tan, X. H.; Guo, Y. Y.; Xiao, Y. H.; Cui, H.; Wang, C. X. Grain-boundary-rich RuO2 porous nanosheet for efficient and stable acidic water oxidation. Angew. Chem., Int. Ed. 2024, 63, e202405798.

[28]

Wu, M.; Fan, Y. Y.; Huang, Y.; Wang, D. X.; Xie, Y.; Wu, A. P.; Tian, C. G. Synergistic Ru/RuO2 heterojunctions stabilized by carbon coating as efficient and stable bifunctional electrocatalysts for acidic overall water splitting. Nano Res. 2024, 17, 6931–6939.

[29]

Shang, F. F.; He, H. J.; Lin, Y.; An, B.; Cai, H. R.; Li, X. Q.; Wang, W. T.; Liang, C.; Yang, S. C.; Wang, B. Hetero-nanojunction armored with carbon layer for boosting water oxidation over RuO2 in acid. Inorg. Chem. Front. 2024, 11, 5265–5272.

[30]

Klyukin, K.; Zagalskaya, A.; Alexandrov, V. Role of dissolution intermediates in promoting oxygen evolution reaction at RuO2 (110) surface. J. Phys. Chem. C 2019, 123, 22151–22157.

[31]

Roy, C.; Rao, R. R.; Stoerzinger, K. A.; Hwang, J.; Rossmeisl, J.; Chorkendorff, I.; Shao-Horn, Y.; Stephens, I. E. L. Trends in activity and dissolution on RuO2 under oxygen evolution conditions: Particles versus well-defined extended surfaces. ACS Energy Lett. 2018, 3, 2045–2051.

[32]

Stoerzinger, K. A.; Diaz-Morales, O.; Kolb, M.; Rao, R. R.; Frydendal, R.; Qiao, L.; Wang, X. R.; Halck, N. B.; Rossmeisl, J.; Hansen, H. A. et al. Orientation-dependent oxygen evolution on RuO2 without lattice exchange. ACS Energy Lett. 2017, 2, 876–881.

[33]

Xia, Y. N.; Xia, X. H.; Peng, H. C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947–7966.

[34]

Gao, Y.; Yang, C. D.; Sun, F. L.; He, D. P.; Wang, X. Q.; Chen, J.; Zheng, X. B.; Liu, R. C.; Pan, H. G.; Wang, D. S. Ligand-tuning metallic sites in molecular complexes for efficient water oxidation. Angew. Chem., Int. Ed. 2025, 64, e202415755.

[35]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[36]

Qin, Y. L.; Yu, K. D.; Wang, G.; Zhuang, Z. C.; Dou, Y. H.; Wang, D. S.; Chen, Z. B. Adjacent-ligand tuning of atomically precise Cu–Pd sites enables efficient methanol electrooxidation with a CO-free pathway. Angew. Chem., Int. Ed. 2025, 64, e202420817.

[37]

Quadri, T. W.; Akpan, E. D.; Elugoke, S. E.; Dagdag, O.; Nnaji, N. J.; Verma, C.; Olasunkanmi, L. O.; AlFantazi, A.; Anadebe, V. C.; Barik, R. C. et al. A critical review of coordination chemistry of pyrimidine and pyridazine compounds: Bonding, chelation and corrosion inhibition. Coord. Chem. Rev. 2025, 523, 216285.

[38]

Chang, K. H.; Hu, C. C.; Chou, C. Y. Textural and capacitive characteristics of hydrothermally derived RuO2· xH2O nanocrystallites: Independent control of crystal size and water content. Chem. Mater. 2007, 19, 2112–2119.

[39]

Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched Ru x Fe3− x O4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.

[40]

Zhang, Y.; Mu, X. Q.; Liu, Z. Y.; Zhao, H. Y.; Zhuang, Z. C.; Zhang, Y. F.; Mu, S. C.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Twin-distortion modulated ultra-low coordination PtRuNi–O x catalyst for enhanced hydrogen production from chemical wastewater. Nat. Commun. 2024, 15, 10149.

[41]

Wang, K. X.; Wang, Y. L.; Yang, B.; Li, Z. J.; Qin, X. T.; Zhang, Q. H.; Lei, L. C.; Qiu, M.; Wu, G.; Hou, Y. Highly active ruthenium sites stabilized by modulating electron-feeding for sustainable acidic oxygen-evolution electrocatalysis. Energy Environ. Sci. 2022, 15, 2356–2365.

[42]

Jin, H.; Choi, S.; Bang, G. J.; Kwon, T.; Kim, H. S.; Lee, S. J.; Hong, Y.; Lee, D. W.; Park, H. S.; Baik, H. et al. Safeguarding the RuO2 phase against lattice oxygen oxidation during acidic water electrooxidation. Energy Environ. Sci. 2022, 15, 1119–1130.

[43]

Rochefort, D.; Dabo, P.; Guay, D.; Sherwood, P. M. A. XPS investigations of thermally prepared RuO2 electrodes in reductive conditions. Electrochim. Acta 2003, 48, 4245–4252.

[44]

He, J. Y.; Chen, W. X.; Gao, H. M.; Chen, Y. X.; Zhou, L.; Zou, Y. Q.; Chen, R.; Tao, L.; Lu, X.; Wang, S. Y. Tuning hydrogen binding modes within RuO2 lattice by proton and electron Co-doping for active and stable acidic oxygen evolution. Chem. Catal. 2022, 2, 578–594.

[45]

Stoerzinger, K. A.; Rao, R. R.; Wang, X. R.; Hong, W. T.; Rouleau, C. M.; Shao-Horn, Y. The role of Ru redox in pH-dependent oxygen evolution on rutile ruthenium dioxide surfaces. Chem 2017, 2, 668–675.

[46]

Huang, S. D.; Shang, C.; Kang, P. L.; Zhang, X. J.; Liu, Z. P. LASP: Fast global potential energy surface exploration. WIREs Comput. Mol. Sci. 2019, 9, e1415.

Nano Research
Article number: 94907315
Cite this article:
Cao X, Kang Y, Jiang T, et al. Facet-selective etching by pyridazine toward robust ruthenium-based oxygen evolution catalysts. Nano Research, 2025, 18(4): 94907315. https://doi.org/10.26599/NR.2025.94907315
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return