With the increased penetration of energy storage devices in daily life, safety hazard and energy density issues are attracting greater and greater interest. Conventional liquid electrolytes suffer from leakage, flammability, gas evolution, dendrite hazards, and so on, especially when matching with high-energy-density metal anodes. Though solid-state electrolytes (SSEs) are promising candidates for the next-generation safe and high energy density energy storage system, individual SSE fails to meet the asynchronous demands of cathode and anode, because of their intrinsic solid chemistry properties. Among numerous modified approaches related to SSEs chemistry, asymmetric SSEs (ASSEs) which have more than one SSE and multilayer structure take advantage of individual SSE layers and complement each other’s disadvantages, showing Janus abilities. However, there are few reviews about ASSEs. Also, the problem of interface compatibility the between different electrolytes as well as the interface of electrodes and electrolytes is hindering the development of ASSEs. This review comprehensively outlines the state of the art of ASSEs. Additionally, it summarizes the advantages and functions of ASSEs with the unique structure for different energy storage. Furthermore, the interfacial compatibility and corresponding evaluation methods are discussed. Finally, an outlook on how ASSEs will develop in the future energy storage applications is proposed.
Kohse-Höinghaus, K. Combustion, chemistry, and carbon neutrality. Chem. Rev. 2023, 123, 5139–5219.
Kang, Q.; Zhuang, Z. C.; Li, Y.; Zuo, Y. Z.; Wang, J.; Liu, Y. J.; Shi, C. Q.; Chen, J.; Li, H. F.; Jiang, P. K. et al. Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Res. 2023, 16, 9240–9249.
Kang, Q.; Li, Y.; Zhuang, Z. C.; Yang, H. J.; Luo, L. X.; Xu, J.; Wang, J.; Guan, Q. H.; Zhu, H.; Zuo, Y. Z. et al. Engineering a dynamic solvent-phobic liquid electrolyte interphase for long-life lithium metal batteries. Adv. Mater. 2024, 36, 2308799.
Xing, C. X.; Yao, M.; Fei, L. F. Upcycling degraded layered oxide cathodes from spent lithium-ion batteries toward emerging materials: A review. Energy Storage Mater. 2024, 71, 103636.
Bai, Y.; Deng, D. N.; Wang, J. X.; Wang, Y. C.; Chen, Y. B.; Zheng, H. R.; Liu, M. J.; Zheng, X. R.; Jiang, J. B.; Zheng, H. T. et al. Inhibited passivation by bioinspired cell membrane Zn interface for Zn–air batteries with extended temperature adaptability. Adv. Mater. 2024, 36, 2411404.
Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe–Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn–air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.
Zhang, E. H.; Dong, A. Q.; Yin, K.; Ye, C. L.; Zhou, Y.; Tan, C.; Li, M. G.; Zheng, X. B.; Wang, Y.; Gao, X. W. et al. Electron localization in rationally designed Pt1Pd single-atom alloy catalyst enables high-performance Li–O2 batteries. J. Am. Chem. Soc. 2024, 146, 2339–2344.
Zhang, H. W.; Chen, H. C.; Feizpoor, S.; Li, L. F.; Zhang, X.; Xu, X. F.; Zhuang, Z. C.; Li, Z. S.; Hu, W. Y.; Snyders, R. et al. Tailoring oxygen reduction reaction kinetics of Fe–N–C catalyst via spin manipulation for efficient zinc–air batteries. Adv. Mater. 2024, 36, 2400523.
Wang, S. C.; Zhang, M. Y.; Mu, X. Q.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Atomically dispersed multi-site catalysts: Bifunctional oxygen electrocatalysts boost flexible zinc–air battery performance. Energy Environ. Sci. 2024, 17, 4847–4870.
Rodger, A. R.; Kuwano, J.; West, A. R. Li+ ion conducting γ solid solutions in the systems Li4XO4–Li3YO4: X = Si, Ge, Ti; Y = P, As, V; Li4XO4–LiZO2: Z = Al, Ga, Cr and Li4GeO4–Li2CaGeO4. Solid State Ionics 1985, 15, 185–198.
Martínez-Juárez, A.; Pecharromán, C.; Iglesias, J. E.; Rojo, J. M. Relationship between activation energy and bottleneck size for Li+ ion conduction in NASICON materials of composition LiMM’(–PO4)3; M, M’ = Ge, Ti, Sn, Hf. J. Phys. Chem. B 1998, 102, 372–375.
Thangadurai, V.; Narayanana, S.; Pinzaru, D. Garnet-type solid-state fast li ion conductors for Li batteries: Critical review. Chem. Soc. Rev. 2014, 43, 4714–4727.
Wang, C. H.; Liang, J. W.; Kim, J. T.; Sun, X. L. Prospects of halide-based all-solid-state batteries: From material design to practical application. Sci. Adv. 2022, 8, eadc9516.
Schnick, W.; Luecke, J. Lithium ion conductivity of LiPN2 and Li7PN4. Solid State Ionics 1990, 38, 271–273.
Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K. et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682–686.
Bron, P.; Johansson, S.; Zick, K.; Schmedt Auf der günne, J.; Dehnen, S.; Roling, B. Li10SnP2S12: An affordable lithium superionic conductor. J. Am. Chem. Soc. 2013, 135, 15694–15697.
Song, Z. Y.; Chen, F. F.; Martinez-Ibañez, M.; Feng, W. F.; Forsyth, M.; Zhou, Z. B.; Armand, M.; Zhang, H. A reflection on polymer electrolytes for solid-state lithium metal batteries. Nat. Commun. 2023, 14, 4884.
Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.
Vu, T. T.; Cheon, H. J.; Shin, S. Y.; Jeong, G.; Wi, E.; Chang, M. Hybrid electrolytes for solid-state lithium batteries: Challenges, progress, and prospects. Energy Storage Mater. 2023, 61, 102876.
Wu, L. Q.; Wang, Y. T.; Guo, X. W.; Ding, P. P.; Lin, Z. Y.; Yu, H. J. Interface science in polymer-based composite solid electrolytes in lithium metal batteries. SusMat 2022, 2, 264–292.
Dong, Y. F.; Wen, P. C.; Shi, H. D.; Yu, Y.; Wu, Z. S. Solid-state electrolytes for sodium metal batteries: Recent status and future opportunities. Adv. Funct. Mater. 2024, 34, 2213584.
Kang, Q.; Zhuang, Z. C.; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.
Huang, J. W.; Wu, K.; Xu, G.; Wu, M. H.; Dou, S. X.; Wu, C. Recent progress and strategic perspectives of inorganic solid electrolytes: Fundamentals, modifications, and applications in sodium metal batteries. Chem. Soc. Rev. 2023, 52, 4933–4995.
Liu, X. Y.; Li, X. R.; Li, H. X.; Wu, H. B. Recent progress of hybrid solid-state electrolytes for lithium batteries. Chem.—Eur. J. 2018, 24, 18293–18306.
Wu, J. Y.; Rao, Z. X.; Wang, H. L.; Huang, Y. H. Order-structured solid-state electrolytes. SusMat 2022, 2, 660–678.
Liang, H. M.; Wang, L.; Wang, A. P.; Song, Y. Z.; Wu, Y. Z.; Yang, Y.; He, X. M. Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: A review. Nano-Micro Lett. 2023, 15, 42.
Zhang, Z. Z.; Shao, Y. J.; Lotsch, B.; Hu, Y. S.; Li, H.; Janek, J.; Nazar, L. F.; Nan, C. W.; Maier, J.; Armand, M. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 2018, 11, 1945–1976.
Gao, H.; Lian, K. Proton-conducting polymer electrolytes and their applications in solid supercapacitors: A review. RSC Adv. 2014, 4, 33091–33113.
Jia, W. S.; Li, H. D.; Wang, Z. H.; Liu, Y. C.; Yang, Y. Y.; Li, J. Z. 3D composite lithium metal with multilevel micro–nano structure combined with surface modification for stable lithium metal anodes. Appl. Surf. Sci. 2021, 570, 151159.
Redda, H. G.; Nikodimos, Y.; Su, W. N.; Chen, R. S.; Hagos, T. M.; Bezabh, H. K.; Weldeyohannes, H. H.; Hwang, B. J. The surface modification of electrode materials using gel polymer electrolytes for anode-free lithium metal batteries (AFLMB). Mater. Today Energy 2022, 30, 101141.
Zhang, W. R.; Koverga, V.; Liu, S. F.; Zhou, J. G.; Wang, J.; Bai, P. X.; Tan, S.; Dandu, N. K.; Wang, Z. Y.; Chen, F. et al. Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries. Nat. Energy 2024, 8, 386–400.
Oh, J. A. S.; He, L. C.; Chua, B.; Zeng, K. Y.; Lu, L. Inorganic sodium solid-state electrolyte and interface with sodium metal for room-temperature metal solid-state batteries. Energy Storage Mater. 2021, 34, 28–44.
Zhu, X. Q.; Wang, K.; Xu, Y. N.; Zhang, G. F.; Li, S. Q.; Li, C.; Zhang, X.; Sun, X. Z.; Ge, X. B.; Ma, Y. W. Strategies to boost ionic conductivity and interface compatibility of inorganic–organic solid composite electrolytes. Energy Storage Mater. 2021, 36, 291–308.
Yu, X. W.; Xue, L. G.; Goodenough, J. B.; Manthiram, A. Ambient-temperature all-solid-state sodium batteries with a laminated composite electrolyte. Adv. Funct. Mater. 2021, 31, 2002144.
Wang, H.; Sun, Y. J.; Liu, Q.; Mei, Z. Y.; Yang, L.; Duan, L. Y.; Guo, H. An asymmetric bilayer polymer-ceramic solid electrolyte for high-performance sodium metal batteries. J. Energy Chem. 2022, 74, 18–25.
Wu, X. X.; Zheng, Y. J.; Li, W. B.; Liu, Y. Y.; Zhang, Y.; Li, Y. J.; Li, C. L. Solid electrolytes reinforced by infinite coordination polymer nano-network for dendrite-free lithium metal batteries. Energy Storage Mater. 2021, 41, 436–447.
Yang, Z. L.; Yuan, H. Y.; Zhou, C. J.; Wu, Y. M.; Tang, W. P.; Sang, S. B.; Liu, H. T. Facile interfacial adhesion enabled LATP-based solid-state lithium metal battery. Chem. Eng. J. 2020, 392, 123650.
Lu, W. Z.; Xue, M. Z.; Zhang, C. M. Modified Li7La3Zr2O12 (LLZO) and LLZO-polymer composites for solid-state lithium batteries. Energy Storage Mater. 2021, 39, 108–129.
Wan, H. L.; Liu, S. F.; Deng, T.; Xu, J. J.; Zhang, J. X.; He, X. Z.; Ji, X.; Yao, X. Y.; Wang, C. S. Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium–sulfur battery. ACS Energy Lett. 2021, 6, 862–868.
Falco, M.; Ferrari, S.; Appetecchic, G. B.; Gerbaldi, C. Managing transport properties in composite electrodes/electrolytes for all-solid-state lithium-based batteries. Mol. Syst. Des. Eng. 2019, 4, 850–871.
Jiang, H.; Wu, Y. Y.; Ma, J.; Liu, Y. C.; Wang, L. L.; Yao, X.; Xiang, H. F. Ultrathin polymer-in-ceramic and ceramic-in-polymer bilayer composite solid electrolyte membrane for high-voltage lithium metal batteries. J. Membr. Sci. 2021, 640, 119840.
Wu, J. F.; Pu, B. W.; Wang, D.; Shi, S. Q.; Zhao, N.; Guo, X. X.; Guo, X. In situ formed shields enabling Li2CO3-free solid electrolytes: A new route to uncover the intrinsic lithiophilicity of garnet electrolytes for dendrite-free Li-metal batteries. ACS Appl. Mater. Interfaces 2019, 11, 898–905.
Chen, G. H.; Zhang, F.; Zhou, Z. M.; Li, J. R.; Tang, Y. B. A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv. Energy Mater. 2018, 8, 1801219.
Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. X. Polymer electrolytes for lithium-based batteries: Advances and prospects. Chem 2019, 5, 2326–2352.
Tan, J. W.; Ao, X.; Dai, A.; Yuan, Y. F.; Zhuo, H.; Lu, H.; Zhuang, L. B.; Ke, Y. X.; Su, C. L.; Peng, X. W. et al. Polycation ionic liquid tailored PEO-based solid polymer electrolytes for high temperature lithium metal batteries. Energy Storage Mater. 2020, 33, 173–180.
Wu, N.; Chien, P. H.; Qian, Y. M.; Li, Y. T.; Xu, H. H.; Grundish, N. S.; Xu, B. Y.; Jin, H. B.; Hu, Y. Y.; Yu, G. H. et al. Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte. Angew. Chem., Int. Ed. 2020, 59, 4131–4137.
Jiang, B. W.; Wei, Y.; Wu, J. Y.; Cheng, H.; Yuan, L. X.; Li, Z.; Xu, H. H.; Huang, Y. H. Recent progress of asymmetric solid-state electrolytes for lithium/sodium-metal batteries. EnergyChem 2021, 3, 100058.
Lin, Y. K.; Liu, K.; Xiong, C.; Wu, M. C.; Zhao, T. S. A composite solid electrolyte with an asymmetric ceramic framework for dendrite-free all-solid-state Li metal batteries. J. Mater. Chem. A 2021, 9, 9665–9674.
Li, J. H.; Cai, Y. F.; Wu, H. M.; Yu, Z. A.; Yan, X. Z.; Zhang, Q. H.; Gao, T. Z.; Liu, K.; Jia, X. D.; Bao, Z. N. Polymers in lithium-ion and lithium metal batteries. Adv. Energy Mater. 2021, 11, 2003239.
Yao, M.; Ruan, Q. Q.; Wang, Y. Y.; Du, L. Y.; Li, Q. G.; Xu, L.; Wang, R. J.; Zhang, H. T. A robust dual-polymer@inorganic networks composite polymer electrolyte toward ultra-long-life and high-voltage Li/Li-rich metal battery. Adv. Funct. Mater. 2023, 33, 2213702.
Li, L. S.; Wang, J.; Zhang, L. T.; Duan, H. H.; Deng, Y. F.; Chen, G. H. Rational design of a heterogeneous double-layered composite solid electrolyte via synergistic strategies of asymmetric polymer matrices and functional additives to enable 4.5 V all-solid-state lithium batteries with superior performance. Energy Storage Mater. 2022, 45, 1062–1073.
Huo, H. Y.; Chen, Y.; Luo, J.; Yang, X. F.; Guo, X. X.; Sun, X. L. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv. Energy Mater. 2019, 9, 1804004.
Zhong, Y. L.; Zhang, X.; Zhang, Y.; Jia, P.; Xi, Y. B.; Kang, L. X.; Yu, Z. J. Understanding and unveiling the electro-chemo-mechanical behavior in solid-state batteries. SusMat 2024, 4, e190.
Sood, A.; Poletayev, A. D.; Cogswell, D. A.; Csernica, P. M.; Mefford, J. T.; Fraggedakis, D.; Toney, M. F.; Lindenberg, A. M.; Bazant, M. Z.; Chueh, W. C. Electrochemical ion insertion from the atomic to the device scale. Nat. Rev. Mater. 2021, 6, 847–867.
Ren, Y. Y.; Danner, T.; Moy, A.; Finsterbusch, M.; Hamann, T.; Dippell, J.; Fuchs, T.; Müller, M.; Hoft, R.; Weber, A. et al. Oxide-based solid-state batteries: A perspective on composite cathode architecture. Adv. Energy Mater. 2023, 13, 2201939.
Zhao, C. Z.; Zhao, Q.; Liu, X. T.; Zheng, J. X.; Stalin, S.; Zhang, Q.; Archer, L. A. Rechargeable lithium metal batteries with an in-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode. Adv. Mater. 2020, 32, 1905629.
Janek, J.; Zeier, W. G. Challenges in speeding up solid-state battery development. Nat. Energy 2023, 8, 230–240.
Zhao, C. Z.; Zhao, B. C.; Yan, C.; Zhang, X. Q.; Huang, J. Q.; Mo, Y. F.; Xu, X. X.; Li, H.; Zhang, Q. Liquid phase therapy to solid electrolyte–electrode interface in solid-state Li metal batteries: A review. Energy Storage Mater. 2020, 24, 75–84.
Deng, T.; Cao, L. S.; He, X. Z.; Li, A. M.; Li, D.; Xu, J. J.; Liu, S. F.; Bai, P. X.; Jin, T.; Ma, L. et al. In situ formation of polymer–inorganic solid–electrolyte interphase for stable polymeric solid-state lithium-metal batteries. Chem 2021, 7, 3052–3068.
Wang, Q.; Wang, H. C.; Liu, Y.; Wu, K.; Liu, W.; Zhou, H. H. An asymmetric quasi-solid electrolyte for high-performance Li metal batteries. Chem. Commun. 2020, 56, 7195–7198.
Kou, W. J.; Wang, J. X.; Li, W. P.; Lv, R. X.; Peng, N.; Wu, W. J.; Wang, J. T. Asymmetry-structure electrolyte with rapid Li+ transfer pathway towards high-performance all-solid-state lithium–sulfur battery. J. Membr. Sci. 2021, 634, 119432.
Cai, D.; Qi, X. H.; Xiang, J. Y.; Wu, X. Z.; Li, Z. X.; Luo, X. M.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P. A cleverly designed asymmetrical composite electrolyte via in situ polymerization for high-performance, dendrite-free solid state lithium metal battery. Chem. Eng. J. 2022, 435, 135030.
Lu, Y. R.; Zhang, X.; Xue, C. J.; Xin, C. Z.; Li, M.; Nan, C. W.; Shen, Y. Three-dimensional structured asymmetric electrolytes for high interface stability and fast Li-ion transport in solid-state Li-metal batteries. Mater. Today Energy 2020, 18, 100522.
Guo, H. L.; Sun, H.; Jiang, Z. L.; Hu, J. Y.; Luo, C. S.; Gao, M. Y.; Cheng, J. Y.; Shi, W. K.; Zhou, H. J.; Sun, S. G. Asymmetric structure design of electrolytes with flexibility and lithium dendrite-suppression ability for solid-state lithium batteries. ACS Appl. Mater. Interfaces 2019, 11, 46783–46791.
Zhu, J. X.; Li, X. L.; Wu, C. W.; Gao, J.; Xu, H. H.; Li, Y. T.; Guo, X. X.; Li, H.; Zhou, W. D. A multilayer ceramic electrolyte for all-solid-state Li batteries. Angew. Chem., Int. Ed. 2021, 60, 3781–3790.
Jiang, Y. X.; Song, Y. D.; Chen, X.; Wang, H. J.; Deng, L. J.; Yang, G. In situ formed self-healable quasi-solid hybrid electrolyte network coupled with eutectic mixture towards ultra-long cycle life lithium metal batteries. Energy Storage Mater. 2022, 52, 514–523.
Dong, T. T.; Zhang, H. R.; Hu, R. X.; Mu, P. Z.; Liu, Z.; Du, X. F.; Lu, C. L.; Lu, G. L.; Liu, W.; Cui, G. L. A rigid-flexible coupling poly(vinylene carbonate) based cross-linked network: A versatile polymer platform for solid-state polymer lithium batteries. Energy Storage Mater. 2022, 50, 525–532.
Ma, X.; Liu, M.; Wu, Q. P.; Guan, X.; Wang, F.; Liu, H. M.; Xu, J. Composite electrolytes prepared by improving the interfacial compatibility of organic–inorganic electrolytes for dendrite-free, long-life all-solid lithium metal batteries. ACS Appl. Mater. Interfaces 2022, 14, 53828–53839.
Jiang, Y. J.; Xu, C.; Xu, K.; Li, S. Y.; Ni, J. X.; Wang, Y. F.; Liu, Y. J.; Cai, J. H.; Lai, C. Surface modification and structure constructing for improving the lithium ion transport properties of PVDF based solid electrolytes. Chem. Eng. J. 2022, 442, 136245.
Feng, J. N.; Wang, L.; Chen, Y. J.; Wang, P. Y.; Zhang, H. R.; He, X. M. PEO based polymer-ceramic hybrid solid electrolytes: A review. Nano Converg. 2021, 8, 2.
Arrese-Igor, M.; Martinez-Ibañez, M.; Pavlenko, E.; Forsyth, M.; Zhu, H. J.; Armand, M.; Aguesse, F.; López-Aranguren, P. Toward high-voltage solid-state Li-metal batteries with double-layer polymer electrolytes. ACS Energy Lett. 2022, 7, 1473–1480.
Yao, M.; Ruan, Q. Q.; Pan, S. S.; Zhang, H. T.; Zhang, S. J. An ultrathin asymmetric solid polymer electrolyte with intensified ion transport regulated by biomimetic channels enabling wide-temperature high-voltage lithium-metal battery. Adv. Energy Mater. 2023, 13, 2203640.
Cui, M. Y.; Gao, N.; Zhao, W. S.; Zhao, H. Y.; Cao, Z. J.; Qin, Y. Y.; Gao, G. X.; Xi, K.; Su, Y. Q.; Ding, S. J. Self-regulating interfacial space charge through polyanion repulsion effect towards dendrite-free polymer lithium-metal batteries. Adv. Energy Mater. 2024, 14, 2303834.
Wan, Z. P.; Lei, D. N.; Yang, W.; Liu, C.; Shi, K.; Hao, X. G.; Shen, L.; Lv, W.; Li, B. H.; Yang, Q. H. et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv. Funct. Mater. 2019, 29, 1805301.
Wu, J. F.; Guo, X. MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries. J. Mater. Chem. A 2019, 7, 2653–2659.
Chen, L.; Li, Y. T.; Li, S. P.; Fan, L. Z.; Nan, C. W.; Goodenough, J. B. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176–184.
Huo, H. Y.; Zhao, N.; Sun, J. Y.; Du, F. M.; Li, Y. Q.; Guo, X. X. Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery. J. Power Sources 2017, 372, 1–7.
He, Z. J.; Chen, L.; Zhang, B. C.; Liu, Y. C.; Fan, L. Z. Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries. J. Power Sources 2018, 392, 232–238.
Zhao, C. Z.; Zhang, X. Q.; Cheng, X. B.; Zhang, R.; Xu, R.; Chen, P. Y.; Peng, H. J.; Huang, J. Q.; Zhang, Q. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. USA 2017, 114, 11069–11074.
Wang, Z. Q.; Tan, R.; Wang, H. B.; Yang, L. Y.; Hu, J. T.; Chen, H. B.; Pan, F. A Metal–organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv. Mater. 2018, 30, 1704436.
Zhu, L.; Zhu, P. H.; Fang, Q. X.; Jing, M. X.; Shen, X. Q.; Yang, L. Z. A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery. Electrochim. Acta 2018, 292, 718–726.
Chen, F.; Yang, D. J.; Zha, W.; Zhu, B. D.; Zhang, Y. H.; Li, J. Y.; Gu, Y. P.; Shen, Q.; Zhang, L. M.; Sadoway, D. R. Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. Electrochim. Acta 2017, 258, 1106–1114.
Duan, H.; Yin, Y. X.; Shi, Y.; Wang, P. F.; Zhang, X. D.; Yang, C. P.; Shi, J. L.; Wen, R.; Guo, Y. G.; Wan, L. J. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. J. Am. Chem. Soc. 2018, 140, 82–85.
Zhang, X.; Liu, T.; Zhang, S. F.; Huang, X.; Xu, B. Q.; Lin, Y. H.; Xu, B.; Li, L. L.; Nan, C. W.; Shen, Y. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 2017, 139, 13779–13785.
Duan, H.; Yin, Y. X.; Zeng, X. X.; Li, J. Y.; Shi, J. L.; Shi, Y.; Wen, R.; Guo, Y. G.; Wan, L. J. In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Mater. 2018, 10, 85–91.
Zhang, W. Q.; Nie, J. H.; Li, F.; Wang, Z. L.; Sun, C. W. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy 2018, 45, 413–419.
Chen, L.; Li, W. X.; Fan, L. Z.; Nan, C. W.; Zhang, Q. Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries. Adv. Funct. Mater. 2019, 29, 1901047.
Zhang, J. X.; Zhao, N.; Zhang, M.; Li, Y. Q.; Chu, P. K.; Guo, X. X.; Di, Z. F.; Wang, X.; Li, H. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 2016, 28, 447–454.
Zhang, N. Y.; Wang, G. X.; Feng, M.; Fan, l. z. In situ generation of a soft-tough asymmetric composite electrolyte for dendrite-free lithium metal batteries. J. Mater. Chem. A 2021, 9, 4018–4025.
Li, Y.; Yang, L. W.; Dong, R.; Zhang, T. W.; Yuan, J. L.; Liu, Y.; Liu, Y. X.; Sun, Y.; Zhong, B. H.; Chen, Y. X. et al. A high strength asymmetric polymer-inorganic composite solid electrolyte for solid-state Li-ion batteries. Electrochim. Acta 2022, 404, 139701.
Liu, W. C.; Li, G.; Yu, W.; Gao, L.; Shi, D. J.; Ju, J. G.; Deng, N. P.; Kang, W. M. Asymmetric organic–inorganic bi-functional composite solid-state electrolyte for long stable cycling of high-voltage lithium battery. Energy Storage Mater. 2023, 63, 103005.
Li, Y.; Wang, G. X.; Fan, L. Z. Ultra-thin asymmetric composite electrolyte addresses the out-of-sync requirements of lithium batteries interfaces. Batteries Supercaps 2022, 5, e202200212.
Wang, G. X.; Liang, Y. H.; Liu, H.; Wang, C.; Li, D. B.; Fan, L. Z. Scalable, thin asymmetric composite solid electrolyte for high-performance all-solid-state lithium metal batteries. Interdiscip. Mater. 2022, 1, 434–444.
Li, J.; Cai, Y. J.; Cui, Y. Y.; Wu, H.; Da, H. R.; Yang, Y. J.; Zhang, H. T.; Zhang, S. J. Fabrication of asymmetric bilayer solid-state electrolyte with boosted ion transport enabled by charge-rich space charge layer for −20–70 °C lithium metal battery. Nano Energy 2022, 95, 107027.
Duan, H.; Fan, M.; Chen, W. P.; Li, J. Y.; Wang, P. F.; Wang, W. P.; Shi, J. L.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv. Mater. 2019, 31, 1807789.
Liang, J. Y.; Zeng, X. X.; Zhang, X. D.; Zuo, T. T.; Yan, M.; Yin, Y. X.; Shi, J. L.; Wu, X. W.; Guo, Y. G.; Wan, L. J. Engineering Janus interfaces of ceramic electrolyte via distinct functional polymers for stable high-voltage Li-metal batteries. J. Am. Chem. Soc. 2019, 141, 9165–9169.
Chen, Z.; Zhang, H. R.; Xu, H. T.; Dong, S. M.; Jiang, M. F.; Li, Z. T.; Cui, G. L. In situ generated polymer electrolyte coating-based Janus interfaces for long-life LAGP-based NMC811/Li metal batteries. Chem. Eng. J. 2022, 433, 133589.
Zhang, J. G.; Xu, W.; Xiao, J.; Cao, X.; Liu, J. Lithium metal anodes with nonaqueous electrolytes. Chem. Rev. 2020, 120, 13312–13348.
Wang, Z.; Tan, J. W.; Cui, J. W.; Xie, K. Y.; Bai, Y. F.; Jia, Z. H.; Gao, X. W.; Wu, Y. P.; Tang, W. A novel asymmetrical multilayered composite electrolyte for high-performance ambient-temperature all-solid-state lithium batteries. J. Mater. Chem. A 2024, 12, 4231–4239.
Zhang, Z.; Gou, J. R.; Cui, K. X.; Zhang, X.; Yao, Y. J.; Wang, S. Q.; Wang, H. H. 12.6 μm-thick asymmetric composite electrolyte with superior interfacial stability for solid-state lithium-metal batteries. Nano-Micro Lett. 2024, 16, 181.
Zhang, Z.; Fan, W. Q.; Cui, K. X.; Gou, J. R.; Huang, Y. Design of ultrathin asymmetric composite electrolytes for interfacial stable solid-state lithium-metal batteries. ACS Nano 2024, 18, 17890–17900.
Pfenninger, R.; Struzik, M.; Garbayo, I.; Stilp, E.; Rupp, J. L. M. A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films. Nat. Energy 2019, 4, 475–483.
Han, X. G.; Gong, Y. H.; Fu, K.; He, X. F.; Hitz, G. T.; Dai, J. Q.; Pearse, A.; Liu, B. Y.; Wang, H.; Rubloff, G. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 2017, 16, 572–579.
Ruan, Y. D.; Lu, Y.; Li, Y. P.; Zheng, C. J.; Su, J. M.; Jin, J.; Xiu, T.; Song, Z.; Badding, M. E.; Wen, Z. Y. A 3D cross-linking lithiophilic and electronically insulating interfacial engineering for garnet-type solid-state lithium batteries. Adv. Funct. Mater. 2021, 31, 2007815.
Ji, X.; Hou, S.; Wang, P. F.; He, X. Z.; Piao, N.; Chen, J.; Fan, X. L.; Wang, C. S. Solid-state electrolyte design for lithium dendrite suppression. Adv. Mater. 2020, 32, 2002741.
Deng, Z.; Jin, Z.; Chen, D. C.; Ni, D. X.; Tian, M. Y.; Zhan, Y. J.; Li, S.; Sun, Y.; Huang, X. J.; Zhao, Y. S. Bilayer halide electrolytes for all-inorganic solid-state lithium-metal batteries with excellent interfacial compatibility. ACS Appl. Mater. Interfaces 2022, 14, 48619–48626.
Zhang, B. Y.; Wu, M. S.; Sun, B. Z.; Shi, J.; Liu, G.; Xu, B.; Ouyang, C. Y. Bilayer halide electrolyte design enabling excellent interface stability between a Li-metal anode and a halide solid electrolyte. J. Phys. Chem. C 2023, 127, 21440–21448.
Wu, M. S.; Xu, B.; Luo, W. W.; Sun, B. Z.; Ouyang, C. Y. Interfacial properties and Li-ion dynamics between Li3OCl solid electrolyte and Li metal anode for all solid state Li metal batteries from first principles study. Electrochim. Acta 2020, 334, 135622.
Kim, Y.; Juarez-Yescas, C.; Liao, D. W.; Jangid, M. K.; Joshi, P.; Yang, H.; Zahiri, B.; Braun, P. V.; Dasgupta, N. P. Thin free-standing sulfide/halide bilayer electrolytes for solid-state batteries using slurry processing and lamination. ACS Energy Lett. 2024, 9, 1353–1360.
Nie, X. H.; Hu, J. L.; Li, C. L. Halide-based solid electrolytes: The history, progress, and challenges. Interdiscip. Mater. 2023, 2, 365–389.
Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L. F. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium–sulphur batteries. Nat. Commun. 2014, 5, 4759.
Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium–sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 2203540.
Han, D. D.; Wang, Z. Y.; Pan, G. L.; Gao, X. P. Metal–organic-framework-based gel polymer electrolyte with immobilized anions to stabilize a lithium anode for a quasi-solid-state lithium–sulfur battery. ACS Appl. Mater. Interfaces 2019, 11, 18427–18435.
Wang, Y.; Wang, G. X.; He, P. G.; Hu, J. K.; Jiang, J. H.; Fan, L. Z. Sandwich structured NASICON-type electrolyte matched with sulfurized polyacrylonitrile cathode for high performance solid-state lithium–sulfur batteries. Chem. Eng. J. 2020, 393, 124705.
Shi, C. M.; Alexander, G. V.; O’neill, J.; Duncan, K.; Godbey, G.; Wachsman, E. D. All-solid-state garnet type sulfurized polyacrylonitrile/lithium-metal battery enabled by an inorganic lithium conductive salt and a bilayer electrolyte architecture. ACS Energy Lett. 2023, 8, 1803–1810.
Yang, Y. J.; Wang, R.; Xue, J. X.; Liu, F. Q.; Yan, J.; Jia, S. X.; Xiang, T. Q.; Huo, H.; Zhou, J. J.; Li, L. In situ forming asymmetric bi-functional gel polymer electrolyte in lithium–sulfur batteries. J. Mater. Chem. A 2021, 9, 27390–27397.
Fan, Z. J.; Ding, B.; Zhang, T. F.; Lin, Q. Y.; Malgras, V.; Wang, J.; Dou, H.; Zhang, X. G.; Yamauchi, Y. Solid/solid interfacial architecturing of solid polymer electrolyte-based all-solid-state lithium–sulfur batteries by atomic layer deposition. Small 2019, 15, 1903952.
Huang, Y. Z.; Cheng, F. L.; Cai, C. Y.; Fu, Y. Simultaneously suppressing shuttle effect and dendrite growth in lithium–sulfur batteries via building dual-functional asymmetric-cellulose gel electrolyte. Small 2023, 19, 2300076.
Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431–3448.
Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.
Cheng, Z. W.; Liu, T.; Zhao, B.; Shen, F.; Jin, H. Y.; Han, X. G. Recent advances in organic–inorganic composite solid electrolytes for all-solid-state lithium batteries. Energy Storage Mater. 2021, 34, 388–416.
Zhao, Y. Z.; Liu, Z. Y.; Xu, J. X.; Zhang, T. F.; Zhang, F.; Zhang, X. G. Synthesis and characterization of a new perovskite-type solid-state electrolyte of Na1/3La1/3Sr1/3ZrO3 for all-solid-state sodium-ion batteries. J. Alloys Compd. 2019, 783, 219–225.
Liu, T. F.; Wang, B.; Gu, X. X.; Wang, L.; Ling, M.; Liu, G.; Wang, D. L.; Zhang, S. Q. All-climate sodium ion batteries based on the NASICON electrode materials. Nano Energy 2016, 30, 756–761.
Sun, F.; Xiang, Y. X.; Sun, Q.; Zhong, G. M.; Banis, M. N.; Liu, Y. L.; Li, R. Y.; Fu, R. Q.; Zheng, M.; Sham, T. K. et al. Origin of high ionic conductivity of Sc-doped sodium-rich NASICON solid-state electrolytes. Adv. Funct. Mater. 2021, 31, 2102129.
Hikima, K.; Totani, M.; Obokata, S.; Muto, H.; Matsuda, A. Mechanical properties of sulfide-type solid electrolytes analyzed by indentation methods. ACS Appl. Energy Mater. 2022, 5, 2349–2355.
Lazar, M.; Kmiec, S.; Joyce, A.; Martin, S. W. Investigations into reactions between sodium metal and Na3PS4− x O x solid-state electrolytes: Enhanced stability of the Na3PS3O solid-state electrolyte. ACS Appl. Energy Mater. 2020, 3, 11559–11569.
Zhou, W. D.; Wang, Z. X.; Pu, Y.; Li, Y. T.; Xin, S.; Li, X. F.; Chen, J. F.; Goodenough, J. B. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries. Adv. Mater. 2019, 31, 1805574.
Nakamura, T.; Amezawa, K.; Kulisch, J.; Zeier, W. G.; Janek, J. Guidelines for all-solid-state battery design and electrode buffer layers based on chemical potential profile calculation. ACS Appl. Mater. Interfaces 2019, 11, 19968–19976.
Pan, J.; Zhang, Y. C.; Sun, F.; Osenberg, M.; Hilger, A.; Manke, I.; Cao, R. G.; Dou, S. X.; Fan, H. J. Designing solvated double-layer polymer electrolytes with molecular interactions mediated stable interfaces for sodium ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202219000.
Yang, M.; Feng, F.; Shi, Z. H.; Guo, J. H.; Wang, R.; Xu, Z. J.; Liu, Z. M.; Cai, T. X.; Wang, Z. Y.; Wang, C. X. et al. Facile design of asymmetric flame-retardant gel polymer electrolyte with excellent interfacial stability for sodium metal batteries. Energy Storage Mater. 2023, 56, 611–620.
Wang, S. L.; Ding, C. J.; Tian, H.; Huang, W. W.; Zhang, Q. C. Double-layer composite gel polymer electrolyte for organic sodium-metal batteries. Chem. Asian J. 2022, 17, e202200688.
Yang, Z. D.; Chen, L. T.; Jiang, H. Y.; Liang, X. H.; Wei, J. P.; Xie, Z. J.; Tang, B.; Zhou, Z. SnF2-induced highly current-tolerant solid electrolytes for solid-state sodium batteries. Adv. Funct. Mater. 2023, 33, 2306558.
Chen, J. Y.; Feng, S.; Lai, H. J.; Lu, Y.; Liu, W. H.; Wu, X. W.; Wen, Z. Y. Interface ionic/electronic redistribution driven by conversion-alloy reaction for high-performance solid-state sodium batteries. Small Methods 2024, 8, 2301201.
Hu, P.; Zhang, Y.; Chi, X. W.; Kumar Rao, K.; Hao, F.; Dong, H.; Guo, F. M.; Ren, Y.; Grabow, L. C.; Yao, Y. Stabilizing the interface between sodium metal anode and sulfide-based solid-state electrolyte with an electron-blocking interlayer. ACS Appl. Mater. Interfaces 2019, 11, 9672–9678.
Hao, F.; Han, F. D.; Liang, Y. L.; Wang, C. S.; Yao, Y. Architectural design and fabrication approaches for solid-state batteries. MRS Bull. 2018, 43, 775–781.
Wang, Z. Q.; Hu, J. T.; Han, L.; Wang, Z. J.; Wang, H. B.; Zhao, Q. H.; Liu, J. J.; Pan, F. A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. Nano Energy 2019, 56, 92–99.
Chi, L.; Lei, H.; Xiao, Y.; Nie, X.; Li, Y.; Wang, Q.; Cai, W.; Dai, C.; Yao, M.; Zhang, Y. et al. Recent development in addressing challenges and implementing strategies for manganese dioxide cathodes in aqueous zinc ion batteries. Energy Mater. 2024, 4, 400036.
Ma, L. T.; Chen, S. M.; Li, N.; Liu, Z. X.; Tang, Z. J.; Zapien, J. A.; Chen, S. M.; Fan, J.; Zhi, C. Y. Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 2020, 32, 1908121.
Yang, X. T.; Nie, X. X.; Tang, C. K.; Xiao, Y. Y.; Li, Q. G.; Yuan, D.; Yao, M. Biomass materials for zinc-based sustainable and green energy storage devices: Strategy and mechanism. Nano Res. 2025, 18, 94907031.
Mo, F. N.; Chen, Z.; Liang, G. J.; Wang, D. H.; Zhao, Y. W.; Li, H. F.; Dong, B. B.; Zhi, C. Y. Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn–MnO2 batteries with superior rate capabilities. Adv. Energy Mater. 2020, 10, 2000035.
Tang, Y.; Liu, C. X.; Zhu, H. R.; Xie, X. S.; Gao, J. W.; Deng, C. B.; Han, M. M.; Liang, S. Q.; Zhou, J. Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 2020, 27, 109–116.
Liu, C. X.; Xie, X. S.; Lu, B. G.; Zhou, J.; Liang, S. Q. Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 2021, 6, 1015–1033.
Qu, X. L.; ang, Y.; Du, A. B.; Dong, S. M.; Cui, G. L. Polymer electrolytes—New opportunities for the development of multivalent ion batteries. Chem. Asian J. 2021, 16, 3272–3280.
Chen, S. M.; Ying, Y. R.; Ma, L. T.; Zhu, D. M.; Huang, H. T.; Song, L.; Zhi, C. Y. An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode. Nat. Commun. 2023, 14, 2925.
Zhan, Y.; Zhang, W.; Lei, B.; Liu, H. W.; Li, W. H. Recent development of Mg ion solid electrolyte. Front. Chem. 2020, 8, 125.
Li, Q. G.; Wang, C.; Zhu, Y.; Du, W. Z.; Liu, W. X.; Yao, M.; Wang, Y. Q.; Qian, Y. M.; Feng, S. J. Unlocking the critical role of Mg doping in α-MnO2 cathode for aqueous zinc ion batteries. Chem. Eng. J. 2024, 485, 150077.
Ikeda, S.; Takahashi, M.; Ishikawa, J.; Ito, K. Solid electrolytes with multivalent cation conduction. 1. Conducting species in Mg–Zr–PO4 system. Solid State Ionics 1987, 23, 125–129.
Su, J.; Tsuruoka, T.; Tsujita, T.; Nishitani, Y.; Nakura, K.; Terabe, K. Atomic layer deposition of a magnesium phosphate solid electrolyte. Chem. Mater. 2019, 31, 5566–5575.
Higashi, S.; Miwa, K.; Aokia, M.; Takechia, K. A novel inorganic solid state ion conductor for rechargeable Mg batteries. Chem. Commun. 2014, 50, 1320–1322.
Roedern, E.; Kühnel, R. S.; Remhof, A.; Battaglia, C. Magnesium ethylenediamine borohydride as solid-state electrolyte for magnesium batteries. Sci. Rep. 2017, 7, 46189.
Zhu, F. L.; Bao, H. F.; Wu, X. S.; Tao, Y. L.; Qin, C.; Su, Z. M.; Kang, Z. H. High-performance metal–organic framework-based single ion conducting solid-state electrolytes for low-temperature lithium metal batteries. ACS Appl. Mater. Interfaces 2019, 11, 43206–43213.
Canepa, P.; Bo, S. H.; Sai Gautam, G.; Key, B.; Richards, W. D.; Shi, T.; Tian, Y. S.; Wang, Y.; Li, J. C.; Ceder, G. High magnesium mobility in ternary spinel chalcogenides. Nat. Commun. 2017, 8, 1759.
Merrill, L. C.; Ford, H. O.; Schaefer, J. L. Application of single-ion conducting gel polymer electrolytes in magnesium batteries. ACS Appl. Energy Mater. 2019, 2, 6355–6363.
Anilkumar, K. M.; Jinisha, B.; Manoj, M.; Jayalekshmi, S. Poly(ethylene oxide) (PEO)–poly(vinyl pyrrolidone) (PVP) blend polymer based solid electrolyte membranes for developing solid state magnesium ion cells. Eur. Polym. J. 2017, 89, 249–262.
Pandey, G. P.; Agrawal, R. C.; Hashmi, S. A. Magnesium ion-conducting gel polymer electrolytes dispersed with nanosized magnesium oxide. J. Power Sources 2009, 190, 563–572.
Sun, J. C.; Zou, Y. B.; Gao, S. Z.; Shao, L. Y.; Chen, C. C. Robust strategy of quasi-solid-state electrolytes to boost the stability and compatibility of Mg ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 54711–54719.
Chinnadurai, D.; Li, Y. J.; Zhang, C.; Yang, G. L.; Lieu, W. Y.; Kumar, S.; Xing, Z. X.; Liu, W.; Seh, Z. W. Chloride-free electrolyte based on tetrabutylammonium triflate additive for extended anodic stability in magnesium batteries. Nano Lett. 2023, 23, 11233–11242.
Selis, S. M.; Wondowski, J. P.; Justus, R. F. A high-rate, high-energy thermal battery system. J. Electrochem. Soc. 1964, 111, 6.
Zhang, S.; Long, T.; Zhang, H. Z.; Zhao, Q. Y.; Zhang, F.; Wu, X. W.; Zeng, X. X. Electrolytes for multivalent metal-ion batteries: Current status and future prospect. ChemSusChem 2022, 15, e202200999.
Koettgen, J.; Bartel, C. J.; Shen, J. X.; Persson, K. A.; Ceder, G. First-principles study of CaB12H12 as a potential solid-state conductor for Ca. Phys. Chem. Chem. Phys. 2020, 22, 27600–27604.
Wang, J. Y.; Genier, F. S.; Li, H. S.; Biria, S.; Hosein, I. D. A solid polymer electrolyte from cross-linked polytetrahydrofuran for calcium ion conduction. ACS Appl. Polym. Mater. 2019, 1, 1837–1844.
Biria, S.; Pathreeker, S.; Genier, F. S.; Hosein, I. D. A highly conductive and thermally stable ionic liquid gel electrolyte for calcium-ion batteries. ACS Appl. Polym. Mater. 2020, 2, 2111–2118.
Genier, F. S.; Burdin, C. V.; Biria, S.; Hosein, I. D. A novel calcium-ion solid polymer electrolyte based on crosslinked poly(ethylene glycol) diacrylate. J. Power Sources 2019, 414, 302–307.
Pathreeker, S.; Hosein, I. D. Vinylimidazole-based polymer electrolytes with superior conductivity and promising electrochemical performance for calcium batteries. ACS Appl. Polym. Mater. 2022, 4, 6803–6811.
Shen, X. J.; Sun, T.; Wu, Z. J.; Tan, L. Ultrafast charging and ultralong cycle life in solid-state Al-ion batteries. J. Mater. Chem. A 2022, 10, 8178–8185.
Meng, P. Y.; Huang, J.; Yang, Z. H.; Jiang, M.; Wang, Y. B.; Zhang, W.; Zhang, J.; Sun, B. D.; Fu, C. P. Air-stable binary hydrated eutectic electrolytes with unique solvation structure for rechargeable aluminum-ion batteries. Nano-Micro Lett. 2023, 15, 188.
Li, L. H.; Chen, H.; He, E.; Wang, L.; Ye, T. T.; Lu, J.; Jiao, Y. D.; Wang, J. C.; Gao, R.; Peng, H. S. et al. High-energy-density magnesium–air battery based on dual-layer gel electrolyte. Angew. Chem., Int. Ed. 2021, 60, 15317–15322.
Lv, Q.; Jing, Y. T.; Wang, B.; Wu, B. C.; Wang, S. J.; Li, C.; Wang, L.; Xiao, L. H.; Wang, D. L.; Liu, H. K. et al. Multilayer asymmetric solid polymer electrolyte with modified interface for high-voltage solid-state Li metal batteries. Energy Storage Mater. 2024, 65, 103122.
Li, J. J.; He, R. Y.; Yuan, H.; Fang, F.; Zhou, G. B.; Yang, Z. Molecular insights into the effect of asymmetric anions on lithium coordination and transport properties in salt-doped poly(ionic liquid) electrolytes. Macromolecules 2022, 55, 6703–6715.
Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.
Saeed, M. A. M.; Abdullah, O. G. Effect of high ammonium salt concentration and temperature on the structure, morphology, and ionic conductivity of proton-conductor solid polymer electrolytes based PVA. Membranes 2020, 10, 262.
Chapi, S. Optical, electrical and electrochemical properties of PCL5/ITO transparent conductive films deposited by spin-coating—Materials for single-layer devices. J. Sci.: Adv. Mater. Dev. 2020, 5, 322–329.
Zhu, Y. Q.; Wu, T.; Sun, J. G.; Kotobuki, M. Highly conductive lithium aluminum germanium phosphate solid electrolyte prepared by sol–gel method and hot-pressing. Solid State Ionics 2020, 350, 115320.
Xu, B.; Liu, M. H.; Zhang, X. L.; Li, T. R. Study of the industrialization performance of Co-doped (Al–Ta, Al–Nb) modified Li7La3Zr2O12 solid electrolyte. Solid State Ionics 2024, 406, 116446.
Chen, S. Y.; Hsieh, C. T.; Zhang, R. S.; Mohanty, D.; Gandomi, Y. A.; Hung, I. M. Hybrid solid state electrolytes blending NASICON-type Li1+ x Al x Ti2− x (PO4)3 with poly(vinylidene fluoride-co-hexafluoropropene) for lithium metal batteries. Electrochim. Acta 2022, 427, 140903.
Loho, C.; Djenadic, R.; Clemens, O.; Hahn, H. Recent developments in garnet-type solid state electrolyte thin-films grown by CO2-laser assisted chemical vapor deposition. Meet. Abstr. 2016, MA2016–03, 718.
Ahuja, K.; Sallaz, V.; Nuwayhid, R. B.; Voiron, F.; Mccluskey, P.; Rubloff, G. W.; Gregorczyk, K. E. Ultra-thin on-chip ALD LiPON capacitors for high frequency application. J. Power Sources 2023, 575, 233056.
Bao, W. D.; Zhang, Y.; Shang, R. L.; Cong, F. F.; Zhao, H. J.; Zuo, Y. Q.; Yi, B. L.; Xie, J. Incorporating binary metal oxides in poly(ethylene oxide)-based solid electrolytes by vapor phase infiltration. ACS Appl. Mater. Interfaces 2023, 15, 5317–5325.