PDF (14.3 MB)
Collect
Submit Manuscript
Research Article | Open Access

Mixed-valence Cu-based metal-organic framework for selective CO2 electroreduction to C1 liquid fuels with high energy conversion efficiency

Luyao Wang1Fengting Li1,2,3 ()Yifan Gu1,2,3 ()
College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
Key Laboratory of Cities’ Mitigation and Adaptation to Climate Change, Shanghai, China Meteorological Administration (CMA), Tongji University, Shanghai 200092, China
Show Author Information

Graphical Abstract

View original image Download original image
This work demonstrates the preparation of a novel mixed-valence Cu-based metal-organic framework Tongji University Environment (TJE)-ttfp (ttfp = 4-{2-[4,5-di(4-pyridinyl)-1,3-dithiol-2-ylidene]-5-(4-pyridinyl)-1,3-dithiol-4-yl}pyridine) using an electron-rich linker for electrocatalytic reduction of CO2. The designed material delivered a remarkable Faradaic efficiency of 99.2% for C1 liquid fuels at a low reduction potential of −0.1 V versus reversible hydrogen electrode.

Abstract

Efficient CO2 electroreduction requires catalysts for enhanced energy conversion efficiency and carbon product selectivity with low overpotential, in consideration of the interference of competitive H2 evolution reaction and complex intermediate species involved. We proposed that adaptive electronic structures based on dynamic mixed-valence interconversion would facilitate electron transfer and intermediate turnover during the catalysis, ensuring high activity, selectivity, and durability. Herein, a novel mixed-valence Cu-based metal-organic framework was prepared using an electron-rich linker for electrocatalytic reduction of CO2. The designed material delivered a remarkable Faradaic efficiency of 99.2% for C1 liquid fuels at a low reduction potential of −0.1 V versus reversible hydrogen electrode, considerably higher than that of the commercial copper foam and competitive to the Cu-based electrocatalysts reported. The experimental data and theoretical calculations verified the Cu(I)/Cu(II) interconversion and the much higher energy barrier of H2 evolution than carbon product generation. Such a feasible strategy, simultaneously improving energy conversion efficiency, carbon product selectivity, and structural robustness, provides great insights into rational catalyst customization for sustainable CO2 conversion.

Electronic Supplementary Material

Download File(s)
7317_ESM.pdf (2.2 MB)

References

[1]

Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A. et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 2013, 113, 6621–6658.

[2]

Whipple, D. T.; Kenis, P. J. A. Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J. Phys. Chem. Lett. 2010, 1, 3451–3458.

[3]

Pan, F. P.; Yang, Y. Designing CO2 reduction electrode materials by morphology and interface engineering. Energy Environ. Sci. 2020, 13, 2275–2309.

[4]

Li, J. W.; Li, S. K.; Zhang, Y. H.; Liu, Z. Q. Principles of designing electrocatalysts to boost C–N coupling reactions for urea synthesis. EcoEnergy 2024, 2, 679–694.

[5]

Zheng, W. R.; Nayak, S.; Yuan, W. Z.; Zeng, Z. Y.; Hong, X. L.; Vincent, K. A.; Tsang, S. C. E. A tunable metal-polyaniline interface for efficient carbon dioxide electro-reduction to formic acid and methanol in aqueous solution. Chem. Commun. 2016, 52, 13901–13904.

[6]

Cao, Z.; Derrick, J. S.; Xu, J.; Gao, R.; Gong, M.; Nichols, E. M.; Smith, P. T.; Liu, X.; Wen, X. D.; Copéret, C. et al. Chelating N-heterocyclic carbene ligands enable tuning of electrocatalytic CO2 reduction to formate and carbon monoxide: Surface organometallic chemistry. Angew. Chem., Int. Ed. 2018, 57, 4981–4985.

[7]

Li, Y.; Shi, G. Q.; Chen, T.; Zhu, L.; Yu, D. F.; Sun, Y.; Besenbacher, F.; Yu, M. Simultaneous increase of conductivity, active sites and structural strain by nitrogen injection for high-yield CO2 electro-hydrogenation to liquid fuel. Appl. Catal. B: Environ. 2022, 305, 121080.

[8]

Yin, J.; Yin, Z. Y.; Jin, J.; Sun, M. Z.; Huang, B. L.; Lin, H. H.; Ma, Z. H.; Muzzio, M.; Shen, M. Q.; Yu, C. et al. A new hexagonal cobalt nanosheet catalyst for selective CO2 conversion to ethanal. J. Am. Chem. Soc. 2021, 143, 15335–15343.

[9]

Zhang, C. M.; Lin, Z. Y.; Jiao, L.; Jiang, H. L. Metal-organic frameworks for electrocatalytic CO2 reduction: From catalytic site design to microenvironment modulation. Angew. Chem., Int. Ed. 2024, 63, e202414506.

[10]

Wang, C. L.; Lv, Z. H.; Yang, W. X.; Feng, X.; Wang, B. A rational design of functional porous frameworks for electrocatalytic CO2 reduction reaction. Chem. Soc. Rev. 2023, 52, 1382–1427.

[11]

Liu, Y. Y.; Zhu, H. L.; Zhao, Z. H.; Huang, N. Y.; Liao, P. Q.; Chen, X. M. Insight into the effect of the d-orbital energy of copper ions in metal-organic frameworks on the selectivity of electroreduction of CO2 to CH4. ACS Catal. 2022, 12, 2749–2755.

[12]

Yi, J. D.; Si, D. H.; Xie, R. K.; Yin, Q.; Zhang, M. D.; Wu, Q.; Chai, G. L.; Huang, Y. B.; Cao, R. Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2021, 60, 17108–17114.

[13]

Hou, M.; Shi, Y. X.; Li, J. J.; Gao, Z. Q.; Zhang, Z. C. Cu-based organic-inorganic composite materials for electrochemical CO2 reduction. Chem.—Asian J. 2022, 17, e202200624.

[14]

Chang, F. F.; Xiao, M. L.; Miao, R. F.; Liu, Y. P.; Ren, M. Y.; Jia, Z. C.; Han, D. D.; Yuan, Y.; Bai, Z. Y.; Yang, L. Copper-based catalysts for electrochemical carbon dioxide reduction to multicarbon products. Electrochem. Energy Rev. 2022, 5, 4.

[15]

Wang, C. L.; Lv, Z. H.; Liu, Y. R.; Dai, L.; Liu, R.; Sun, C. T.; Liu, W. Y.; Feng, X.; Yang, W. X.; Wang, B. Asymmetric Cu–N1O3 sites coupling atop-type and bridge-type adsorbed *C1 for electrocatalytic CO2-to-C2 conversion. Angew. Chem., Int. Ed. 2024, 63, e202411216.

[16]

Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809–1831.

[17]

Wan, Z. X.; Kuchkaev, A.; Yakhvarov, D.; Kang, X. W. Monodispersed Cu-TCPP/Cu2O hybrid microspheres: A superior cascade electrocatalyst toward CO2 reduction to C2 products. J. Electrochem. 2024, 30, 2303271.

[18]

Liu, T. Y.; Yabu, H. Copper nanoclusters derived from copper phthalocyanine as real active sites for CO2 electroreduction: Exploring size dependency on selectivity—A mini review. EcoEnergy 2024, 2, 419–432.

[19]

Chang, B.; Zhang, F. T.; Min, Z. J.; Wang, N.; Xia, Q. C.; Fan, J.; Fan, M. H.; Wang, J. J. Confined CuI sites in partially electro-reduced 2D conductive Cu-MOF film for boosting CO2 electrocatalysis to C2 products. Chem. Eng. J. 2024, 496, 153993.

[20]

Diercks, C. S.; Liu, Y. Z.; Cordova, K. E.; Yaghi, O. M. The role of reticular chemistry in the design of CO2 reduction catalysts. Nat. Mater. 2018, 17, 301–307.

[21]

Nam, D. H.; Bushuyev, O. S.; Li, J.; De Luna, P.; Seifitokaldani, A.; Dinh, C. T.; de Arquer, F. P. G.; Wang, Y. H.; Liang, Z. Q.; Proppe, A. H. et al. Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 2018, 140, 11378–11386.

[22]

Fu, Q.; Xie, K.; Tan, S.; Ren, J. M.; Zhao, Q.; Webley, P. A.; Qiao, G. G. The use of reduced copper metal-organic frameworks to facilitate CuAAC click chemistry. Chem. Commun. 2016, 52, 12226–12229.

[23]

Zhang, D. J.; Zhang, J. C.; Zhang, R. C.; Shi, H. Z.; Guo, Y. Y.; Guo, X. L.; Li, S. J.; Yuan, B. Q. 3D porous metal-organic framework as an efficient electrocatalyst for nonenzymatic sensing application. Talanta 2015, 144, 1176–1181.

[24]

Shi, D. Y.; Zheng, R.; Sun, M. J.; Cao, X. R.; Sun, C. X.; Cui, C. J.; Liu, C. S.; Zhao, J. W.; Du, M. Semiconductive copper(I)-organic frameworks for efficient light-driven hydrogen generation without additional photosensitizers and cocatalysts. Angew. Chem., Int. Ed. 2017, 56, 14637–14641.

[25]

Wang, Y. M.; Mo, K. M.; Luo, D.; Tao, M. X.; Chen, X.; Ning, G. H.; Li, D. A mixed-valence CuI/CuII metal-organic framework for CO2 conversion. Inorg. Chem. Front. 2024, 11, 6072–6078.

[26]

Jiang, X. L.; Jiao, Y. E.; Hou, S. L.; Geng, L. C.; Wang, H. Z.; Zhao, B. Green conversion of CO2 and propargylamines triggered by triply synergistic catalytic effects in metal-organic frameworks. Angew. Chem., Int. Ed. 2021, 60, 20417–20423.

[27]

Gao, Y. J.; Zhang, L.; Gu, Y. M.; Zhang, W. W.; Pan, Y.; Fang, W. H.; Ma, J.; Lan, Y. Q.; Bai, J. F. Formation of a mixed-valence Cu(I)/Cu(II) metal-organic framework with the full light spectrum and high selectivity of CO2 photoreduction into CH4. Chem. Sci. 2020, 11, 10143–10148.

[28]

Huang, N. Y.; Shen, J. Q.; Ye, Z. M.; Zhang, W. X.; Liao, P. Q.; Chen, X. M. An exceptionally stable octacobalt-cluster-based metal-organic framework for enhanced water oxidation catalysis. Chem. Sci. 2019, 10, 9859–9864.

[29]

Smolders, S.; Lomachenko, K. A.; Bueken, B.; Struyf, A.; Bugaev, A. L.; Atzori, C.; Stock, N.; Lamberti, C.; Roeffaers, M. B. J.; De Vos, D. E. Unravelling the redox-catalytic behavior of Ce4+ metal-organic frameworks by X-ray absorption spectroscopy. Chemphyschem 2018, 19, 373–378.

[30]

Zhang, T.; Hu, Y. Q.; Han, T.; Zhai, Y. Q.; Zheng, Y. Z. Redox-active cobalt(II/III) metal-organic framework for selective oxidation of cyclohexene. ACS Appl. Mater. Interfaces 2018, 10, 15786–15792.

[31]

Kong, X. J.; He, T.; Bezrukov, A. A.; Darwish, S.; Si, G. R.; Zhang, Y. Z.; Wu, W.; Wang, Y. J.; Li, X.; Kumar, N. et al. Reversible Co(II)–Co(III) transformation in a family of metal-dipyrazolate frameworks. J. Am. Chem. Soc. 2024, 146, 28320–28328.

[32]

O’Driscoll, L. J.; Andersen, S. S.; Solano, M. V.; Bendixen, D.; Jensen, M.; Duedal, T.; Lycoops, J.; van der Pol, C.; Sørensen, R. E.; Larsen, K. R. et al. Advances in the synthesis of functionalised pyrrolotetrathiafulvalenes. Beilstein J. Org. Chem. 2015, 11, 1112–1122.

[33]

Canevet, D.; Sallé, M.; Zhang, G. X.; Zhang, D. Q.; Zhu, D. B. Tetrathiafulvalene (TTF) derivatives: Key building-blocks for switchable processes. Chem. Commun. 2009, 2009, 2245–2269.

[34]

Wang, Y. R.; Huang, Q.; He, C. T.; Chen, Y. F.; Liu, J.; Shen, F. C.; Lan, Y. Q. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nat. Commun. 2018, 9, 4466.

[35]

Wang, X. K.; Liu, J.; Zhang, L.; Dong, L. Z.; Li, S. L.; Kan, Y. H.; Li, D. S.; Lan, Y. Q. Monometallic catalytic models hosted in stable metal-organic frameworks for tunable CO2 photoreduction. ACS Catal. 2019, 9, 1726–1732.

[36]

Zhang, Y.; Dong, L. Z.; Li, S.; Huang, X.; Chang, J. N.; Wang, J. H.; Zhou, J.; Li, S. L.; Lan, Y. Q. Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4. Nat. Commun. 2021, 12, 6390.

[37]

van den Berg, D.; Lopuhaä, H. P.; Kortlever, R. Direct quantification of electrochemical CO2 reduction products with an improved DEMS setup. Chem Catal. 2024, 4, 101065.

[38]

Guo, W. J.; Cao, X. Y.; Tan, D. X.; Wulan, B.; Ma, J. Z.; Zhang, J. T. Thermal-driven dispersion of bismuth nanoparticles among carbon matrix for efficient carbon dioxide reduction. Angew. Chem., Int. Ed. 2024, 63, e202401333.

[39]

Chen, Z. Y.; Wang, C. H.; Zhong, X.; Lei, H.; Li, J. W.; Ji, Y.; Liu, C. X.; Ding, M.; Dai, Y. Z.; Li, X. et al. Achieving efficient CO2 electrolysis to CO by local coordination manipulation of nickel single-atom catalysts. Nano Lett. 2023, 23, 7046–7053.

[40]

Yang, K.; Sun, Y. T.; Chen, S.; Li, M.; Zheng, M.; Ma, L. S.; Fan, W. J.; Zheng, Y.; Li, Q.; Duan, J. J. Less-coordinated atomic copper-dimer boosted carbon–carbon coupling during electrochemical CO2 reduction. Small 2023, 19, 2301536.

Nano Research
Article number: 94907317
Cite this article:
Wang L, Li F, Gu Y. Mixed-valence Cu-based metal-organic framework for selective CO2 electroreduction to C1 liquid fuels with high energy conversion efficiency. Nano Research, 2025, 18(4): 94907317. https://doi.org/10.26599/NR.2025.94907317
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return