PDF (14.4 MB)
Collect
Submit Manuscript
Research Article | Open Access

High capacity and efficient dehydrogenation of aluminum hydride: Optimized by highly active TiN nanoparticles with low addition

Shaolei Zhao1,2Qingyun Shi1,2Long Liang1,2Chunmin Zhang1,2Qingshuang Wang3Chunli Wang1 ()Ying Wang1Pai Huang1 ()Limin Wang1,2Yong Cheng1 ()
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
Show Author Information

Graphical Abstract

View original image Download original image
This work utilizes the synergistic effect of metal and non-metal on active hydrogen, reducing the dehydrogenation temperature of aluminum hydride while improving its low-temperature dehydrogenation kinetics.

Abstract

Improving the dehydrogenation behavior of aluminum hydride (AlH3) by introducing additives provides a promising avenue in portable hydrogen source applications. However, the challenge remains in the development of highly active additives that facilitate hydrogen storage in composites while maintaining high capacity with a relatively small amount of additive. This work presents the successful synthesis of TiN nanoparticles by nitriding reaction using TiO2 as the precursor. The onset dehydrogenation temperature of AlH3 could be remarkably reduced to 52.9 °C on account of the catalytic effect of TiN nanoparticles. Furthermore, the composite exhibits a close approximation to the realistic capacity of pure aluminum hydride, with a maximum capacity of 9.9 wt.%. The notable decrease in the apparent dehydrogenation activation energy of AlH3 from 130.86 to 86.69 kJ·mol−1 after the incorporation of TiN substantiates the pivotal role of multivalent titanium and nitrogen.

Electronic Supplementary Material

Download File(s)
7318_ESM.pdf (1.1 MB)

References

[1]

Olabi, A. G.; Sayed, E. T. Developments in hydrogen fuel cells. Energies 2023, 16, 2431.

[2]

Gitushi, K. M.; Blaylock, M. L.; Klebanoff, L. E. Hydrogen gas dispersion studies for hydrogen fuel cell vessels II: Fuel cell room releases and the influence of ventilation. Int. J. Hydrogen Energy 2022, 47, 21492–21505.

[3]

Ouyang, L. Z.; Jiang, J.; Chen, K.; Zhu, M.; Liu, Z. W. Hydrogen production via hydrolysis and alcoholysis of light metal-based materials: A review. Nano-Micro Lett. 2021, 13, 134.

[4]

Drawer, C.; Lange, J.; Kaltschmitt, M. Metal hydrides for hydrogen storage—Identification and evaluation of stationary and transportation applications. J. Energy Storage 2024, 77, 109988.

[5]

Wang, Y. T.; Xue, Y. D.; Züttel, A. Nanoscale engineering of solid-state materials for boosting hydrogen storage. Chem. Soc. Rev. 2024, 53, 972–1003.

[6]

Yan, S.; Wei, L. J.; Gong, Y.; Yang, K. Enhanced hydrogen storage properties of magnesium hydride by multifunctional carbon-based materials: A review. Int. J. Hydrogen Energy 2024, 55, 521–541.

[7]

Ren, L.; Li, Y. H.; Zhang, N.; Li, Z.; Lin, X.; Zhu, W.; Lu, C.; Ding, W. J.; Zou, J. X. Nanostructuring of Mg-based hydrogen storage materials: Recent advances for promoting key applications. Nano-Micro Lett. 2023, 15, 93.

[8]

Jiang, W.; Wang, H.; Zhu, M. AlH3 as a hydrogen storage material: Recent advances, prospects and challenges. Rare Met. 2021, 40, 3337–3356.

[9]

Nakagawa, Y.; Isobe, S.; Wang, Y. M.; Hashimoto, N.; Ohnuki, S.; Zeng, L.; Liu, S. S.; Ichikawa, T.; Kojima, Y. Dehydrogenation process of AlH3 observed by TEM. J. Alloys Compd. 2013, 580, S163–S166.

[10]

Yu, M. H.; Zhu, Z. Y.; Li, H. P.; Yan, Q. L. Advanced preparation and processing techniques for high energy fuel AlH3. Chem. Eng. J. 2021, 421, 129753.

[11]

Liu, H. Z.; Zhang, L. F.; Ma, H. Y.; Lu, C. L.; Luo, H.; Wang, X. H.; Huang, X. T.; Lan, Z. Q.; Guo, J. Aluminum hydride for solid-state hydrogen storage: Structure, synthesis, thermodynamics, kinetics, and regeneration. J. Energy Chem. 2021, 52, 428–440.

[12]

Deng, J. F.; Sun, B. X.; Xu, J. R.; Shi, Y.; Xie, L.; Zheng, J.; Li, X. G. A monolithic sponge catalyst for hydrogen generation from sodium borohydride solution for portable fuel cells. Inorg. Chem. Front. 2021, 8, 35–40.

[13]

Pramuanjaroenkij, A.; Kakaç, S. The fuel cell electric vehicles: The highlight review. Int. J. Hydrogen Energy 2023, 48, 9401–9425.

[14]

Netskina, O. V.; Tayban, E. S.; Ozerova, A. M.; Komova, O. V.; Simagina, V. I. Solid-state NaBH4/Co composite as hydrogen storage material: Effect of the pressing pressure on hydrogen generation rate. Energies 2019, 12, 1184.

[15]

Yusnizam, N. Y.; Ali, N. A.; Sazelee, N. A.; Nasef, M. M.; Jalil, A. A.; Ismail, M. Boosting the de-/rehydrogenation properties of MgH2 with the addition of BaCoF4. J. Alloys Compd. 2023, 967, 171618.

[16]

Pratthana, C.; Yang, Y. W.; Rawal, A.; Aguey-Zinsou, K. F. Nanoconfinement of lithium alanate for hydrogen storage. J. Alloys Compd. 2022, 926, 166834.

[17]

Lan, Z. Q.; Fu, H.; Zhao, R. L.; Liu, H. Z.; Zhou, W. Z.; Ning, H.; Guo, J. Roles of in situ-formed NbN and Nb2O5 from N-doped Nb2C MXene in regulating the re/hydrogenation and cycling performance of magnesium hydride. Chem. Eng. J. 2022, 431, 133985.

[18]

Ren, Z. H.; Zhang, X.; Huang, Z. G.; Hu, J. J.; Li, Y. Z.; Zheng, S. Y.; Gao, M. X.; Pan, H. G.; Liu, Y. F. Controllable synthesis of 2D TiH2 nanoflakes with superior catalytic activity for low-temperature hydrogen cycling of NaAlH4. Chem. Eng. J. 2022, 427, 131546.

[19]

Zhang, X. Y.; Sun, Y. H.; Ju, S. L.; Ye, J. K.; Hu, X. C.; Chen, W.; Yao, L.; Xia, G. L.; Fang, F.; Sun, D. L. et al. Solar‐driven reversible hydrogen storage. Adv. Mater. 2023, 35, 2206946.

[20]

Wei, S.; Liu, J. X.; Xia, Y. P.; Zhang, H. Z.; Cheng, R. G.; Sun, L. X.; Xu, F.; Bu, Y. T.; Liu, Z. Y.; Huang, P. R. et al. Enhanced hydrogen storage properties of LiAlH4 by excellent catalytic activity of XTiO3@h‐BN (X = Co, Ni). Adv. Funct. Mater. 2022, 32, 2110180.

[21]

Li, J. X.; Wang, S.; Du, Y. L.; Liao, W. H. Catalytic effect of Ti2C MXene on the dehydrogenation of MgH2. Int. J. Hydrogen Energy 2019, 44, 6787–6794.

[22]

He, S. X.; Li, G. X.; Wang, Y.; Liu, L.; Lu, Z. Q.; Xu, L.; Sheng, P.; Wang, X. H.; Chen, H. Q.; Huang, C. K. et al. Achieving both high hydrogen capacity and low decomposition temperature of the metastable AlH3 by proper ball milling with TiB2. Int. J. Hydrogen Energy 2023, 48, 3541–3551.

[23]

Liang, L.; Zhao, S. L.; Wang, C. L.; Yin, D. M.; Wang, S. H.; Wang, Q. S.; Liang, F.; Li, S. L.; Wang, L. M.; Cheng, Y. Heterojunction synergistic catalysis of MXene-supported PrF3 nanosheets for the efficient hydrogen storage of AlH3. Nano Res. 2023, 16, 9546–9552.

[24]

Kong, Q. Q.; Zhang, H. H.; Yuan, Z. L.; Liu, J. M.; Li, L. X.; Fan, Y. P.; Fan, G. X.; Liu, B. Z. Hamamelis-like K2Ti6O13 synthesized by alkali treatment of Ti3C2 MXene: Catalysis for hydrogen storage in MgH2. ACS Sustainable Chem. Eng. 2020, 8, 4755–4763.

[25]

Liang, L.; Zhang, C. M.; Zhao, S. L.; Liu, B. Z.; Wang, L. M.; Liang, F. Platinum-functionalized MXene serving as electron transport layer for highly efficiently catalyze dehydrogenation of AlH3 with capacity of 9.3 wt.%. Chem. Eng. J. 2023, 451, 138791.

[26]

Zhao, L.; Xu, F.; Zhang, C. C.; Wang, Z. Y.; Ju, H. Y.; Gao, X.; Zhang, X. X.; Sun, L. X.; Liu, Z. W. Enhanced hydrogen storage of alanates: Recent progress and future perspectives. Prog. Nat. Sci.: Mater. Int. 2021, 31, 165–179.

[27]

Liang, L.; Wang, C. L.; Ren, M. G.; Li, S. L.; Wu, Z. J.; Wang, L. M.; Liang, F. Unraveling the synergistic catalytic effects of TiO2 and Pr6O11 on superior dehydrogenation performances of α-AlH3. ACS Appl. Mater. Interfaces 2021, 13, 26998–27005.

[28]

Gao, H. G.; Shao, Y. T.; Shi, R.; Liu, Y. N.; Zhu, J. L.; Liu, J. C.; Zhu, Y. F.; Zhang, J. G.; Li, L. Q.; Hu, X. H. Effect of few-layer Ti3C2T x supported nano-Ni via self-assembly reduction on hydrogen storage performance of MgH2. ACS Appl. Mater. Interfaces 2020, 12, 47684–47694.

[29]

Nakagawa, Y.; Lee, C. H.; Matsui, K.; Kousaka, K.; Isobe, S.; Hashimoto, N.; Yamaguchi, S.; Miyaoka, H.; Ichikawa, T.; Kojima, Y. Doping effect of Nb species on hydrogen desorption properties of AlH3. J. Alloys Compd. 2018, 734, 55–59.

[30]

Duan, C. W.; Cao, Y. Z.; Hu, L. X.; Fu, D.; Ma, J. L.; Youngblood, J. An efficient mechanochemical synthesis of alpha-aluminum hydride: Synergistic effect of TiF3 on the crystallization rate and selective formation of alpha-aluminum hydride polymorph. J. Hazard. Mater. 2019, 373, 141–151.

[31]

Yang, J. X.; Liang, F.; Cheng, Y.; Yin, D. M.; Wang, L. M. Improvement of dehydrogenation performance by adding CeO2 to α-AlH3. Int. J. Hydrogen Energy 2020, 45, 2119–2126.

[32]

Liang, L.; Yang, Q. Q.; Zhao, S. L.; Wang, L. M.; Liang, F. Excellent catalytic effect of LaNi5 on hydrogen storage properties for aluminium hydride at mild temperature. Int. J. Hydrogen Energy 2021, 46, 38733–38740.

[33]

Mangolini, L.; Thimsen, E.; Kortshagen, U. High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 2005, 5, 655–659.

[34]

Schramke, K. S.; Qin, Y. X.; Held, J. T.; Mkhoyan, K. A.; Kortshagen, U. R. Nonthermal plasma synthesis of titanium nitride nanocrystals with plasmon resonances at near-infrared wavelengths relevant to photothermal therapy. ACS Appl. Nano Mater. 2018, 1, 2869–2876.

[35]

Shi, Q. Y.; Gao, Y. X.; Zhao, S. L.; Zhang, C. M.; Liu, C.; Wang, C. L.; Wang, S. H.; Li, Y. Z.; Yin, D. M.; Wang, L. M. et al. Interfacial engineering of fluorinated TiO2 nanosheets with abundant oxygen vacancies for boosting the hydrogen storage performance of MgH2. Small 2024, 20, 2307965.

[36]

Konashuk, A. S.; Filatova, E. O.; Sakhonenkov, S. S.; Kolomiiets, N. M.; Afanas’ev, V. V. Analysis of oxygen and nitrogen redistribution at interfaces of HfO2 with laminate TiN/TiAl/TiN electrodes. J. Phys. Chem. C 2020, 124, 16171–16176.

Nano Research
Article number: 94907318
Cite this article:
Zhao S, Shi Q, Liang L, et al. High capacity and efficient dehydrogenation of aluminum hydride: Optimized by highly active TiN nanoparticles with low addition. Nano Research, 2025, 18(4): 94907318. https://doi.org/10.26599/NR.2025.94907318
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return