PDF (14.2 MB)
Collect
Submit Manuscript
Research Article | Open Access

Efficient UV emission from carbon dots derived from a green-tea extract

Henry Opoku1Junkai Ren1Xin Zhou2Peijuan Zhang3Shi Tang1Dongfeng Dang3Ludvig Edman1,4 ()Jia Wang1,4 ()
Department of Physics, Umeå University, SE-90187 Umeå, Sweden
Department of Medical and Translational Biology, Umeå University, SE-90187 Umeå, Sweden
Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
Wallenberg Initiative Materials Science for Sustainability, Department of Physics, Umeå University, SE-90187 Umeå, Sweden
Show Author Information

Graphical Abstract

View original image Download original image
Ultraviolet (UV)-emitting carbon dots were synthesized by hydrothermal reaction of a renewable feedstock, a green-tea extract. When dissolved in water, they emit with a peak wavelength of 384 nm and a photoluminescence quantum yield of 17%. When they are dissolved in poorer solvents, the emission blue-shifts and the photoluminescence quantum yield increases significantly, which suggests that the carbon dots emit by aggregation-induced emission.

Abstract

Emissive carbon dots (CDs) that are synthesized from biomass can be highly sustainable, but the number of reported biomass-derived CDs that emit in the ultraviolet (UV) range is small. Moreover, current commercial UV-emitting materials rely heavily on the use of non-sustainable resources, such as rare metals, heavy metals, and petroleum chemicals. This yields that the development of efficient biomass-derived UV-CDs is desired. Here, we report on the hydrothermal conversion of a common green-tea extract (Polyphenon 60) into UV-CDs, which feature a photoluminescence (PL) peak wavelength of 384 nm, a full width at half maximum of 72 nm, and a photoluminescence quantum yield (PLQY) of 17% in water. By shifting to a lower-polarity solvent of 3-phenoxyanisole, the PLQY is strongly enhanced to 81%, and the PL peak blue-shifts to 370 nm, while the maximum solubility is lowered. These observations support the notion that the UV-CDs feature aggregation-induced emission and that they are endowed with hydrophilic surface groups. Moreover, the findings of excitation-wavelength-independent PL and a nanosecond-level short emission lifetime reveal that it is a single distinct fluorophore that produces the UV emission. We finally report preliminary results that the UV-CDs exhibit potential for inhibiting the proliferation of cancer cells.

Electronic Supplementary Material

Download File(s)
7321_ESM.pdf (780.9 KB)

References

[1]

Meng, W. X.; Bai, X.; Wang, B. Y.; Liu, Z. Y.; Lu, S. Y.; Yang, B. Biomass-derived carbon dots and their applications. Energy Environ. Mater. 2019, 2, 172–192.

[2]

Ren, J. K.; Opoku, H.; Tang, S.; Edman, L.; Wang, J. Carbon dots: A review with focus on sustainability. Adv. Sci. 2024, 11, 2405472.

[3]

Wang, P. P.; Wang, J. X.; Liu, T. T.; Sun, Z. P.; Gao, M.; Huang, K.; Wang, X. D. Loquat fruit-based carbon quantum dots as an “ON–OFF” probe for fluorescent assay of MnO4 in waters based on the joint action of inner filter effect and static quenching. Microchem. J. 2022, 178, 107374.

[4]

Liu, J.; Kong, T. Y.; Xiong, H. M. Mulberry-leaves-derived red-emissive carbon dots for feeding silkworms to produce brightly fluorescent silk. Adv. Mater. 2022, 34, 2200152.

[5]

Qiu, Y. J.; Li, D. N.; Li, Y. C.; Ma, X. J.; Li, J. N. Green carbon quantum dots from sustainable lignocellulosic biomass and its application in the detection of Fe3+. Cellulose 2022, 29, 367–378.

[6]

Dhandapani, E.; Duraisamy, N.; Mohan Raj, R. Green synthesis of carbon quantum dots from food waste. Mater. Today Proc. 2022, 51, 1696–1700.

[7]

Ferjani, H.; Abdalla, S.; Oyewo, O. A.; Onwudiwe, D. C. Facile synthesis of carbon dots by the hydrothermal carbonization of avocado peels and evaluation of the photocatalytic property. Inorg. Chem. Commun. 2024, 160, 111866.

[8]

Marouzi, S.; Darroudi, M.; Hekmat, A.; Sadri, K.; Kazemi Oskuee, R. One-pot hydrothermal synthesis of carbon quantum dots from Salvia hispanica L. seeds and investigation of their biodistribution, and cytotoxicity effects. J. Environ. Chem. Eng. 2021, 9, 105461.

[9]

Tang, S.; Liu, Y. F.; Opoku, H.; Gregorsson, M.; Zhang, P. J.; Auroux, E.; Dang, D. F.; Mudring, A. V.; Wågberg, T.; Edman, L. et al. Fluorescent carbon dots from birch leaves for sustainable electroluminescent devices. Green Chem. 2023, 25, 9884–9895.

[10]

Sharma, V. K.; Demir, H. V. Bright future of deep-ultraviolet photonics: Emerging UVC chip-scale light-source technology platforms, benchmarking, challenges, and outlook for UV disinfection. ACS Photonics 2022, 9, 1513–1521.

[11]

Qiao, Y. H.; Ma, Y. W.; Chen, X. M.; Guo, W. Y.; Min, Y. L.; Fan, J. C.; Shi, Z. X. Cellulose-based fluorescent films with anti-counterfeiting and UV shielding capabilities enabled by enamine bonds. Mater. Adv. 2023, 4, 2940–2949.

[12]

Vreman, H. J.; Wong, R. J.; Stevenson, D. K.; Route, R. K.; Reader, S. D.; Fejer, M. M.; Gale, R.; Seidman, D. S. Light-emitting diodes: A novel light source for phototherapy. Pediatr. Res. 1998, 44, 804–809.

[13]

Saar-Reismaa, P.; Erme, E.; Vaher, M.; Kulp, M.; Kaljurand, M.; Mazina-Šinkar, J. In situ determination of illegal drugs in oral fluid by portable capillary electrophoresis with deep UV excited fluorescence detection. Anal. Chem. 2018, 90, 6253–6258.

[14]

Soundar, R.; Manjunatha, H. C.; Vidya, Y. S.; Munirathnam, R.; Sasidhar, K. N.; Seenappa, L.; Sridhar, K. N.; Manjunatha, S.; Krishnakanth, E. Deep blue emission and latent finger print detection analysis of zinc gallate nanoparticles. Mater. Res. Bull. 2024, 174, 112701.

[15]

Yu, H. B.; Memon, M. H.; Jia, H. F.; Ding, Y. F.; Xiao, S. D.; Liu, X.; Kang, Y.; Wang, D. H.; Zhang, H. C.; Fang, S. et al. Deep-ultraviolet LEDs incorporated with SiO2-based microcavities toward high-speed ultraviolet light communication. Adv. Opt. Mater. 2022, 10, 2201738.

[16]

Memon, M. H.; Yu, H. B.; Jia, H. F.; Fang, S.; Wang, D. H.; Zhang, H. C.; Xiao, S. D.; Kang, Y.; Ding, Y. F.; Gong, C. et al. Quantum dots integrated deep-ultraviolet micro-LED array toward solar-blind and visible light dual-band optical communication. IEEE Electron Device Lett. 2023, 44, 472–475.

[17]

Zhang, W. J.; Li, B.; Chang, C.; Chen, F.; Zhang, Q.; Lin, Q. L.; Wang, L.; Yan, J. H.; Wang, F. F.; Chong, Y. H. et al. Stable and efficient pure blue quantum-dot LEDs enabled by inserting an anti-oxidation layer. Nat. Commun. 2024, 15, 783.

[18]

Chen, X. T.; Lin, X. F.; Zhou, L. K.; Sun, X. J.; Li, R.; Chen, M. Y.; Yang, Y. X.; Hou, W. J.; Wu, L. J.; Cao, W. R. et al. Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling. Nat. Commun. 2023, 14, 284.

[19]

Jang, K. Y.; Hwang, S. Y.; Woo, S. J.; Yoon, E.; Park, C. Y.; Kim, S. Y.; Kim, D. H.; Kim, H.; Park, J.; Sargent, E. H. et al. Efficient deep-blue light-emitting diodes through decoupling of colloidal perovskite quantum dots. Adv. Mater. 2024, 36, 2404856.

[20]

Shen, W.; Qiu, Y.; Jiang, J. Y.; Chen, Z. H.; He, Y. X.; Cui, H.; Liu, L. H.; Cheng, G.; Aleshin, A. N.; Chen, S. F. Stable deep-blue FAPbBr3 quantum dots facilitated by amorphous metal halide matrices. Chem. Commun. 2023, 59, 11137–11140.

[21]

Saha, A.; Yadav, R.; Aldakov, D.; Reiss, P. Gallium sulfide quantum dots with zinc sulfide and alumina shells showing efficient deep blue emission. Angew. Chem., Int. Ed. 2023, 62, e202311317.

[22]

Guo, Q. X.; Wang, L.; Yang, L. B.; Duan, J. B.; Du, H. N.; Ji, G. Q.; Liu, N.; Zhao, X.; Chen, C.; Xu, L. et al. Spectra stable deep-blue light-emitting diodes based on cryolite-like cerium(III) halides with nanosecond d-f emission. Sci. Adv. 2022, 8, eabq2148.

[23]

Feng, Z. J.; Cheng, Z.; Su, Z. H.; Wan, L.; Ge, S. Y.; Liu, H. X.; Ma, X. B.; Liu, F. T.; Lu, P. Realizing efficient deep blue light-emitting diodes and single component white light-emitting diodes with low efficiency roll-offs from anthracene-based organic emitters. Adv. Opt. Mater. 2024, 12, 2302839.

[24]

Xu, Y. W.; Liang, X. M.; Liang, Y. Q.; Guo, X. M.; Hanif, M.; Zhou, J. D.; Zhou, X. H.; Wang, C.; Yao, J. W.; Zhao, R. Y. et al. Efficient deep-blue fluorescent OLEDs with a high exciton utilization efficiency from a fully twisted phenanthroimidazole–anthracene emitter. ACS Appl. Mater. Interfaces 2019, 11, 31139–31146.

[25]

Wang, S. J.; Sun, L. L.; Zheng, Y. Y.; Zhang, Y. H.; Yu, N. N.; Yang, J. H.; Li, M. Y.; Chen, W. Y.; He, L. L.; Liu, B. et al. Large-area blade-coated deep-blue polymer light-emitting diodes with a narrowband and uniform emission. Adv. Sci. 2023, 10, 2205411.

[26]

Liu, B.; He, L. L.; Li, M. Y.; Yu, N. N.; Chen, W. Y.; Wang, S. J.; Sun, L. L.; Ni, M. J.; Bai, L. B.; Pan, W. C. et al. Improving the intrinsic stretchability of fully conjugated polymer for deep-blue polymer light-emitting diodes with a narrow band emission: Benefits of self-toughness effect. J. Phys. Chem. Lett. 2022, 13, 7286–7295.

[27]

Tang, L. B.; Ji, R. B.; Cao, X. K.; Lin, J. Y.; Jiang, H. X.; Li, X. M.; Teng, K. S.; Luk, C. M.; Zeng, S. J.; Hao, J. H. et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 2012, 6, 5102–5110.

[28]

Sai, L.; Jiao, S. P.; Yang, J. W. Ultraviolet carbon nanodots providing a dual-mode spectral matching platform for synergistic enhancement of the fluorescent sensing. Molecules 2020, 25, 2679.

[29]

Joseph, J.; Anappara, A. A. Microwave-assisted hydrothermal synthesis of UV-emitting carbon dots from tannic acid. New J. Chem. 2016, 40, 8110–8117.

[30]

Kalytchuk, S.; Zdražil, L.; Scheibe, M.; Zbořil, R. Purple-emissive carbon dots enhance sensitivity of Si photodetectors to ultraviolet range. Nanoscale 2020, 12, 8379–8384.

[31]

Sloniecka, M.; Le Roux, S.; Boman, P.; Byström, B.; Zhou, Q. J.; Danielson, P. Expression profiles of neuropeptides, neurotransmitters, and their receptors in human keratocytes in vitro and in situ. PLoS One 2015, 10, e0134157.

[32]

Wein, S.; Beyer, B.; Gohlke, A.; Blank, R.; Metges, C. C.; Wolffram, S. Systemic absorption of catechins after intraruminal or intraduodenal application of a green tea extract in cows. PLoS One 2016, 11, e0159428.

[33]

Tallei, T. E.; Fatimawali; Niode, N. J.; Idroes, R.; Zidan, B. M. R. M.; Mitra, S.; Celik, I.; Nainu, F.; Ağagündüz, D.; Emran, T. B. et al. A comprehensive review of the potential use of green tea polyphenols in the management of COVID-19. Evid. Based Complement. Alternat. Med. 2021, 2021, 7170736.

[34]

Khan, N.; Mukhtar, H. Tea polyphenols in promotion of human health. Nutrients 2019, 11, 39.

[35]

Wang, X.; Huang, J. H.; Fan, W.; Lu, H. M. Identification of green tea varieties and fast quantification of total polyphenols by near-infrared spectroscopy and ultraviolet-visible spectroscopy with chemometric algorithms. Anal. Methods 2015, 7, 787–792.

[36]
Barton, A. F. M. CRC Handbook of Solubility Parameters and Other Cohesion Parameters; 2nd ed. CRC Press: New York, 2017.
[37]

Wang, H.; Zhao, E. G.; Lam, J. W. Y.; Tang, B. Z. AIE luminogens: Emission brightened by aggregation. Mater. Today 2015, 18, 365–377.

[38]

Wu, Q. Y.; Zhang, T.; Peng, Q.; Wang, D.; Shuai, Z. G. Aggregation induced blue-shifted emission—The molecular picture from a QM/MM study. Phys. Chem. Chem. Phys. 2014, 16, 5545–5552.

[39]

Lu, L.; Yang, M. Y.; Kim, Y.; Zhang, T. T.; Kwon, N.; Li, H. D.; Park, S.; Yoon, J. An unconventional nano-AIEgen originating from a natural plant polyphenol for multicolor bioimaging. Cell Rep. Phys. Sci. 2022, 3, 100745.

[40]

Tran, K. H.; Morin, C.; Kühni, M.; Guibert, P. Fluorescence spectroscopy of anisole at elevated temperatures and pressures. Appl. Phys. B 2014, 115, 461–470.

[41]

Kou, X. Y.; Wang, Y. C.; Mei, Q.; Dong, W. F.; Li, L. Construction of carbon dots having aggregation-induced emission and intramolecular charge transfer properties. Dyes Pigm. 2023, 212, 111092.

[42]

Yang, H. Y.; Liu, Y. L.; Guo, Z. Y.; Lei, B. F.; Zhuang, J. L.; Zhang, X. J.; Liu, Z. M.; Hu, C. F. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nat. Commun. 2019, 10, 1789.

[43]
Beamson, G.; Briggs, D. XPS of Polymers Database; SurfaceSpectra Ltd., 2000.
[44]

Park, J. S.; Lee, M. H.; Jeon, I. Y.; Park, H. S.; Baek, J. B.; Song, H. K. Edge-exfoliated graphites for facile kinetics of delithiation. ACS Nano 2012, 6, 10770–10775.

[45]
MERCK. The Future of Solvents: BioRenewable [Online]. Sigma-Aldrich, 2021; https://www.sigmaaldrich.com/campaigns/biorenewable-solvents (accessed Jan 6, 2025).
[46]
ACM. 12 Principles of Green Chemistry [Online]. ACS Green Chemistry Institute, 2023; https://www.acs.org/greenchemistry/principles/12-principles-of-green-chemistry.html (accessed Jan 6, 2025).
[47]

Luo, H.; Lari, L.; Kim, H.; Hérou, S.; Tanase, L. C.; Lazarov, V. K.; Titirici, M. M. Structural evolution of carbon dots during low temperature pyrolysis. Nanoscale 2022, 14, 910–918.

[48]

Xie, F.; Xu, Z.; Jensen, A. C. S.; Ding, F. X.; Au, H.; Feng, J. Y.; Luo, H.; Qiao, M.; Guo, Z. Y.; Lu, Y. X. et al. Unveiling the role of hydrothermal carbon dots as anodes in sodium-ion batteries with ultrahigh initial coulombic efficiency. J. Mater. Chem. A 2019, 7, 27567–27575.

[49]

Xia, J. F.; Kawamura, Y.; Suehiro, T.; Chen, Y.; Sato, K. Carbon dots have antitumor action as monotherapy or combination therapy. Drug Discov. Ther. 2019, 13, 114–117.

[50]

Wang, Z. L.; Han, J.; Guo, Z. Y.; Wu, H.; Liu, Y. G.; Wang, W. Y.; Zhang, C. P.; Liu, J. N. Ginseng-based carbon dots inhibit the growth of squamous cancer cells by increasing ferroptosis. Front. Oncol. 2023, 13, 1097692.

Nano Research
Article number: 94907321
Cite this article:
Opoku H, Ren J, Zhou X, et al. Efficient UV emission from carbon dots derived from a green-tea extract. Nano Research, 2025, 18(4): 94907321. https://doi.org/10.26599/NR.2025.94907321
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return