Emissive carbon dots (CDs) that are synthesized from biomass can be highly sustainable, but the number of reported biomass-derived CDs that emit in the ultraviolet (UV) range is small. Moreover, current commercial UV-emitting materials rely heavily on the use of non-sustainable resources, such as rare metals, heavy metals, and petroleum chemicals. This yields that the development of efficient biomass-derived UV-CDs is desired. Here, we report on the hydrothermal conversion of a common green-tea extract (Polyphenon 60) into UV-CDs, which feature a photoluminescence (PL) peak wavelength of 384 nm, a full width at half maximum of 72 nm, and a photoluminescence quantum yield (PLQY) of 17% in water. By shifting to a lower-polarity solvent of 3-phenoxyanisole, the PLQY is strongly enhanced to 81%, and the PL peak blue-shifts to 370 nm, while the maximum solubility is lowered. These observations support the notion that the UV-CDs feature aggregation-induced emission and that they are endowed with hydrophilic surface groups. Moreover, the findings of excitation-wavelength-independent PL and a nanosecond-level short emission lifetime reveal that it is a single distinct fluorophore that produces the UV emission. We finally report preliminary results that the UV-CDs exhibit potential for inhibiting the proliferation of cancer cells.
Meng, W. X.; Bai, X.; Wang, B. Y.; Liu, Z. Y.; Lu, S. Y.; Yang, B. Biomass-derived carbon dots and their applications. Energy Environ. Mater. 2019, 2, 172–192.
Ren, J. K.; Opoku, H.; Tang, S.; Edman, L.; Wang, J. Carbon dots: A review with focus on sustainability. Adv. Sci. 2024, 11, 2405472.
Wang, P. P.; Wang, J. X.; Liu, T. T.; Sun, Z. P.; Gao, M.; Huang, K.; Wang, X. D. Loquat fruit-based carbon quantum dots as an “ON–OFF” probe for fluorescent assay of MnO4− in waters based on the joint action of inner filter effect and static quenching. Microchem. J. 2022, 178, 107374.
Liu, J.; Kong, T. Y.; Xiong, H. M. Mulberry-leaves-derived red-emissive carbon dots for feeding silkworms to produce brightly fluorescent silk. Adv. Mater. 2022, 34, 2200152.
Qiu, Y. J.; Li, D. N.; Li, Y. C.; Ma, X. J.; Li, J. N. Green carbon quantum dots from sustainable lignocellulosic biomass and its application in the detection of Fe3+. Cellulose 2022, 29, 367–378.
Dhandapani, E.; Duraisamy, N.; Mohan Raj, R. Green synthesis of carbon quantum dots from food waste. Mater. Today Proc. 2022, 51, 1696–1700.
Ferjani, H.; Abdalla, S.; Oyewo, O. A.; Onwudiwe, D. C. Facile synthesis of carbon dots by the hydrothermal carbonization of avocado peels and evaluation of the photocatalytic property. Inorg. Chem. Commun. 2024, 160, 111866.
Marouzi, S.; Darroudi, M.; Hekmat, A.; Sadri, K.; Kazemi Oskuee, R. One-pot hydrothermal synthesis of carbon quantum dots from Salvia hispanica L. seeds and investigation of their biodistribution, and cytotoxicity effects. J. Environ. Chem. Eng. 2021, 9, 105461.
Tang, S.; Liu, Y. F.; Opoku, H.; Gregorsson, M.; Zhang, P. J.; Auroux, E.; Dang, D. F.; Mudring, A. V.; Wågberg, T.; Edman, L. et al. Fluorescent carbon dots from birch leaves for sustainable electroluminescent devices. Green Chem. 2023, 25, 9884–9895.
Sharma, V. K.; Demir, H. V. Bright future of deep-ultraviolet photonics: Emerging UVC chip-scale light-source technology platforms, benchmarking, challenges, and outlook for UV disinfection. ACS Photonics 2022, 9, 1513–1521.
Qiao, Y. H.; Ma, Y. W.; Chen, X. M.; Guo, W. Y.; Min, Y. L.; Fan, J. C.; Shi, Z. X. Cellulose-based fluorescent films with anti-counterfeiting and UV shielding capabilities enabled by enamine bonds. Mater. Adv. 2023, 4, 2940–2949.
Vreman, H. J.; Wong, R. J.; Stevenson, D. K.; Route, R. K.; Reader, S. D.; Fejer, M. M.; Gale, R.; Seidman, D. S. Light-emitting diodes: A novel light source for phototherapy. Pediatr. Res. 1998, 44, 804–809.
Saar-Reismaa, P.; Erme, E.; Vaher, M.; Kulp, M.; Kaljurand, M.; Mazina-Šinkar, J. In situ determination of illegal drugs in oral fluid by portable capillary electrophoresis with deep UV excited fluorescence detection. Anal. Chem. 2018, 90, 6253–6258.
Soundar, R.; Manjunatha, H. C.; Vidya, Y. S.; Munirathnam, R.; Sasidhar, K. N.; Seenappa, L.; Sridhar, K. N.; Manjunatha, S.; Krishnakanth, E. Deep blue emission and latent finger print detection analysis of zinc gallate nanoparticles. Mater. Res. Bull. 2024, 174, 112701.
Yu, H. B.; Memon, M. H.; Jia, H. F.; Ding, Y. F.; Xiao, S. D.; Liu, X.; Kang, Y.; Wang, D. H.; Zhang, H. C.; Fang, S. et al. Deep-ultraviolet LEDs incorporated with SiO2-based microcavities toward high-speed ultraviolet light communication. Adv. Opt. Mater. 2022, 10, 2201738.
Memon, M. H.; Yu, H. B.; Jia, H. F.; Fang, S.; Wang, D. H.; Zhang, H. C.; Xiao, S. D.; Kang, Y.; Ding, Y. F.; Gong, C. et al. Quantum dots integrated deep-ultraviolet micro-LED array toward solar-blind and visible light dual-band optical communication. IEEE Electron Device Lett. 2023, 44, 472–475.
Zhang, W. J.; Li, B.; Chang, C.; Chen, F.; Zhang, Q.; Lin, Q. L.; Wang, L.; Yan, J. H.; Wang, F. F.; Chong, Y. H. et al. Stable and efficient pure blue quantum-dot LEDs enabled by inserting an anti-oxidation layer. Nat. Commun. 2024, 15, 783.
Chen, X. T.; Lin, X. F.; Zhou, L. K.; Sun, X. J.; Li, R.; Chen, M. Y.; Yang, Y. X.; Hou, W. J.; Wu, L. J.; Cao, W. R. et al. Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling. Nat. Commun. 2023, 14, 284.
Jang, K. Y.; Hwang, S. Y.; Woo, S. J.; Yoon, E.; Park, C. Y.; Kim, S. Y.; Kim, D. H.; Kim, H.; Park, J.; Sargent, E. H. et al. Efficient deep-blue light-emitting diodes through decoupling of colloidal perovskite quantum dots. Adv. Mater. 2024, 36, 2404856.
Shen, W.; Qiu, Y.; Jiang, J. Y.; Chen, Z. H.; He, Y. X.; Cui, H.; Liu, L. H.; Cheng, G.; Aleshin, A. N.; Chen, S. F. Stable deep-blue FAPbBr3 quantum dots facilitated by amorphous metal halide matrices. Chem. Commun. 2023, 59, 11137–11140.
Saha, A.; Yadav, R.; Aldakov, D.; Reiss, P. Gallium sulfide quantum dots with zinc sulfide and alumina shells showing efficient deep blue emission. Angew. Chem., Int. Ed. 2023, 62, e202311317.
Guo, Q. X.; Wang, L.; Yang, L. B.; Duan, J. B.; Du, H. N.; Ji, G. Q.; Liu, N.; Zhao, X.; Chen, C.; Xu, L. et al. Spectra stable deep-blue light-emitting diodes based on cryolite-like cerium(III) halides with nanosecond d-f emission. Sci. Adv. 2022, 8, eabq2148.
Feng, Z. J.; Cheng, Z.; Su, Z. H.; Wan, L.; Ge, S. Y.; Liu, H. X.; Ma, X. B.; Liu, F. T.; Lu, P. Realizing efficient deep blue light-emitting diodes and single component white light-emitting diodes with low efficiency roll-offs from anthracene-based organic emitters. Adv. Opt. Mater. 2024, 12, 2302839.
Xu, Y. W.; Liang, X. M.; Liang, Y. Q.; Guo, X. M.; Hanif, M.; Zhou, J. D.; Zhou, X. H.; Wang, C.; Yao, J. W.; Zhao, R. Y. et al. Efficient deep-blue fluorescent OLEDs with a high exciton utilization efficiency from a fully twisted phenanthroimidazole–anthracene emitter. ACS Appl. Mater. Interfaces 2019, 11, 31139–31146.
Wang, S. J.; Sun, L. L.; Zheng, Y. Y.; Zhang, Y. H.; Yu, N. N.; Yang, J. H.; Li, M. Y.; Chen, W. Y.; He, L. L.; Liu, B. et al. Large-area blade-coated deep-blue polymer light-emitting diodes with a narrowband and uniform emission. Adv. Sci. 2023, 10, 2205411.
Liu, B.; He, L. L.; Li, M. Y.; Yu, N. N.; Chen, W. Y.; Wang, S. J.; Sun, L. L.; Ni, M. J.; Bai, L. B.; Pan, W. C. et al. Improving the intrinsic stretchability of fully conjugated polymer for deep-blue polymer light-emitting diodes with a narrow band emission: Benefits of self-toughness effect. J. Phys. Chem. Lett. 2022, 13, 7286–7295.
Tang, L. B.; Ji, R. B.; Cao, X. K.; Lin, J. Y.; Jiang, H. X.; Li, X. M.; Teng, K. S.; Luk, C. M.; Zeng, S. J.; Hao, J. H. et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 2012, 6, 5102–5110.
Sai, L.; Jiao, S. P.; Yang, J. W. Ultraviolet carbon nanodots providing a dual-mode spectral matching platform for synergistic enhancement of the fluorescent sensing. Molecules 2020, 25, 2679.
Joseph, J.; Anappara, A. A. Microwave-assisted hydrothermal synthesis of UV-emitting carbon dots from tannic acid. New J. Chem. 2016, 40, 8110–8117.
Kalytchuk, S.; Zdražil, L.; Scheibe, M.; Zbořil, R. Purple-emissive carbon dots enhance sensitivity of Si photodetectors to ultraviolet range. Nanoscale 2020, 12, 8379–8384.
Sloniecka, M.; Le Roux, S.; Boman, P.; Byström, B.; Zhou, Q. J.; Danielson, P. Expression profiles of neuropeptides, neurotransmitters, and their receptors in human keratocytes in vitro and in situ. PLoS One 2015, 10, e0134157.
Wein, S.; Beyer, B.; Gohlke, A.; Blank, R.; Metges, C. C.; Wolffram, S. Systemic absorption of catechins after intraruminal or intraduodenal application of a green tea extract in cows. PLoS One 2016, 11, e0159428.
Tallei, T. E.; Fatimawali; Niode, N. J.; Idroes, R.; Zidan, B. M. R. M.; Mitra, S.; Celik, I.; Nainu, F.; Ağagündüz, D.; Emran, T. B. et al. A comprehensive review of the potential use of green tea polyphenols in the management of COVID-19. Evid. Based Complement. Alternat. Med. 2021, 2021, 7170736.
Khan, N.; Mukhtar, H. Tea polyphenols in promotion of human health. Nutrients 2019, 11, 39.
Wang, X.; Huang, J. H.; Fan, W.; Lu, H. M. Identification of green tea varieties and fast quantification of total polyphenols by near-infrared spectroscopy and ultraviolet-visible spectroscopy with chemometric algorithms. Anal. Methods 2015, 7, 787–792.
Wang, H.; Zhao, E. G.; Lam, J. W. Y.; Tang, B. Z. AIE luminogens: Emission brightened by aggregation. Mater. Today 2015, 18, 365–377.
Wu, Q. Y.; Zhang, T.; Peng, Q.; Wang, D.; Shuai, Z. G. Aggregation induced blue-shifted emission—The molecular picture from a QM/MM study. Phys. Chem. Chem. Phys. 2014, 16, 5545–5552.
Lu, L.; Yang, M. Y.; Kim, Y.; Zhang, T. T.; Kwon, N.; Li, H. D.; Park, S.; Yoon, J. An unconventional nano-AIEgen originating from a natural plant polyphenol for multicolor bioimaging. Cell Rep. Phys. Sci. 2022, 3, 100745.
Tran, K. H.; Morin, C.; Kühni, M.; Guibert, P. Fluorescence spectroscopy of anisole at elevated temperatures and pressures. Appl. Phys. B 2014, 115, 461–470.
Kou, X. Y.; Wang, Y. C.; Mei, Q.; Dong, W. F.; Li, L. Construction of carbon dots having aggregation-induced emission and intramolecular charge transfer properties. Dyes Pigm. 2023, 212, 111092.
Yang, H. Y.; Liu, Y. L.; Guo, Z. Y.; Lei, B. F.; Zhuang, J. L.; Zhang, X. J.; Liu, Z. M.; Hu, C. F. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nat. Commun. 2019, 10, 1789.
Park, J. S.; Lee, M. H.; Jeon, I. Y.; Park, H. S.; Baek, J. B.; Song, H. K. Edge-exfoliated graphites for facile kinetics of delithiation. ACS Nano 2012, 6, 10770–10775.
Luo, H.; Lari, L.; Kim, H.; Hérou, S.; Tanase, L. C.; Lazarov, V. K.; Titirici, M. M. Structural evolution of carbon dots during low temperature pyrolysis. Nanoscale 2022, 14, 910–918.
Xie, F.; Xu, Z.; Jensen, A. C. S.; Ding, F. X.; Au, H.; Feng, J. Y.; Luo, H.; Qiao, M.; Guo, Z. Y.; Lu, Y. X. et al. Unveiling the role of hydrothermal carbon dots as anodes in sodium-ion batteries with ultrahigh initial coulombic efficiency. J. Mater. Chem. A 2019, 7, 27567–27575.
Xia, J. F.; Kawamura, Y.; Suehiro, T.; Chen, Y.; Sato, K. Carbon dots have antitumor action as monotherapy or combination therapy. Drug Discov. Ther. 2019, 13, 114–117.
Wang, Z. L.; Han, J.; Guo, Z. Y.; Wu, H.; Liu, Y. G.; Wang, W. Y.; Zhang, C. P.; Liu, J. N. Ginseng-based carbon dots inhibit the growth of squamous cancer cells by increasing ferroptosis. Front. Oncol. 2023, 13, 1097692.