PDF (14.5 MB)
Collect
Submit Manuscript
Research Article | Open Access

Efficient hydrogen/carbon dioxide separation by magnifying their diffusion difference in carbon molecular sieve membranes

Xue-Jie ZhangTao WuBo-Yang LiuGang LiAn-Hui Lu ()
State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
Show Author Information

Graphical Abstract

View original image Download original image
The selective separation is driven by the different diffusion of H2 and CO2, leveraging the distinct diffusion mechanisms of free surface and activated surface diffusion.

Abstract

Membranes with ultramicropores have shown great promise in gas separations. However, achieving high separation selectivity for gas with similar kinetic diameters, such as hydrogen (H2) and carbon dioxide (CO2), remains a challenge due to the difficulty in precisely controlling ultramicropores distribution. Herein, we developed a polybenzoxazine polymer-derived carbon molecular sieve (CMS) membrane with uniformly concentrated ultramicropores of 3.5 Å to separate H2 and CO2. This membrane demonstrated a high selectivity of 67.6, with a H2 permeance of 118.7 GPU, outperforming most reported samples. The isosteric heat of adsorption (Qst) for CO2 in these ultramicropores reached 43.1 kJ·mol−1, approximately twice that of physical adsorption, indicating that CO2 were effectively confined within the concentrated ultramicropores. Permeation tests revealed that the activation energy for CO2 permeation in the ultramicropores was 11.3 kJ·mol−1, one order of magnitude higher than that for H2 (1.3 kJ·mol−1). This significant difference in activation energy magnifies the difference of diffusion rate between H2 and CO2. The distinct behavior between the free surface diffusion of H2 and the activated surface diffusion of CO2 is the key to achieving a high H2/CO2 separation performance. This discovery presents a promising approach for separating H2 and CO2 using CMS membranes.

Electronic Supplementary Material

Download File(s)
7322_ESM.pdf (1.2 MB)

References

[1]

Bernardo, G.; Araújo, T.; Da Silva Lopes, T.; Sousa, J.; Mendes, A. Recent advances in membrane technologies for hydrogen purification. Int. J. Hydrogen Energy. 2020, 45, 7313–7338.

[2]

Zhang, X. J.; Li, W. C.; Ba, Y. Q.; Li, G.; Hao, G. P.; Lu, A. H. Tri-functional carbon membrane for one-step uptake of low-concentration hydrogen to high purity. Sep. Purif. Technol. 2025, 356, 129730.

[3]

Lei, L. F.; Pan, F. J.; Lindbråthen, A.; Zhang, X. P.; Hillestad, M.; Nie, Y.; Bai, L.; He, X. Z.; Guiver, M. D. Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation. Nat. Commun. 2021, 12, 268.

[4]

Zhao, M.; Zhou, D. D.; Chen, P.; Ban, Y. J.; Wang, Y. C.; Hu, Z. Y.; Lu, Y. T.; Zhou, M. Y.; Chen, X. M.; Yang, W. S. Heat-driven molecule gatekeepers in MOF membrane for record-high H2 selectivity. Sci. Adv. 2023, 9, eadg2229.

[5]

Dakhchoune, M.; Villalobos, L. F.; Semino, R.; Liu, L. M.; Rezaei, M.; Schouwink, P.; Avalos, C. E.; Baade, P.; Wood, V.; Han, Y. et al. Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets. Nat. Mater. 2021, 20, 362–369.

[6]

Yang, Y. D.; Pang, B. W.; Zeng, W.; Ma, B. X.; Yin, P. C.; Yao, S. L.; Wen, X. F.; Zhang, W. Enhance gas-separation efficiency of mixed matrix membranes by lamellarly arranged metal-organic polyhedron. Nano Res. 2023, 16, 11450–11454.

[7]

Shen, J.; Liu, G. P.; Han, Y.; Jin, W. Q. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 2021, 6, 294–312.

[8]

Sun, S. Y.; Li, S. D.; Wang, S. K.; Chen, Y. F. Design and development of highly selective and permeable membranes for H2/CO2 separation-a review. Chem. Eng. J. 2024, 494, 152972.

[9]

Yan, X. R.; Song, T. Q.; Li, M.; Wang, Z.; Liu, X. L. Sub-micro porous thin polymer membranes for discriminating H2 and CO2. Nat. Commun. 2024, 15, 628.

[10]

Shao, P. P.; Yao, R. X.; Li, G.; Zhang, M. X.; Yuan, S.; Wang, X. Q.; Zhu, Y. H.; Zhang, X. M.; Zhang, L.; Feng, X. et al. Molecular-sieving membrane by partitioning the channels in ultrafiltration membrane by in situ polymerization. Angew. Chem., Int. Ed. 2020, 59, 4401–4405.

[11]

Ji, T. T.; Sun, Y. W.; Liu, Y.; Li, M. R.; Wang, F.; Liu, L. L.; He, G. H.; Liu, Y. Facile in situ hydrothermal synthesis of layered zirconium phenylphosphonate molecular sieve membranes with optimized microstructure and superb H2/CO2 selectivity. ACS Appl. Mater. Interfaces 2020, 12, 15320–15327.

[12]

Park, H. B.; Kamcev, J.; Robeson, L. M.; Elimelech, M.; Freeman, B. D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 2017, 356, eaab0530.

[13]

Wang, Y. H.; Jiang, H. F.; Guo, Z. Y.; Ma, H. Z.; Wang, S. Y.; Wang, H. J.; Song, S. Q.; Zhang, J. F.; Yin, Y.; Wu, H. et al. Advances in organic microporous membranes for CO2 separation. Energy Environ. Sci. 2023, 16, 53–75.

[14]

Kretzschmar, A.; Selmert, V.; Kungl, H.; Tempel, H.; Eichel, R. A. Application of a tailorable carbon molecular sieve to evaluate concepts for the molecular dimensions of gases. Microporous Mesoporous Mater. 2022, 343, 112156.

[15]

Zou, X. Q.; Zhu, G. S. Microporous organic materials for membrane-based gas separation. Adv. Mater. 2018, 30, 1700750.

[16]

Hu, E. P.; Huang, Y. L. W.; Yan, Q.; Liu, D. P.; Lai, Z. P. Synthesis of highly c-oriented AFI membranes by epitaxial growth. Microporous Mesoporous Mater. 2009, 126, 81–86.

[17]

Dou, H. Z.; Xu, M.; Wang, B. Y.; Zhang, Z.; Wen, G. B.; Zheng, Y.; Luo, D.; Zhao, L.; Yu, A. P.; Zhang, L. H. et al. Microporous framework membranes for precise molecule/ion separations. Chem. Soc. Rev. 2021, 50, 986–1029.

[18]

Jennings, S. G. The mean free path in air. J. Aerosol Sci. 1988, 19, 159–166.

[19]

Sun, Y. W.; Hu, S.; Yan, J. H.; Ji, T. T.; Liu, L. L.; Wu, M. M.; Guo, X. W.; Liu, Y. Oriented ultrathin π-complexation MOF membrane for ethylene/ethane and flue gas separations. Angew. Chem. 2023, 135, e202311336.

[20]

Li, H.; Haas-Santo, K.; Schygulla, U.; Dittmeyer, R. Inorganic microporous membranes for H2 and CO2 separation-review of experimental and modeling progress. Chem. Eng. Sci. 2015, 127, 401–417.

[21]

Lan, Y.; Yang, Z. Q.; Wang, P.; Yan, Y. F.; Zhang, L.; Ran, J. Y. A review of microscopic seepage mechanism for shale gas extracted by supercritical CO2 flooding. Fuel 2019, 238, 412–424.

[22]
Shahtalebi Hossein Abadi, A. Adsorption analysis of carbon dioxide, hydrocarbons and moisture on carbon. Ph.D. Dissertation, The University of Queensland, Brisbane, Australia, 2016.
[23]

Robell, A. J.; Ballou, E. V.; Boudart, M. Surface diffusion of hydrogen on carbon. J. Phys. Chem. 1964, 68, 2748–2753.

[24]

Adams, J. S.; Itta, A. K.; Zhang, C.; Wenz, G. B.; Sanyal, O.; Koros, W. J. New insights into structural evolution in carbon molecular sieve membranes during pyrolysis. Carbon 2019, 141, 238–246.

[25]

Qiu, W. L.; Leisen, J. E.; Liu, Z. Y.; Quan, W. Y.; Koros, W. J. Key features of polyimide-derived carbon molecular sieves. Angew. Chem., Int. Ed. 2021, 60, 22322–22331.

[26]

Liu, Z. Y.; Qiu, W. L.; Quan, W. Y.; Koros, W. J. Advanced carbon molecular sieve membranes derived from molecularly engineered cross-linkable copolyimide for gas separations. Nat. Mater. 2023, 22, 109–116.

[27]

Koros, W. J.; Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 2017, 16, 289–297.

[28]

Ye, Y. S.; Huang, Y. J.; Chang, F. C.; Xue, Z. G.; Xie, X. L. Synthesis and characterization of thermally cured polytriazole polymers incorporating main or side chain benzoxazine crosslinking moieties. Polym. Chem. 2014, 5, 2863–2871.

[29]

Hao, G. P.; Li, W. C.; Qian, D.; Wang, G. H.; Zhang, W. P.; Zhang, T.; Wang, A. Q.; Schüth, F.; Bongard, H. J.; Lu, A. H. Structurally designed synthesis of mechanically stable poly (benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. J. Am. Chem. Soc. 2011, 133, 11378–11388.

[30]

Hussein, M. A.; El-Shishtawy, R. M.; Abu-Zied, B. M.; Asiri, A. M. The impact of cross-linking degree on the thermal and texture behavior of poly (methyl methacrylate). J. Therm. Anal. Calorim. 2016, 124, 709–717.

[31]

Ji, T. T.; Liu, L. L.; Wu, M. M.; Yu, K. P.; He, X. Y.; Liu, Y. Subfreezing conversion of ALD-derived ZnO layer to ultra-thin ZIF-8 membrane for high-flux C3H6 production. Chem. Eng. Sci. 2023, 282, 119293.

[32]

Zeleňák, V.; Skřínska, M.; Zukal, A.; Čejka, J. Carbon dioxide adsorption over amine modified silica: Effect of amine basicity and entropy factor on isosteric heats of adsorption. Chem. Eng. J. 2018, 348, 327–337.

[33]

Gu, Y. F.; Zheng, J. J.; Otake, K. I.; Sakaki, S.; Ashitani, H.; Kubota, Y.; Kawaguchi, S.; Yao, M. S.; Wang, P.; Wang, Y. et al. Soft corrugated channel with synergistic exclusive discrimination gating for CO2 recognition in gas mixture. Nat. Commun. 2023, 14, 4245.

[34]

Wang, L. Y.; Huang, H. C.; Zhang, X. Y.; Zhao, H. S.; Li, F. T.; Gu, Y. F. Designed metal-organic frameworks with potential for multi-component hydrocarbon separation. Coord. Chem. Rev.; 2023, 484, 215111.

[35]

Jalilov, A. S.; Li, Y. L.; Tian, J.; Tour, J. M. Ultra-high surface area activated porous asphalt for CO2 capture through competitive adsorption at high pressures. Adv. Energy Mater. 2017, 7, 1600693.

[36]

Liu, L. M.; Tan, S. L.; Horikawa, T.; Do, D. D.; Nicholson, D.; Liu, J. J. Water adsorption on carbon-a review. Adv. Colloid Interface Sci. 2017, 250, 64–78.

[37]

Yuan, Y. F.; Wang, Y. S.; Zhang, X. L.; Li, W. C.; Hao, G. P.; Han, L.; Lu, A. H. Wiggling mesopores kinetically amplify the adsorptive separation of propylene/propane. Angew. Chem. 2021, 133, 19211–19215.

[38]

Fu, S. L.; Sanders, E. S.; Kulkarni, S.; Chu, Y. H.; Wenz, G. B.; Koros, W. J. The significance of entropic selectivity in carbon molecular sieve membranes derived from 6FDA/DETDA: DABA (3: 2) polyimide. J. Membr. Sci. 2017, 539, 329–343.

[39]

Saren, S.; Chen, H.; Miksik, F.; Miyazaki, T.; Thu, K. Investigating the impact of pore structure and surface chemistry on CO2 adsorption in graphitic slit-pores using GCMC simulation. Colloid Surface A 2024, 684, 133113.

[40]

Chen, G. N.; Liu, G. Z.; Pan, Y.; Liu, G. P.; Gu, X. H.; Jin, W. Q.; Xu, N. P. Zeolites and metal-organic frameworks for gas separation: The possibility of translating adsorbents into membranes. Chem. Soc. Rev. 2023, 52, 4586–4602.

Nano Research
Article number: 94907322
Cite this article:
Zhang X-J, Wu T, Liu B-Y, et al. Efficient hydrogen/carbon dioxide separation by magnifying their diffusion difference in carbon molecular sieve membranes. Nano Research, 2025, 18(4): 94907322. https://doi.org/10.26599/NR.2025.94907322
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return