PDF (20.5 MB)
Collect
Submit Manuscript
Research Article | Open Access

An all-in-one polymer electrolyte enabled by acrylate-grafted separator copolymerization for high-performance lithium metal batteries

Jie Liu1,3Jinping Zhang1,3Yansong Liu1,3Ruiqi Zhao1,3Nuo Xu1,3Xingchen Song1,3Yuhu Li1,3Guolin Sun1,3Yanfeng Ma1,3Chenxi Li1,3Hongtao Zhang1,3Yongsheng Chen1,2,3 ()
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
Show Author Information

Graphical Abstract

View original image Download original image
An all-in-one free-standing acrylate-grafted cellulose separator polymer electrolyte (ACSPE) was designed and synthesized via the copolymerization of acrylate-grafted cellulose separator under ultraviolet (UV) irradiation. The Li|ACSPE|LiNi0.8Co0.1Mn0.1O2 (NCM811) cell demonstrated excellent electrochemical performance, delivering a high discharge specific capacity of 189.6 mAh·g−1 at 0.5 C while maintaining excellent cycling stability with a remarkable capacity retention of 86.0% over 500 cycles.

Abstract

Polymer electrolytes featuring flexibility, processability, and compatibility with large-scale roll-to-roll fabrication processes have emerged as promising candidates for solid-state lithium metal batteries. Herein, we have designed and synthesized an all-in-one free-standing acrylate-grafted cellulose separator polymer electrolyte (ACSPE) through the copolymerization of acrylate-grafted cellulose separator (ACS). This synthetic strategy leverages the abundant hydroxyl groups in the cellulose separator, which are substituted with acryloyl chloride to form an acrylate-grafted separator. The resulting ACSPE exhibits a high ionic conductivity of 1.78 × 10−3 S·cm−1 at room temperature, improved oxidation stability (5.57 V), and enhanced mechanical strength (10.0 MPa), indicating its high compatibility with high-voltage cathode, Li metal anode, and scalable roll-to-roll production processes. Li|ACSPE|LiNi0.8Co0.1Mn0.1O2 (NCM811) cells exhibit a long stable cycle life of 1000 cycles at 0.5 C/1 C with capacity retention of 75.6%, achieving stable performance across a wide temperature range from 0 to 60 °C. Furthermore, when paired with a 50 μm thin Li foil, full cells using NCM811 cathode with a mass loading of 6 mg·cm−2 exhibit a high discharge capacity of 191.0 mAh·g−1 at 0.1 C and maintain excellent cycling stability with a retention rate of 93.3% after 100 cycles. This study provides valuable insights into the chemical modification and design strategies for improving the processability and performance of polymer-based solid-state batteries.

Electronic Supplementary Material

Download File(s)
7323_ESM.pdf (2.4 MB)

References

[1]

Deng, J.; Bae, C.; Denlinger, A.; Miller, T. Electric vehicles batteries: Requirements and challenges. Joule 2020, 4, 511–515.

[2]

Ni, M. H.; Zhao, Y.; Xu, N.; Kong, M. X.; Ma, Y. F.; Li, C. X.; Zhang, H. T.; Chen, Y. S. Improving the cycling stability of lithium-ion batteries with a dry-processed cathode via the synergistic effect of carboxymethyl cellulose and siloxane. Sci. China Mater. 2024, 67, 76–84.

[3]

Ayyaswamy, A.; Vishnugopi, B. S.; Mukherjee, P. P. Revealing hidden predicaments to lithium-ion battery dynamics for electric vertical take-off and landing aircraft. Joule 2023, 7, 2016–2034.

[4]

Wang, C. Y.; Liu, T.; Yang, X. G.; Ge, S. H.; Stanley, N. V.; Rountree, E. S.; Leng, Y. J.; McCarthy, B. D. Fast charging of energy-dense lithium-ion batteries. Nature 2022, 611, 485–490.

[5]

Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

[6]

Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186.

[7]

Janek, J.; Zeier, W. G. Challenges in speeding up solid-state battery development. Nat. Energy 2023, 8, 230–240.

[8]

Feng, X. N.; Ouyang, M. G.; Liu, X.; Lu, L. G.; Xia, Y.; He, X. M. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267.

[9]

Shi, X. M.; Jia, Z. Z.; Wang, D. H.; Jiang, B. W.; Liao, Y. Q.; Zhang, G. H.; Wang, Q. S.; He, D. Q.; Huang, Y. H. Phonon engineering in solid polymer electrolyte toward high safety for solid-state lithium batteries. Adv. Mater. 2024, 36, 2405097.

[10]

Liu, K.; Liu, Y. Y.; Lin, D. C.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 2018, 4, eaas9820.

[11]

Yuan, S. Y.; Ding, K.; Zeng, X. Y.; Bin, D.; Zhang, Y. J.; Dong, P.; Wang, Y. G. Advanced nonflammable organic electrolyte promises safer Li-metal batteries: From solvation structure perspectives. Adv. Mater. 2023, 35, 2206228.

[12]

Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

[13]

Shi, P. R.; Ma, J. B.; Liu, M.; Guo, S. K.; Huang, Y. F.; Wang, S. W.; Zhang, L. H.; Chen, L. K.; Yang, K.; Liu, X. T. et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 2023, 18, 602–610.

[14]

He, F.; Tang, W. J.; Zhang, X. Y.; Deng, L. J.; Luo, J. Y. High energy density solid state lithium metal batteries enabled by sub-5 µm solid polymer electrolytes. Adv. Mater. 2021, 33, 2105329.

[15]

Tang, L. F.; Chen, B. W.; Zhang, Z. H.; Ma, C. Q.; Chen, J. C.; Huang, Y. G.; Zhang, F. R.; Dong, Q. Y.; Xue, G. Y.; Chen, D. Q. et al. Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries. Nat. Commun. 2023, 14, 2301.

[16]

Dai, C.; Stadler, F. J.; Li, Z. M.; Huang, Y. F. E-beam irradiation of poly(vinylidene fluoride-trifluoroethylene) induces high dielectric constant and all- trans conformation for highly ionic conductive solid-state electrolytes. Energy Mater. Devices 2023, 1, 9370016.

[17]

Zhang, J. P.; Zhu, J.; Zhao, R. Q.; Liu, J.; Song, X. C.; Xu, N.; Liu, Y. S.; Zhang, H. T.; Wan, X. J.; Ma, Y. F. et al. An all-in-one free-standing single-ion conducting semi-solid polymer electrolyte for high-performance practical Li metal batteries. Energy Environ. Sci. 2024, 17, 7119–7128.

[18]

Yuan, Y.; Chen, L. K.; Li, Y. H.; An, X. F.; Lv, J. S.; Guo, S. K.; Cheng, X.; Zhao, Y.; Liu, M.; He, Y. B. et al. Functional LiTaO3 filler with tandem conductivity and ferroelectricity for PVDF-based composite solid-state electrolyte. Energy Mater. Devices 2023, 1, 9370004.

[19]

Han, S. T.; Wen, P.; Wang, H. J.; Zhou, Y.; Gu, Y.; Zhang, L.; Shao-Horn, Y.; Lin, X. R.; Chen, M. Sequencing polymers to enable solid-state lithium batteries. Nat. Mater. 2023, 22, 1515–1522.

[20]

Zhao, Q. Interphases of polymer electrolytes. Joule 2019, 3, 1569–1571.

[21]

Zhao, Q.; Liu, X. T.; Stalin, S.; Khan, K.; Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 2019, 4, 365–373.

[22]

Ye, Y. N.; Zhu, X. G.; Meng, N.; Lian, F. Largely promoted mechano-electrochemical coupling properties of solid polymer electrolytes by introducing hydrogen bonds-rich network. Adv. Funct. Mater. 2023, 33, 2307045.

[23]

Du, A.; Lu, H. T.; Liu, S. S.; Chen, S. Y.; Chen, Z. H.; Li, W. H.; Song, J. W.; Yang, Q. H.; Yang, C. P. Breaking the trade-off between ionic conductivity and mechanical strength in solid polymer electrolytes for high-performance solid lithium batteries. Adv. Energy Mater. 2024, 14, 2400808.

[24]

Xue, Z. G.; He, D.; Xie, X. L. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19218–19253.

[25]

Zhao, L. Y.; Dong, Q. Y.; Wang, Y. Q.; Xue, G. Y.; Wang, X. C.; Li, Z. Y.; Shao, H.; Chen, H. W.; Shen, Y. B.; Chen, L. W. Anion modulation: Enabling highly conductive stable polymer electrolytes for solid-state Li-metal batteries. Angew. Chem., Int. Ed. 2024, 63, e202412280.

[26]

Dong, T. T.; Zhang, J. J.; Xu, G. J.; Chai, J. C.; Du, H. P.; Wang, L. L.; Wen, H. J.; Zang, X.; Du, A. B.; Jia, Q. M. et al. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci. 2018, 11, 1197–1203.

[27]

Zhang, Q. Q.; Liu, K.; Ding, F.; Liu, X. J. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 2017, 10, 4139–4174.

[28]

Yang, X. F.; Sun, Q.; Zhao, C. T.; Gao, X. J.; Adair, K. R.; Liu, Y. L.; Luo, J.; Lin, X. T.; Liang, J. N.; Huang, H. et al. High-areal-capacity all-solid-state lithium batteries enabled by rational design of fast ion transport channels in vertically-aligned composite polymer electrodes. Nano Energy 2019, 61, 567–575.

[29]

Qi, S. G.; Li, S. L.; Zou, W. W.; Zhang, W. F.; Wang, X. J.; Du, L.; Liu, S. M.; Zhao, J. Q. Enabling scalable polymer electrolyte with synergetic ion conductive channels via a two stage rheology tuning UV polymerization strategy. Small 2022, 18, 2202013.

[30]

Sun, Q. F.; Wang, S.; Ma, Y.; Song, D. W.; Zhang, H. Z.; Shi, X. X.; Zhang, N.; Zhang, L. Q. Li-ion transfer mechanism of gel polymer electrolyte with sole fluoroethylene carbonate solvent. Adv. Mater. 2023, 35, 2300998.

[31]

Feng, J. W.; Wang, J. Y.; Gu, Q.; Li, P. T.; Xu, H. L.; Deng, Y. H.; Gao, P. 1 µm-thick robust gel polymer electrolyte with excellent interfacial stability for high-performance Li metal batteries. Adv. Funct. Mater. 2024, 35, 2412287.

[32]

Goujon, L. J.; Khaldi, A.; Maziz, A.; Plesse, C.; Nguyen, G. T. M.; Aubert, P. H.; Vidal, F.; Chevrot, C.; Teyssié, D. Flexible solid polymer electrolytes based on nitrile butadiene rubber/poly(ethylene oxide) interpenetrating polymer networks containing either LiTFSI or EMITFSI. Macromolecules 2011, 44, 9683–9691.

[33]

Oh, S.; Kim, D. W.; Lee, C.; Lee, M. H.; Kang, Y. K. Poly(vinylpyridine-co-styrene) based in situ cross-linked gel polymer electrolyte for lithium-ion polymer batteries. Electrochim. Acta 2011, 57, 46–51.

[34]

Lu, Q. W.; He, Y. B.; Yu, Q. P.; Li, B. H.; Kaneti, Y. V.; Yao, Y. W.; Kang, F. Y.; Yang, Q. H. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater. 2017, 29, 1604460.

[35]

Qi, S. G.; Li, M. R.; Gao, Y. Q.; Zhang, W. F.; Liu, S. M.; Zhao, J. Q.; Du, L. Enabling scalable polymer electrolyte with dual-reinforced stable interface for 4.5 V lithium metal batteries. Adv. Mater. 2023, 35, 2304951.

[36]

Wan, J. Y.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F. F.; Pei, A.; Chen, H.; Chen, W.; Chen, J. et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 2019, 14, 705–711.

[37]

Zhou, K. F.; Zhang, M.; Zhang, X. N.; Wang, T. Y.; Wang, H. L.; Wang, Z. Q.; Tang, X. Y.; Bai, M.; Li, S. W.; Wang, Z. H. et al. A cellulose reinforced polymer composite electrolyte for the wide-temperature-range solid lithium batteries. Chem. Eng. J. 2023, 464, 142537.

[38]

Ji, X.; Hou, S.; Wang, P. F.; He, X. Z.; Piao, N.; Chen, J.; Fan, X. L.; Wang, C. S. Solid-state electrolyte design for lithium dendrite suppression. Adv. Mater. 2020, 32, 2002741.

[39]

Ni, L. S.; Zhang, S.; Di, A. D.; Deng, W. T.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Challenges and strategies towards single-crystalline Ni-rich layered cathodes. Adv. Energy Mater. 2022, 12, 2201510.

Nano Research
Article number: 94907323
Cite this article:
Liu J, Zhang J, Liu Y, et al. An all-in-one polymer electrolyte enabled by acrylate-grafted separator copolymerization for high-performance lithium metal batteries. Nano Research, 2025, 18(4): 94907323. https://doi.org/10.26599/NR.2025.94907323
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return