Polymer electrolytes featuring flexibility, processability, and compatibility with large-scale roll-to-roll fabrication processes have emerged as promising candidates for solid-state lithium metal batteries. Herein, we have designed and synthesized an all-in-one free-standing acrylate-grafted cellulose separator polymer electrolyte (ACSPE) through the copolymerization of acrylate-grafted cellulose separator (ACS). This synthetic strategy leverages the abundant hydroxyl groups in the cellulose separator, which are substituted with acryloyl chloride to form an acrylate-grafted separator. The resulting ACSPE exhibits a high ionic conductivity of 1.78 × 10−3 S·cm−1 at room temperature, improved oxidation stability (5.57 V), and enhanced mechanical strength (10.0 MPa), indicating its high compatibility with high-voltage cathode, Li metal anode, and scalable roll-to-roll production processes. Li|ACSPE|LiNi0.8Co0.1Mn0.1O2 (NCM811) cells exhibit a long stable cycle life of 1000 cycles at 0.5 C/1 C with capacity retention of 75.6%, achieving stable performance across a wide temperature range from 0 to 60 °C. Furthermore, when paired with a 50 μm thin Li foil, full cells using NCM811 cathode with a mass loading of 6 mg·cm−2 exhibit a high discharge capacity of 191.0 mAh·g−1 at 0.1 C and maintain excellent cycling stability with a retention rate of 93.3% after 100 cycles. This study provides valuable insights into the chemical modification and design strategies for improving the processability and performance of polymer-based solid-state batteries.
Deng, J.; Bae, C.; Denlinger, A.; Miller, T. Electric vehicles batteries: Requirements and challenges. Joule 2020, 4, 511–515.
Ni, M. H.; Zhao, Y.; Xu, N.; Kong, M. X.; Ma, Y. F.; Li, C. X.; Zhang, H. T.; Chen, Y. S. Improving the cycling stability of lithium-ion batteries with a dry-processed cathode via the synergistic effect of carboxymethyl cellulose and siloxane. Sci. China Mater. 2024, 67, 76–84.
Ayyaswamy, A.; Vishnugopi, B. S.; Mukherjee, P. P. Revealing hidden predicaments to lithium-ion battery dynamics for electric vertical take-off and landing aircraft. Joule 2023, 7, 2016–2034.
Wang, C. Y.; Liu, T.; Yang, X. G.; Ge, S. H.; Stanley, N. V.; Rountree, E. S.; Leng, Y. J.; McCarthy, B. D. Fast charging of energy-dense lithium-ion batteries. Nature 2022, 611, 485–490.
Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.
Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186.
Janek, J.; Zeier, W. G. Challenges in speeding up solid-state battery development. Nat. Energy 2023, 8, 230–240.
Feng, X. N.; Ouyang, M. G.; Liu, X.; Lu, L. G.; Xia, Y.; He, X. M. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267.
Shi, X. M.; Jia, Z. Z.; Wang, D. H.; Jiang, B. W.; Liao, Y. Q.; Zhang, G. H.; Wang, Q. S.; He, D. Q.; Huang, Y. H. Phonon engineering in solid polymer electrolyte toward high safety for solid-state lithium batteries. Adv. Mater. 2024, 36, 2405097.
Liu, K.; Liu, Y. Y.; Lin, D. C.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 2018, 4, eaas9820.
Yuan, S. Y.; Ding, K.; Zeng, X. Y.; Bin, D.; Zhang, Y. J.; Dong, P.; Wang, Y. G. Advanced nonflammable organic electrolyte promises safer Li-metal batteries: From solvation structure perspectives. Adv. Mater. 2023, 35, 2206228.
Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.
Shi, P. R.; Ma, J. B.; Liu, M.; Guo, S. K.; Huang, Y. F.; Wang, S. W.; Zhang, L. H.; Chen, L. K.; Yang, K.; Liu, X. T. et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 2023, 18, 602–610.
He, F.; Tang, W. J.; Zhang, X. Y.; Deng, L. J.; Luo, J. Y. High energy density solid state lithium metal batteries enabled by sub-5 µm solid polymer electrolytes. Adv. Mater. 2021, 33, 2105329.
Tang, L. F.; Chen, B. W.; Zhang, Z. H.; Ma, C. Q.; Chen, J. C.; Huang, Y. G.; Zhang, F. R.; Dong, Q. Y.; Xue, G. Y.; Chen, D. Q. et al. Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries. Nat. Commun. 2023, 14, 2301.
Dai, C.; Stadler, F. J.; Li, Z. M.; Huang, Y. F. E-beam irradiation of poly(vinylidene fluoride-trifluoroethylene) induces high dielectric constant and all- trans conformation for highly ionic conductive solid-state electrolytes. Energy Mater. Devices 2023, 1, 9370016.
Zhang, J. P.; Zhu, J.; Zhao, R. Q.; Liu, J.; Song, X. C.; Xu, N.; Liu, Y. S.; Zhang, H. T.; Wan, X. J.; Ma, Y. F. et al. An all-in-one free-standing single-ion conducting semi-solid polymer electrolyte for high-performance practical Li metal batteries. Energy Environ. Sci. 2024, 17, 7119–7128.
Yuan, Y.; Chen, L. K.; Li, Y. H.; An, X. F.; Lv, J. S.; Guo, S. K.; Cheng, X.; Zhao, Y.; Liu, M.; He, Y. B. et al. Functional LiTaO3 filler with tandem conductivity and ferroelectricity for PVDF-based composite solid-state electrolyte. Energy Mater. Devices 2023, 1, 9370004.
Han, S. T.; Wen, P.; Wang, H. J.; Zhou, Y.; Gu, Y.; Zhang, L.; Shao-Horn, Y.; Lin, X. R.; Chen, M. Sequencing polymers to enable solid-state lithium batteries. Nat. Mater. 2023, 22, 1515–1522.
Zhao, Q. Interphases of polymer electrolytes. Joule 2019, 3, 1569–1571.
Zhao, Q.; Liu, X. T.; Stalin, S.; Khan, K.; Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 2019, 4, 365–373.
Ye, Y. N.; Zhu, X. G.; Meng, N.; Lian, F. Largely promoted mechano-electrochemical coupling properties of solid polymer electrolytes by introducing hydrogen bonds-rich network. Adv. Funct. Mater. 2023, 33, 2307045.
Du, A.; Lu, H. T.; Liu, S. S.; Chen, S. Y.; Chen, Z. H.; Li, W. H.; Song, J. W.; Yang, Q. H.; Yang, C. P. Breaking the trade-off between ionic conductivity and mechanical strength in solid polymer electrolytes for high-performance solid lithium batteries. Adv. Energy Mater. 2024, 14, 2400808.
Xue, Z. G.; He, D.; Xie, X. L. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19218–19253.
Zhao, L. Y.; Dong, Q. Y.; Wang, Y. Q.; Xue, G. Y.; Wang, X. C.; Li, Z. Y.; Shao, H.; Chen, H. W.; Shen, Y. B.; Chen, L. W. Anion modulation: Enabling highly conductive stable polymer electrolytes for solid-state Li-metal batteries. Angew. Chem., Int. Ed. 2024, 63, e202412280.
Dong, T. T.; Zhang, J. J.; Xu, G. J.; Chai, J. C.; Du, H. P.; Wang, L. L.; Wen, H. J.; Zang, X.; Du, A. B.; Jia, Q. M. et al. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci. 2018, 11, 1197–1203.
Zhang, Q. Q.; Liu, K.; Ding, F.; Liu, X. J. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 2017, 10, 4139–4174.
Yang, X. F.; Sun, Q.; Zhao, C. T.; Gao, X. J.; Adair, K. R.; Liu, Y. L.; Luo, J.; Lin, X. T.; Liang, J. N.; Huang, H. et al. High-areal-capacity all-solid-state lithium batteries enabled by rational design of fast ion transport channels in vertically-aligned composite polymer electrodes. Nano Energy 2019, 61, 567–575.
Qi, S. G.; Li, S. L.; Zou, W. W.; Zhang, W. F.; Wang, X. J.; Du, L.; Liu, S. M.; Zhao, J. Q. Enabling scalable polymer electrolyte with synergetic ion conductive channels via a two stage rheology tuning UV polymerization strategy. Small 2022, 18, 2202013.
Sun, Q. F.; Wang, S.; Ma, Y.; Song, D. W.; Zhang, H. Z.; Shi, X. X.; Zhang, N.; Zhang, L. Q. Li-ion transfer mechanism of gel polymer electrolyte with sole fluoroethylene carbonate solvent. Adv. Mater. 2023, 35, 2300998.
Feng, J. W.; Wang, J. Y.; Gu, Q.; Li, P. T.; Xu, H. L.; Deng, Y. H.; Gao, P. 1 µm-thick robust gel polymer electrolyte with excellent interfacial stability for high-performance Li metal batteries. Adv. Funct. Mater. 2024, 35, 2412287.
Goujon, L. J.; Khaldi, A.; Maziz, A.; Plesse, C.; Nguyen, G. T. M.; Aubert, P. H.; Vidal, F.; Chevrot, C.; Teyssié, D. Flexible solid polymer electrolytes based on nitrile butadiene rubber/poly(ethylene oxide) interpenetrating polymer networks containing either LiTFSI or EMITFSI. Macromolecules 2011, 44, 9683–9691.
Oh, S.; Kim, D. W.; Lee, C.; Lee, M. H.; Kang, Y. K. Poly(vinylpyridine-co-styrene) based in situ cross-linked gel polymer electrolyte for lithium-ion polymer batteries. Electrochim. Acta 2011, 57, 46–51.
Lu, Q. W.; He, Y. B.; Yu, Q. P.; Li, B. H.; Kaneti, Y. V.; Yao, Y. W.; Kang, F. Y.; Yang, Q. H. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater. 2017, 29, 1604460.
Qi, S. G.; Li, M. R.; Gao, Y. Q.; Zhang, W. F.; Liu, S. M.; Zhao, J. Q.; Du, L. Enabling scalable polymer electrolyte with dual-reinforced stable interface for 4.5 V lithium metal batteries. Adv. Mater. 2023, 35, 2304951.
Wan, J. Y.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F. F.; Pei, A.; Chen, H.; Chen, W.; Chen, J. et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 2019, 14, 705–711.
Zhou, K. F.; Zhang, M.; Zhang, X. N.; Wang, T. Y.; Wang, H. L.; Wang, Z. Q.; Tang, X. Y.; Bai, M.; Li, S. W.; Wang, Z. H. et al. A cellulose reinforced polymer composite electrolyte for the wide-temperature-range solid lithium batteries. Chem. Eng. J. 2023, 464, 142537.
Ji, X.; Hou, S.; Wang, P. F.; He, X. Z.; Piao, N.; Chen, J.; Fan, X. L.; Wang, C. S. Solid-state electrolyte design for lithium dendrite suppression. Adv. Mater. 2020, 32, 2002741.
Ni, L. S.; Zhang, S.; Di, A. D.; Deng, W. T.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Challenges and strategies towards single-crystalline Ni-rich layered cathodes. Adv. Energy Mater. 2022, 12, 2201510.