Amorphous materials exhibit significant potential in photocatalysis due to their higher density of catalytic activity sites. The excellent tunability allows for structural modifications aimed at enhancing various photocatalytic processes, including surface adsorption, electron−hole separation, electron transport, and energy band structure. This paper reviews recent advancements in the modification of amorphous materials to improve their photocatalytic activity. In this paper, we review the recent research progress of amorphous materials to enhance the photocatalytic activity. Firstly, we summarize the commonly used methods for structural modification of amorphous materials. Subsequently, we describe the applications of amorphous materials in different areas of photocatalysis, such as hydrogen evolution, carbon dioxide reduction and pollutant degradation. On this basis, the synergistic mechanism of amorphous materials with other types of materials in the photocatalytic process is described. Finally, we summarize the challenges of the individual viewpoints and provide a critical outlook on how amorphous materials can be sustained.
Han, S. T.; Xi, H. L.; Shi, R. X.; Fu, X. Z.; Wang, X. X. Prospect and progress in the semiconductor photocatalysis. Chin. J. Chem. Phys. 2003, 16, 339–349.
Chen, S. S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.
Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985.
Zhang, J.; Zhang, Q. Y.; Feng, X. L. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.
Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003.
Nielsen, D. U.; Hu, X. M.; Daasbjerg, K.; Skrydstrup, T. Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nat. Catal. 2018, 1, 244.
Liu, S. S.; Wang, M. F.; Cheng, Q. Y.; He, Y. Z.; Ni, J. J.; Liu, J.; Yan, C. L.; Qian, T. Turning waste into wealth: Sustainable production of high-value-added chemicals from catalytic coupling of carbon dioxide and nitrogenous small molecules. ACS Nano 2022, 16, 17911–17930.
Kong, Q. Q.; An, X. G.; Liu, Q.; Xie, L. S.; Zhang, J.; Li, Q. Y.; Yao, W. T.; Yu, A. M.; Jiao, Y.; Sun, C. H. Copper-based catalysts for the electrochemical reduction of carbon dioxide: Progress and future prospects. Mater. Horiz. 2023, 10, 698–721.
Li, S. H.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Nanostructured metal phosphides: From controllable synthesis to sustainable catalysis. Chem. Soc. Rev. 2021, 50, 7539–7586.
Das, K.; Bariki, R.; Majhi, D.; Mishra, A.; Das, K. K.; Dhiman, R.; Mishra, B. G. Facile synthesis and application of CdS/Bi20TiO32/Bi4Ti3O12 ternary heterostructure: A synergistic multi-heterojunction photocatalyst for enhanced endosulfan degradation and hydrogen evolution reaction. Appl. Catal. B Environ. 2022, 303, 120902.
Qi, M. Y.; Conte, M.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem. Rev. 2021, 121, 13051–13085.
Jia, B. B.; Li, L. D.; Xue, C.; Kang, J. X.; Liu, L. M.; Guo, T. Q.; Wang, Z. C.; Huang, Q. Z.; Guo, S. J. Restraining Interfacial Cu2+ by using amorphous SnO2 as sacrificial protection boosts CO2 electroreduction. Adv. Mater. 2023, 35, 2305587.
Eisenreich, F. Photocatalysis as an effective tool for upcycling polymers into value-added molecules. Angew. Chem., Int. Ed. 2023, 62, e202301303.
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.
Shen, W. R.; Zhao, W. K.; He, F.; Fang, Y. L. TiO2-based photocatalysis and its applications for waste water treatment. Prog. Chem. 1998, 10, 349–361.
Wang, K. H.; Tsai, H. H.; Hsieh, Y. H. A study of photocatalytic degradation of trichloroethylene in vapor phase on TiO2 photocatalyst. Chemosphere 1998, 36, 2763–2773.
Frank, S. N.; Bard, A. J. Semiconductor electrodes. 12. Photoassisted oxidations and photoelectrosynthesis at polycrystalline TiO2 electrodes. J. Am. Chem. Soc. 1977, 99, 4667–4675.
Hashimoto, H.; Irie, H.; Fujishima, A. TiO2 photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys. 2005, 4, 8269–8285.
Osterloh, F. E. Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 2008, 20, 35–54.
Guttentag, M.; Rodenberg, A.; Bachmann, C.; Senn, A.; Hamm, P.; Alberto, R. A highly stable polypyridyl-based cobalt catalyst for homo- and heterogeneous photocatalytic water reduction. Dalton Trans. 2013, 42, 334–337.
Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.
Wang, T. S.; Costan, J.; Centeno, A.; Pang, J. S.; Darvill, D.; Ryan, M. P.; Xie, F. Broadband enhanced fluorescence using Zinc-oxide nanoflower arrays. J. Mater. Chem. C 2015, 3, 2656–2663.
Yu, C. L.; Yang, K.; Shu, Q.; Yu, J. C.; Cao, F. F.; Li, X. Preparation of WO3/ZnO composite photocatalyst and its photocatalytic performance. Chin. J. Catal. 2011, 32, 555–565.
Li, G. C.; Jiang, L.; Peng, H. R.; Zhang, B. Self-assembled cadmium sulfide microspheres from nanorods and their optical properties. Mater. Lett. 2008, 62, 1881–1883.
Hosseinpour, Z.; Alemi, A.; Khandar, A. A.; Zhao, X. J.; Xie, Y. A controlled solvothermal synthesis of CuS hierarchical structures and their natural-light-induced photocatalytic properties. New J. Chem. 2015, 39, 5470–5476.
Zheng, W. S.; Zhu, Z. J.; Sha, R.; Tu, S. C.; Huang, H. W. Layered oxyiodide CdBiO2I: An efficient visible light responsive and scalable photocatalyst. J. Materiomics 2025, 11, 100928.
Lin, K.; Zhu, Z. J.; Ge, W. Y.; Jiang, T. X.; Huang, H. W. Atomic-level unveiling secondary recrystallization enabled micro- and macroscopic polarization enhancement for piezo-photocatalytic oxygen activation. Nano Res. 2024, 17, 5040–5049.
Cai, H.; Chen, F.; Hu, C.; Ge, W. Y.; Li, T.; Zhang, X. L.; Huang, H. W. Oxygen vacancies mediated ultrathin Bi4O5Br2 nanosheets for efficient piezocatalytic peroxide hydrogen generation in pure water. Chin. J. Catal. 2024, 57, 123–132.
Yan, S. C.; Luo, W. J.; Li, Z. S.; Zou, Z. G. Progress in research of novel photocatalytic materials. Mater. China 2010, 29, 1–9.
Renuka, L.; Anantharaju, K. S.; Sharma, S. C.; Nagabhushana, H.; Vidya, Y. S.; Nagaswarupa, H. P.; Prashantha, S. C. A comparative study on the structural, optical, electrochemical and photocatalytic properties of ZrO2 nanooxide synthesized by different routes.J. Alloy. Compd. 2017, 965, 382–395.
Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.
Johnson, T. C.; Morris, D. J.; Wills, M. Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem. Soc. Rev. 2010, 39, 81–88.
Wang, R.; Che, G. S.; Wang, C. H.; Liu, C. Y.; Liu, B. S.; Ohtani, B.; Liu, Y. C.; Zhang, X. T. Alcohol plasma processed surface amorphization for photocatalysis. ACS Catal. 2022, 12, 12206–12216.
Bai, Z. J.; Tian, S.; Zeng, T. Q.; Chen, L.; Wang, B. H.; Hu, B.; Wang, X.; Zhou, W.; Pan, J. B.; Shen, S. et al. Cs3Bi2Br9 nanodots stabilized on defective BiOBr nanosheets by interfacial chemical bonding: Modulated charge transfer for photocatalytic C( sp3)-H bond activation. ACS Catal. 2022, 12, 15157–15167.
Wang, H.; Cao, C.; Li, D. F.; Ge, Y. X.; Chen, R. T.; Song, R.; Gao, W. S.; Wang, X. L.; Deng, X. T.; Zhang, H. J. et al. Achieving high selectivity in photocatalytic oxidation of toluene on amorphous BiOCl nanosheets coupled with TiO2. J. Am. Chem. Soc. 2023, 145, 16852–16861.
Chen, Q.; Mo, W. H.; Yang, G. D.; Zhong, S. X.; Lin, H. J.; Chen, J. R.; Bai, S. Significantly enhanced photocatalytic CO2 reduction by surface amorphization of cocatalysts. Small 2021, 17, 2102105.
Zhang, H. G.; Liu, S. Z.; Zheng, A. L.; Wang, P.; Zheng, Z. K.; Wang, Z. Y.; Cheng, H. F.; Dai, Y.; Huang, B. B.; Liu, Y. Y. Enhanced charge transfer process and photocatalytic activity over a phosphonate-based MOF via amorphization strategy. Angew. Chem., Int. Ed. 2024, 63, e202400965.
Jia, B. B.; Zhang, B. H.; Cai, Z.; Yang, X. Y.; Li, L. D.; Guo, L. Construction of amorphous/crystalline heterointerfaces for enhanced electrochemical processes. eScience 2023, 3, 100112.
Jia, B. B.; Chen, W. X.; Luo, J.; Yang, Z.; Li, L. D.; Guo, L. Construction of MnO2 artificial leaf with atomic thickness as highly stable battery anodes. Adv. Mater. 2020, 32, 1906582.
Zhang, B. H.; Li, Y. H.; Bai, H. Z.; Jia, B. B.; Liu, D.; Li, L. D. Advance in 3D self-supported amorphous nanomaterials for energy storage and conversion. Nano Res. 2023, 16, 10597–10616.
Jia, B. B.; Hao, R.; Huang, Z. N.; Hu, P. F.; Li, L. D.; Zhang, Y.; Guo, L. Creating ultrathin amorphous metal hydroxide and oxide nanosheet libraries. J. Mater. Chem. A 2019, 7, 4383–4388.
Jia, B. B.; Yang, J.; Hao, R.; Li, L. D.; Guo, L. Confined synthesis of ultrathin amorphous metal-oxide nanosheets. ACS Mater. Lett. 2020, 2, 610–615.
Jia, B. B.; Liu, G.; Zhang, B. H.; Zheng, J. L.; Yin, K. X.; Lin, J.; Han, C. Q.; Fan, X. Y.; Xu, M. Y.; Ye, L. Q. General modification strategy on amorphous materials to boost catalytic performance. Adv. Funct. Mater. 2024, 34, 2405867.
Sun, B. H.; Xu, M. Y.; Li, X. X.; Zhang, B. H.; Hao, R.; Fan, X. Y.; Jia, B. B.; She, D. S. Unlocking single-atom catalysts via amorphous substrates. Nano Res. 2024, 17, 3533–3546.
Fonseca, J.; Gong, T. H.; Jiao, L.; Jiang, H. L. Metal-organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses. J. Mater. Chem. A 2021, 9, 10562–10611.
Wang, Y. H.; Yu, W. Y.; Wang, C. Y.; Chen, F.; Ma, T. Y.; Huang, H. W. Defects in photoreduction reactions: Fundamentals, classification, and catalytic energy conversion. eScience 2024, 4, 100228.
Gao, D. D.; Wu, X. H.; Wang, P.; Xu, Y.; Yu, H. G.; Yu, J. G. Simultaneous realization of direct photoinduced deposition and improved H2-evolution performance of Sn-nanoparticle-modified TiO2 photocatalyst. ACS Sustain. Chem. Eng 2019, 7, 10084–10094.
Wang, X.; Liu, B. Y.; Ma, S. Q.; Zhang, Y. J.; Wang, L. Z.; Zhu, G. Q.; Huang, W.; Wang, S. C. Induced dipole moments in amorphous ZnCdS catalysts facilitate photocatalytic H2 evolution. Nat. Commun. 2024, 15, 2600.
Wu, P. C.; Yelemulati, H.; Zhu, S. S.; Peng, B. W.; Li, H. L.; Ye, H. Y.; Hou, J.; Wu, K. L.; Liu, Z. Y. Amorphous-crystalline junction oxygen vacancy-enriched CoPi/ZnIn2S4/a-B–TiO2 catalyst for oxygen evolution reaction. Chem. Eng. J. 2023, 466, 143252.
Zhang, L.; Tong, R. B.; Shirsath, S. E.; Yang, Y. L.; Dong, G. H. The crystalline/amorphous stacking structure of SnO2 microspheres for excellent NO photocatalytic performance. J. Mater. Chem. A 2021, 9, 5000–5006.
Takanabe, K. Photocatalytic water splitting: quantitative approaches toward photocatalyst by design. ACS Catal. 2017, 7, 8006–8022.
Dai, B. Y.; Fang, J. J.; Yu, Y. R.; Sun, M. L.; Huang, H. M.; Lu, C. H.; Kou, J. H.; Zhao, Y. J.; Xu, Z. Z. Construction of infrared-light-responsive photoinduced carriers driver for enhanced photocatalytic hydrogen evolution. Adv. Mater. 2020, 32, 1906361.
Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.
Kang, Y. Y.; Yang, Y. Q.; Yin, L. C.; Kang, X. D.; Liu, G.; Cheng, H. M. An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation. Adv. Mater 2015, 27, 4572–4577.
Pan, Y.; Inam, F.; Zhang, M.; Drabold, D. A. Atomistic origin of urbach tails in amorphous silicon. Phys. Rev. Lett. 2008, 100, 206403.
Lin, Z. Y.; Du, C.; Yan, B.; Yang, G. W. Two-dimensional amorphous CoO photocatalyst for efficient overall water splitting with high stability. J. Catal. 2019, 372, 299–310.
Prasai, B.; Cai, B.; Underwood, M. K.; Lewis, J. P.; Drabold, D. A. Properties of amorphous and crystalline titanium dioxide from first principles. J. Mater. Sci. 2012, 47, 7515–7521.
Zanatta, A. R.; Chambouleyron, I. Absorption edge, band tails, and disorder of amorphous semiconductors. Phys. Rev. B 1996, 53, 3833–3836.
Sun, S. C.; Shen, G. Q.; Chen, Z. C.; Pan, L.; Zhang, X. W.; Zou, J. J. Harvesting urbach tail energy of ultrathin amorphous nickel oxide for solar-driven overall water splitting up to 680 nm. Appl. Catal. B Environ. 2021, 285, 119798.
Li, Z.; Mao, C. L.; Pei, Q. J.; Duchesne, P. N.; He, T.; Xia, M. K.; Wang, J. T.; Wang, L.; Song, R.; Ali, F. M. et al. Engineered disorder in CO2 photocatalysis. Nat. Commun. 2022, 13, 7205.
Powar, N. S.; Jang, M.; Gyu Kim, M.; Hiragond, C. B.; Lee, J.; Gong, E.; Kim, H.; Kim, D.; Jung, J. W.; Cho, C. H. et al. Dynamic Ti3+ and In3+ dual active sites on In2TiO5 to enhance visible-light-driven gas-phase photocatalytic CO2 reduction. Chem. Eng. J. 2024, 480, 147966.
Zhao, Z. J.; Liu, Z. L.; Wang, T.; Teng, F.; Jiang, W. J.; Li, J. J.; Zhang, Z. C.; Yang, Y. Synergistic effects in ultrafine amorphous InS x O y nanowires boost photocatalytic syngas production from CO2. J. Mater. Chem. A 2022, 10, 2924–2931.
Chang, K.; Hai, X.; Ye, J. H. Transition metal disulfides as noble-metal-alternative co-catalysts for solar hydrogen production. Adv. Energy Mater. 2016, 6, 1502555.
Dong, C. Y.; Lian, C.; Hu, S. C.; Deng, Z. S.; Gong, J. Q.; Li, M. D.; Liu, H. L.; Xing, M. Y.; Zhang, J. L. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 2018, 9, 1252.
Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.
Wang, D.; Liu, Z, P.; Yang, W. M. Revealing the size effect of platinum cocatalyst for photocatalytic hydrogen evolution on TiO2 support: A DFT study. ACS Catal. 2018, 8, 7270–7278.
Yang, H. Z.; Yang, D. R.; Wang, X. POM-incorporated CoO nanowires for enhanced photocatalytic syngas production from CO2. Angew. Chem., Int. Ed. 2020, 59, 15527–15531.
Lin, Z. Y.; Du, C.; Yan, B.; Wang, C. X.; Yang, G. W. Two-dimensional amorphous NiO as a plasmonic photocatalyst for solar H2 evolution. Nat. Commun. 2018, 9, 4036.
Sun, D. T.; Bai, H. Y.; Zhao, Y.; Zhang, Q. X.; Bai, Y. J.; Liu, Y.; Pang, X. L.; Wang, F. G.; Ding, J. R.; Xu, D. B. et al. Amorphous MnCO3/C double layers decorated on BiVO4 photoelectrodes to boost nitrogen reduction. ACS Appl. Mater. Interfaces 2020, 12, 52763–52770.
Wang, W. J.; Xu, P.; Chen, M.; Zeng, G. M.; Zhang, C.; Zhou, C. Y.; Yang, Y.; Huang, D. L.; Lai, C.; Cheng, M. et al. Alkali metal-assisted synthesis of graphite carbon nitride with tunable band-gap for enhanced visible-light-driven photocatalytic performance. ACS Sustain. Chem. Eng. 2018, 6, 15503–15516.
Guo, S. E.; Tang, Y. Q.; Xie, Y.; Tian, C. G.; Feng, Q. M.; Zhou, W.; Jiang, B. J. P-doped tubular g-C3N4 with surface carbon defects: Universal synthesis and enhanced visible-light photocatalytic hydrogen production. Appl. Catal. B Environ. 2017, 218, 664–671.
Zhou, Y. J.; Zhang, L. X.; Liu, J. J.; Fan, X. Q.; Wang, B. Z.; Wang, M.; Ren, W. C.; Wang, J.; Li, M. L.; Shi, J. L. Brand new P-doped g-C3N4: Enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light. J. Mater. Chem. A 2015, 3, 3862–3867.
Tan, P. F.; Liu, Y.; Zhu, A. Q.; Zeng, W. X.; Cui, H.; Pan, J. Rational design of Z-scheme system based on 3D hierarchical CdS supported 0D Co9S8 nanoparticles for superior photocatalytic H2 generation. ACS Sustain. Chem. Eng. 2018, 6, 10385–10394.
Li, Z. P.; Huang, W. X.; Liu, J. X.; Lv, K. L.; Li, Q. Embedding CdS@Au into ultrathin Ti3– x C2T y to build dual schottky barriers for photocatalytic H2 production. ACS Catal. 2021, 11, 8510–8520.
Cheng, C.; He, B. W.; Fan, J. J.; Cheng, B.; Cao, S. W.; Yu, J. G. An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism. Adv. Mater. 2021, 33, 2100317.
Moon, H. S.; Hsiao, K. C.; Wu, M. C.; Yun, Y. J.; Hsu, Y. J.; Yong, K. Spatial separation of cocatalysts on Z-scheme organic/inorganic heterostructure hollow spheres for enhanced photocatalytic H2 evolution and in-depth analysis of the charge-transfer mechanism. Adv. Mater. 2023, 35, 2200172.
Fu, J. W.; Xu, Q. L.; Low, J. X.; Jiang, C. J.; Yu, J. G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B Environ. 2019, 243, 556–565.
Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunction photocatalysts for water splitting - a critical review. Energy Environ. Sci. 2015, 8, 731–759.
Ibraheem, S.; Yasin, G.; Kumar, A.; Mushtaq, M. A.; Ibrahim, S.; Iqbal, R.; Tabish, M.; Ali, S.; Saad, A. Iron-cation-coordinated cobalt-bridged-selenides nanorods for highly efficient photo/electrochemical water splitting. Appl. Catal. B Environ. 2022, 304, 120987.
Zhu, Y. P.; Ren, T. Z.; Yuan, Z. Y. Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl. Mater. Interfaces 2015, 7, 16850–16856.
Iqbal, W.; Qiu, B. C.; Zhu, Q. H.; Xing, M. Y.; Zhang, J. L. Self-modified breaking hydrogen bonds to highly crystalline graphitic carbon nitrides nanosheets for drastically enhanced hydrogen production. Appl. Catal. B Environ. 2018, 232, 306–313.
Han, Q.; Cheng, Z. H.; Wang, B.; Zhang, H. M.; Qu, L. T. Significant enhancement of visible-light-driven hydrogen evolution by structure regulation of carbon nitrides. ACS Nano 2018, 12, 5221–5227.
Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.
Wang, X. T.; Shi, W. X.; Jin, Z.; Huang, W. F.; Lin, J.; Ma, G. S.; Li, S. Z.; Guo, L. Remarkable SERS activity observed from amorphous ZnO nanocages. Angew. Chem., Int. Ed. 2017, 56, 9851–9855.
Liu, Y.; Zeng, W. X.; Ma, Y. J.; Dong, R.; Tan, P. F.; Pan, J. Oxygen-defects modified amorphous Ta2O5 nanoparticles for solar driven hydrogen evolution. Ceram. Int. 2021, 47, 4702–4706.
Lin, Z. Y.; Du, C.; Yan, B.; Yang, G. W. Amorphous Fe2O3 for photocatalytic hydrogen evolution. Catal. Sci. Technol. 2019, 9, 5582–5592.
Liang, H. J.; Meng, Q. X.; Wang, X. B.; Zhang, H. C.; Wang, J. J. Nanoplasmonically engineered interfaces on amorphous TiO2 for highly efficient photocatalysis in hydrogen evolution. ACS Appl. Mater. Interfaces 2018, 10, 14145–14152.
Tang, Y. H.; Zhou, P.; Chao, Y. G.; Lin, F.; Lai, J. P.; Li, H. X.; Guo, S. J. Face-to-face engineering of ultrathin Pd nanosheets on amorphous carbon nitride for efficient photocatalytic hydrogen production. Sci. China Mater. 2019, 62, 351–358.
Jiang, X. H.; Zhang, L. S.; Liu, H. Y.; Wu, D. S.; Wu, F. Y.; Tian, L.; Liu, L. L.; Zou, J. P.; Luo, S. L.; Chen, B. B. Silver single atom in carbon nitride catalyst for highly efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 23112–23116.
Lin, B.; Chen, S.; Dong, F.; Yang, G. D. A ball-in-ball g-C3N4@SiO2 nano-photoreactor for highly efficient H2 generation and NO removal. Nanoscale 2017, 9, 5273–5279.
Zhou, P.; Lai, J. P.; Tang, Y. H.; Chao, Y. G.; Lin, F.; Guo, S. J. Amorphous FeCoPO x nanowires coupled to g-C3N4 nanosheets with enhanced interfacial electronic transfer for boosting photocatalytic hydrogen production. Appl. Catal. B Environ. 2018, 238, 161–167.
Zhou, B. X.; Ding, S. S.; Yang, K. X.; Zhang, J.; Huang, G. F.; Pan, A. L.; Hu, W. Y.; Li, K.; Huang, W. Q. Generalized synthetic strategy for amorphous transition metal oxides-based 2D heterojunctions with superb photocatalytic hydrogen and oxygen evolution. Adv. Funct. Mater. 2021, 31, 2009230.
Liu, J. N.; Jia, Q. H.; Long, J. L.; Wang, X. X.; Gao, Z. W.; Gu, Q. Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C3N4 photocatalyst. Appl. Catal. B Environ. 2018, 222, 35–43.
Li, H.; Zhang, J. Y.; Yang, T.; Wang, Y. S.; Gao, H. Y.; Wang, X. J.; Chai, Z. L. SnNb2O6/NiCo-LDH Z-scheme heterojunction with regulated oxygen vacancies obtained by engineering the crystallinity for efficient and renewable photocatalytic H2 evolution. Catal. Sci. Technol. 2021, 11, 6281–6290.
Sun, Z. J.; Lv, B. H.; Li, J. S.; Xiao, M.; Wang, X. Y.; Du, P. W. Core-shell amorphous cobalt phosphide/cadmium sulfide semiconductor nanorods for exceptional photocatalytic hydrogen production under visible light. J. Mater. Chem. A 2016, 4, 1598–1602.
Gao, D. D.; Zhong, W.; Liu, Y. P.; Yu, H. G.; Fan, J. J. Synergism of tellurium-rich structure and amorphization of NiTe1+ x nanodots for efficient photocatalytic H2-evolution of TiO2. Appl. Catal. B Environ. 2021, 290, 120057.
Zhang, L. J.; Wu, Y. L.; Li, J. K.; Jin, Z. L.; Li, Y. J.; Tsubaki, N. Amorphous/crystalline heterojunction interface driving the spatial separation of charge carriers for efficient photocatalytic hydrogen evolution. Mater. Today Phys. 2022, 27, 100767.
Xiang, D. Z.; Hao, X. Q.; Jin, Z. L. Co2P/CoP quantum dots surface heterojunction derived from amorphous Co3O4 quantum dots for efficient photocatalytic H2 production. J. Colloid Interface Sci. 2022, 627, 692–704.
Sun, H. R.; Shi, Y. X.; Shi, W. L.; Guo, F. High-crystalline/amorphous g-C3N4 S-scheme homojunction for boosted photocatalytic H2 production in water/simulated seawater: Interfacial charge transfer and mechanism insight. Appl. Surf. Sci. 2022, 593, 153281.
Yu, Z. Z.; Yang, K.; Yu, C. L.; Lu, K. Q.; Huang, W. Y.; Xu, L.; Zou, L. X.; Wang, S. B.; Chen, Z.; Hu, J. et al. Steering unit cell dipole and internal electric field by highly dispersed Er atoms embedded into NiO for efficient CO2 photoreduction. Adv. Funct. Mater. 2022, 32, 2111999.
Fan, W. Q.; Zhang, Q. H.; Wang, Y. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Phys. Chem. Chem. Phys. 2013, 15, 2632–2649.
Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Jr. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758.
Zhang, Y. Z.; Johannessen, B.; Zhang, P.; Gong, J. L.; Ran, J. R.; Qiao, S. Z. Reversed electron transfer in dual single atom catalyst for boosted photoreduction of CO2. Adv. Mater. 2023, 35, 2306923.
Li, X.; Wen, J. Q.; Low, J. X.; Fang, Y. P.; Yu, J. G. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci. China Mater. 2014, 57, 70–100.
Tu, W. G.; Zhou, Y.; Zou, Z. G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607–4626.
Jiang, Z. F.; Sun, H. L.; Wang, T. Q.; Wang, B.; Wei, W.; Li, H. M.; Yuan, S. Q.; An, T. C.; Zhao, H. J.; Yu, J. G. et al. Nature-based catalyst for visible-light-driven photocatalytic CO2 reduction. Energy Environ. Sci. 2018, 11, 2382–2389.
Ma, B.; Chen, G.; Fave, C.; Chen, L. J.; Kuriki, R.; Maeda, K.; Ishitani, O.; Lau, T. C.; Bonin, J.; Robert, M. Efficient visible-light-driven CO2 reduction by a cobalt molecular catalyst covalently linked to mesoporous carbon nitride. J. Am. Chem. Soc. 2020, 142, 6188–6195.
Liu, L. F.; Zhang, J. L.; Cheng, X. Y.; Xu, M. Z.; Kang, X. C.; Wan, Q.; Han, B. X.; Wu, N. N.; Zheng, L. R.; Ma, C. Y. Amorphous NH2-MIL-68 as an efficient electro- and photo-catalyst for CO2 conversion reactions. Nano Res. 2023, 16, 181–188.
Kharade, A. K.; Chang, S. M. Contributions of abundant hydroxyl groups to extraordinarily high photocatalytic activity of amorphous titania for CO2 reduction. J. Phys. Chem. C 2020, 124, 10981–10992.
Wang, B.; Wang, X. H.; Lu, L.; Zhou, C. G.; Xin, Z. Y.; Wang, J. J.; Ke, X. K.; Sheng, G. D.; Yan, S. C.; Zou, Z. G. Oxygen-vacancy-activated CO2 splitting over amorphous oxide semiconductor photocatalyst. Acs Catal. 2018, 8, 516–525.
Sun, W. J.; Meng, X. Y.; Xu, C. J.; Yang, J. Y.; Liang, X. M.; Dong, Y. J.; Dong, C. Z.; Ding, Y. Amorphous CoO x coupled carbon dots as a spongy porous bifunctional catalyst for efficient photocatalytic water oxidation and CO2 reduction. Chin. J. Catal. 2020, 41, 1826–1836.
Dong, S.; Liu, W.; Liu, S.; Li, F.; Hou, J.; Hao, R.; Bai, X.; Zhao, H.; Liu, J.; Guo, L. Single atomic Pt on amorphous ZrO2 nanowires for advanced photocatalytic CO2 reduction. Mater. Today Nano. 2022, 17, 100157.
Zheng, L. X.; Yang, H. Y.; Zhang, M.; Guan, Z. J.; Li, Q. Y.; Yang, J. J. Amorphous strategy and doping copper on metal-organic framework surface for enhanced photocatalytic CO2 reduction to C2H4. Chem. —Eur. J. 2024, 30, e202402031.
Guo, T. Q.; Xu, X. X.; Xu, Z. F.; You, F. F.; Fan, X. Y.; Liu, J. Z.; Wang, Z. C. Symmetry breaking induced amorphization of cobalt-based catalyst for boosted CO2 photoreduction. Adv. Mater. 2024, 36, 2402071.
Zhong, Z. Q.; Wang, H. F.; Liang, S. J.; Zhong, X. H.; Deng, H. Enhancing photocatalytic CO2 reduction reaction on amorphous Ni@NiO aerogel via oxygen incorporated tuning. Appl. Catal. B Environ. 2023, 330, 122603.
Cheng, C.; Mao, L. H.; Kang, X.; Dong, C. L.; Huang, Y. C.; Shen, S. H.; Shi, J. W.; Guo, L. J. A high-cyano groups-content amorphous-crystalline carbon nitride isotype heterojunction photocatalyst for high-quantum-yield H2 production and enhanced CO2 reduction. Appl. Catal. B Environ. 2023, 331, 122733.
Xu, Y. F.; Wang, X. D.; Liao, J. F.; Chen, B. X.; Chen, H. Y.; Kuang, D. B. Amorphous-TiO2-encapsulated CsPbBr3 nanocrystal composite photocatalyst with enhanced charge separation and CO2 Fixation. Adv. Mater. Interfaces 2018, 5, 1801015.
Yang, W. J.; Zhu, Y. F.; You, F.; Yan, L.; Ma, Y. J.; Lu, C. Y.; Gao, P. Q.; Hao, Q.; Li, W. L. Insights into the surface-defect dependence of molecular oxygen activation over birnessite-type MnO2. Appl. Catal. B Environ. Energy 2018, 233, 184–193.
Zeng, J.; Xie, H. M.; Liu, Z.; Liu, X. C.; Zhou, G. L.; Jiang, Y. Oxygen vacancy induced MnO2 catalysts for efficient toluene catalytic oxidation. Catal. Sci. Technol. 2021, 11, 6708–6723.
Wang, Q.; Chen, X. S.; Yu, K.; Zhang, Y.; Cong, Y. Q. Synergistic photosensitized removal of Cr(VI) and Rhodamine B dye on amorphous TiO2 under visible light irradiation. J. Hazard. Mater. 2013, 246–247, 135–144.
Zhang, H. Z.; Chen, B.; Banfield, J. F.; Waychunas, G. A. Atomic structure of nanometer-sized amorphous TiO2. Phys. Rev. B 2008, 78, 214106–214112.
Tang, J.; Xu, R. P.; Sui, G. Z.; Guo, D. X.; Zhao, Z. L.; Fu, S. S.; Yang, X.; Li, Y.; Li, J. L. Double-shelled porous g-C3N4 nanotubes modified with amorphous Cu-Doped FeOOH nanoclusters as 0D/3D non-homogeneous photo-Fenton catalysts for effective removal of organic dyes. Small 2023, 19, 2208232.
Li, F. T.; Zhao, Y.; Wang, Q.; Wang, X. J.; Hao, Y. J.; Liu, R. H.; Zhao, D. S. Enhanced visible-light photocatalytic activity of active Al2O3/g-C3N4 heterojunctions synthesized via surface hydroxyl modification. J. Hazard. Mater. 2015, 283, 371–381.
Florica, C.; Costas, A.; Preda, N.; Beregoi, M.; Kuncser, A.; Apostol, N.; Popa, C.; Socol, G.; Diculescu, V.; Enculescu, I. Core-shell nanowire arrays based on ZnO and Cu x O for water stable photocatalysts. Sci. Rep. 2019, 9, 17268.
Huang, S. N.; Chen, F. X.; Zhu, D. Y.; Li, J.; Liu, Y. L.; Chen, R. NIR-response amorphous FeOOH anchored BiO2- x for chlorophenols photodegradation via molecular oxygen activation. Sep. Purif. Technol. 2023, 316, 123792.
Gu, D. S.; Guenther, A. B.; Shilling, J. E.; Yu, H. F.; Huang, M. Y.; Zhao, C.; Yang, Q.; Martin, S. T.; Artaxo, P.; Kim, S. et al. Airborne observations reveal elevational gradient in tropical forest isoprene emissions. Nat. Commun. 2017, 8, 15541.
Arney, G.; Domagal-Goldman, S. D.; Meadows, V. S. Organic haze as a biosignature in anoxic Earth-like atmospheres. Astrobiology 2018, 18, 311–329.
He, C.; Hörst, S. M.; Lewis, N. K.; Yu, X. T.; Moses, J. I.; McGuiggan, P.; Marley, M. S.; Kempton, E. M. R.; Moran, S. E.; Morley, C. V. et al. Sulfur-driven haze formation in warm CO2-rich exoplanet atmospheres. Nat. Astron. 2020, 4, 986–993.
Tian, F. X.; Li, H.; Zhu, M. H.; Tu, W. F.; Lin, D. H.; Han, Y. F. Effect of MnO2 polymorphs’ structure on low-temperature catalytic oxidation: Crystalline controlled oxygen vacancy formation. ACS Appl. Mater. Interfaces 2022, 14, 18525–18538.
Liu, J. P.; Su, H.; Hu, Y. N.; Gong, C. H.; Lu, J. C.; He, D. D.; Zhu, W. J.; Chen, D. K.; Cao, X. H.; Li, J. et al. Highly efficient degradation of sulfur-containing volatile organic compounds by amorphous MnO2 at room temperature: Implications for controlling odor pollutants. Appl. Catal. B Environ. 2023, 334, 122877.
Lyu, J. Z.; Zhou, L. L.; Shao, J. W.; Zhou, Z.; Gao, J. X.; Dong, Y. M.; Wang, Z. Y.; Li, J. TiO2 hollow heterophase junction with enhanced pollutant adsorption, light harvesting, and charge separation for photocatalytic degradation of volatile organic compounds. Chem. Eng. J. 2020, 391, 123602.
Liang, X.; Feng, W. H.; Liang, D.; Xu, Y.; Qiu, X. Q. Hydroxyl/amino and Fe(III) co-grafted graphite carbon nitride for photocatalytic removal of volatile organic compounds. Environ. Res. 2021, 197, 111044.
Wang, Q. R.; Guo, J. P.; Chen, P. Recent progress towards mild-condition ammonia synthesis. J. Energy Chem. 2019, 36, 25–36.
Bezdek, M. J.; Chirik, P. A fresh approach to ammonia synthesis. Nature 2019, 568, 464–466.
Wang, S. Y.; Ichihara, F.; Pang, H.; Chen, H.; Ye, J. H. Nitrogen fixation reaction derived from nanostructured catalytic materials. Adv. Funct. Mater. 2018, 28, 1803309.
Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.
Wang, L.; Wan, J. W.; Zhao, Y. S.; Yang, N. L.; Wang, D. Hollow multi-shelled structures of Co3O4 dodecahedron with unique crystal orientation for enhanced photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 2238–2241.
Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.
Mao, C. L.; Wang, J. X.; Zou, Y. J.; Li, H.; Zhan, G. M.; Li, J.; Zhao, J. C.; Zhang, L. Z. Anion (O, N, C, and S) vacancies promoted photocatalytic nitrogen fixation. Green Chem. 2019, 21, 2852–2867.
Chen, X. Z.; Li, N.; Kong, Z. Z.; Ong, W. J.; Zhao, X. J. Photocatalytic fixation of nitrogen to ammonia: State-of-the-art advancements and future prospects. Mater. Horiz. 2018, 5, 9–27.
Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeO x -RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.
Jiang, W. J.; Niu, S.; Tang, T.; Zhang, Q. H.; Liu, X. Z.; Zhang, Y.; Chen, Y. Y.; Li, J. H.; Gu, L.; Wan, L. J. et al. Crystallinity-modulated electrocatalytic activity of a nickel(II) borate thin layer on Ni3B for efficient water oxidation. Angew. Chem., Int. Ed. 2017, 56, 6572–6577.
Hou, T. T.; Guo, R. H.; Chen, L. L.; Xie, Y. C. Z.; Guo, J. S.; Zhang, W. H.; Zheng, X. S.; Zhu, W. K.; Tan, X. P.; Wang, L. B. Atomic-level insights in tuning defective structures for nitrogen photofixation over amorphous SmOCl nanosheets. Nano Energy 2019, 65, 104003.
Zhang, N.; Jalil, A.; Wu, D. X.; Chen, S. M.; Liu, Y. F.; Gao, C.; Ye, W.; Qi, Z. M.; Ju, H. X.; Wang, C. M. et al. Refining defect states in W18O49 by Mo Doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc. 2018, 140, 9434–9443.
Mou, H. Y.; Wang, J. F.; Yu, D. K.; Zhang, D. L.; Chen, W. J.; Wang, Y. Q.; Wang, D. B.; Mu, T. C. Fabricating amorphous g-C3N4/ZrO2 photocatalysts by one-step pyrolysis for solar-driven ambient ammonia synthesis. ACS Appl. Mater. Interfaces 2019, 11, 44360–44365.
Ma, J.; Peng, C.; Peng, X. X.; Liang, S. C.; Zhou, Z. X.; Wu, K. Q.; Chen, R.; Liu, S. Q.; Shen, Y. F.; Ma, H. B. et al. H2O2 photosynthesis from H2O and O2 under weak light by carbon nitrides with the piezoelectric effect. J. Am. Chem. Soc. 2024, 146, 21147–21159.
Zheng, Y. M.; Luo, Y.; Ruan, Q. S.; Wang, S. H.; Yu, J.; Guo, X. L.; Zhang, W. J.; Xie, H.; Zhang, Z.; Huang, Y. Plasma-induced hierarchical amorphous carbon nitride nanostructure with two N2 C-site vacancies for photocatalytic H2O2 production. Appl. Catal. B Environ. 2022, 311, 121372.
Xu, Q.; Zheng, Y. M.; Wang, S. H.; Fu, Q. P.; Guo, X. L.; Li, Y. Y.; Ren, J. X.; Cao, Z.; Li, R. T.; Zhao, L. et al. Plasma synthesis of K-doped amorphous carbon nitride with passivated trap states for enhanced photocatalytic H2O2 production. J. Alloys Compd. 2023, 947, 169663.
Xing, W. N.; Zhang, D. H.; Cheng, K.; Han, L. X.; Wei, M. Y.; Yue, Q. L.; Huang, Y. J.; Wu, G. Y. Amorphous Bi-BiO x - inducted directional charges transfer in stalactite-like carbon nitride heterojunction for effective photocatalytic H2O2 production. Sep. Purif. Technol. 2025, 359, 130797.
Peng, Y. R.; Shi, Y. X.; Yan, S. C.; Li, G. Q. Photocarrier behavior and photocatalytic H2O2 synthesis performance of amorphous/crystalline SrTiO3/BiVO4 layered heterostructures. Renew. Energy 2024, 237, 121686.