PDF (15 MB)
Collect
Submit Manuscript
Research Article | Open Access

Tunable luminescence and ratiometric temperature sensing by hierarchical self-assembly of lanthanide-organic cage

Xuan Deng1,2Ran Li1,2Li-Peng Zhou1Xiao-Fang Duan1Xiu-Yan Cheng1Shao-Jun Hu1 ()Qing-Fu Sun1,2 ()
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
College of Chemistry, Fuzhou University, Fuzhou 350108, China
Show Author Information

Graphical Abstract

View original image Download original image
A new type of photofunctional lanthanide-organic cage Eu4L4 was designed and synthesized. The cage Eu4L4 exhibits concentration-dependent aggregation behavior, and tunable luminescence can be achieved by controlling the equilibrium between Eu4L4 monomers and aggregates.

Abstract

Luminescent materials with tunable emission wavelengths/colors hold great potential for smart response devices, data security, sensors, and so on. However, development of stimuli-responsive luminescent materials with traditional organic or inorganic luminophores remains challenging due to their lack of tunability. Herein, we report the tunable luminescence and ratiometric temperature sensing applications with a europium-organic cage (Eu4L4) featuring concentration-dependent hierarchical self-assembly behavior. Notably, white light emission was achieved by adjusting the equilibrium ratio between the red-emissive cage monomer and cyan-emissive cage aggregate. Taking advantage of the dual emissive nature of the system, ratiometric luminescent temperature sensing has also been achieved, exhibiting a sensitivity of 2.04% and linear correlation coefficient of 0.997 from 250 to 320 K.

Electronic Supplementary Material

Download File(s)
7327_ESM.pdf (5.8 MB)

References

[1]

Kaur, H.; Sundriyal, S.; Pachauri, V.; Ingebrandt, S.; Kim, K. H.; Sharma, A. L.; Deep, A. Luminescent metal-organic frameworks and their composites: Potential future materials for organic light emitting displays. Coord. Chem. Rev. 2019, 401, 213077.

[2]

Li, Q.; Li, Y. N.; Ma, J.; Yang, D. K.; White, T. J.; Bunning, T. J. Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure. Adv. Mater. 2011, 23, 5069–5073.

[3]

Zhao, D. Y.; Bi, W. H.; Tang, B. Z. A light-emitting liquid crystal display device without polarizers and alignment layers. Adv. Opt. Mater. 2021, 9, 2100489.

[4]

Zhang, H. J.; Zhang, H. Special issue: Rare earth luminescent materials. Light Sci. Appl. 2022, 11, 260.

[5]

Zhao, D.; Yu, K. L.; Han, X.; He, Y. B.; Chen, B. L. Recent progress on porous MOFs for process-efficient hydrocarbon separation, luminescent sensing, and information encryption. Chem. Commun. 2022, 58, 747–770.

[6]

Zhang, B. B.; Zhong, Q. L.; Xie, Y. H.; Hu, L. F.; Wang, Y. J.; Bai, G. Y. A sodium carboxymethyl cellulose-induced emission and gelation system for time-dependent information encryption and anti-counterfeiting. J. Colloid Interface Sci. 2024, 663, 707–715.

[7]

Sun, H. B.; Liu, S. J.; Lin, W. P.; Zhang, K. Y.; Lv, W.; Huang, X.; Huo, F. W.; Yang, H. R.; Jenkins, G.; Zhao, Q. et al. Smart responsive phosphorescent materials for data recording and security protection. Nat. Commun. 2014, 5, 3601.

[8]

Xie, Y.; Sun, G. T.; Li, J. W.; Sun, L. N. Multimode emission from lanthanide-based metal-organic frameworks for advanced information encryption. Adv. Funct. Mater. 2023, 33, 2303663.

[9]

Zheng, H. Q.; Yang, Y.; Wang, Z. Y.; Yang, D. R.; Qian, G. D.; Cui, Y. J. Photo-stimuli-responsive dual-emitting luminescence of a spiropyran-encapsulating metal-organic framework for dynamic information encryption. Adv. Mater. 2023, 35, 2300177.

[10]

Zhou, H.; Han, J. J.; Cuan, J.; Zhou, Y. Responsive luminescent MOF materials for advanced anticounterfeiting. Chem. Eng. J. 2022, 431, 134170.

[11]

Lei, X.; Jiang, Y.; Zeng, Q. Q.; Dou, Y. C.; Zhang, H. K.; Ni, J. T.; Zhuo, Y. N.; Wang, W.; Ai, Y. Y.; Li, Y. G. A visible-light regulated luminescent switch based on a spiropyran-derived Pt(II) complex for advanced anti-counterfeiting materials. Chem. Commun. 2024, 60, 9360–9363.

[12]

Li, Y. F.; Sun, J. M.; Chen, M. X.; Miao, S. S.; Liu, M.; Ma, Y. J.; Wang, G.; Gu, X. G.; Tang, B. Z. Thieno[3,4-c][1,2,5]thiadiazole-based organic conjugated molecules with visible and near-infrared dual emissions for luminescent anti-counterfeiting applications. Adv. Funct. Mater. 2022, 32, 2205494.

[13]

Yu, X. L.; Ryadun, A. A.; Pavlov, D. I.; Guselnikova, T. Y.; Potapov, A. S.; Fedin, V. P. Ln-MOF-Based hydrogel films with tunable luminescence and afterglow behavior for visual detection of ofloxacin and anti-counterfeiting applications. Adv. Mater. 2024, 36, 2311939.

[14]

Yu, X. L.; Ryadun, A. A.; Pavlov, D. I.; Guselnikova, T. Y.; Potapov, A. S.; Fedin, V. P. Highly luminescent lanthanide metal-organic frameworks with tunable color for nanomolar detection of iron(III), ofloxacin and gossypol and anti-counterfeiting applications. Angew. Chem., Int. Ed. 2023, 62, e202306680.

[15]

Wang, J. J.; Chen, C.; Chen, W. G.; Yao, J. S.; Yang, J. N.; Wang, K. H.; Yin, Y. C.; Yao, M. M.; Feng, L. Z.; Ma, C. et al. Highly luminescent copper iodide cluster based inks with photoluminescence quantum efficiency exceeding 98%. J. Am. Chem. Soc. 2020, 142, 3686–3690.

[16]

Su, Z.; Li, D. P.; Zhang, L. X.; Tian, S.; Su, Y. H.; Hu, X. Y.; Xiong, D.; Guan, Q. Q. Multiresponsive, easy-reversible, and dual-visual Pt(II) salt nanostructures for advanced anti-counterfeiting application. Nano Res. 2024, 17, 372–381.

[17]

Plajer, A. J.; Percástegui, E. G.; Santella, M.; Rizzuto, F. J.; Gan, Q.; Laursen, B. W.; Nitschke, J. R. Fluorometric recognition of nucleotides within a water-soluble tetrahedral capsule. Angew. Chem., Int. Ed. 2019, 58, 4200–4204.

[18]

Bünzli, J. C. G. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 2010, 110, 2729–2755.

[19]

Montgomery, C. P.; Murray, B. S.; New, E. J.; Pal, R.; Parker, D. Cell-penetrating metal complex optical probes: Targeted and responsive systems based on lanthanide luminescence. Acc. Chem. Res. 2009, 42, 925–937.

[20]

Guo, F.; Li, D. F.; Gao, F.; Xu, K.; Zhang, J.; Yi, X. G.; Li, D. P.; Li, Y. X. Highly stable europium(III) tetrahedral (Eu4L4)(phen)4 cage: Structure, luminescence properties, and cellular imaging. Inorg. Chem. 2022, 61, 17089–17100.

[21]

Wu, H. W.; Chen, Z.; Chi, W. J.; Bindra, A. K.; Gu, L.; Qian, C.; Wu, B.; Yue, B. B.; Liu, G. F.; Yang, G. B. et al. Structural engineering of luminogens with high emission efficiency both in solution and in the solid state. Angew. Chem., Int. Ed. 2019, 58, 11419–11423.

[22]

Wang, Z.; He, L. Z.; Liu, B. Q.; Zhou, L. P.; Cai, L. X.; Hu, S. J.; Li, X. Z.; Li, Z. K.; Chen, T. F.; Li, X. P. et al. Coordination-assembled water-soluble anionic lanthanide organic polyhedra for luminescent labeling and magnetic resonance imaging. J. Am. Chem. Soc. 2020, 142, 16409–16419.

[23]

Yang, M.; Gong, H. J.; Yang, D.; Feng, L. L.; Gai, S. L.; Zhang, F. M.; Ding, H.; He, F.; Yang, P. P. Research progress on rare earth up-conversion and near-infrared II luminescence in biological applications. Chin. Chem. Lett. 2024, 35, 108468.

[24]
Qin, Y.; Niu, N.; Li, X.; Yan, X. K.; Lu, S.; Li, Z. K.; Gui, Y. X.; Zhu, J. L.; Xu, L.; Li, X. P. et al. Long-term in vivo fluorescence analyses and imaging-guided tumor surgery in the second near-infrared window using a supramolecular metallacage. Aggregate., in press, DOI: 10.1002/agt2.708.
[25]

Xu, W. Q.; Wu, Y.; Jiao, L.; Sha, M.; Cai, X. L.; Wen, Y. T.; Chen, Y. F.; Gu, W. L.; Zhu, C. Z. Protein trap-engineered metal-organic frameworks for advanced enzyme encapsulation and mimicking. Nano Res. 2023, 16, 3364–3371.

[26]

Liang, L.; Chen, N.; Jia, Y. Y.; Ma, Q. Q.; Wang, J.; Yuan, Q.; Tan, W. H. Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging. Nano Res. 2019, 12, 1279–1292.

[27]

Wenger, O. S. Vapochromism in organometallic and coordination complexes: Chemical sensors for volatile organic compounds. Chem. Rev. 2013, 113, 3686–3733.

[28]

Yao, Y.; Zhou, Y. Y.; Zhu, T. Y.; Gao, T.; Li, H. F.; Yan, P. F. Eu(III) Tetrahedron cage as a luminescent chemosensor for rapidly reversible and turn-on detection of volatile amine/NH3. ACS Appl. Mater. Interfaces. 2020, 12, 15338–15347.

[29]

Shu, Y.; Ye, Q. Y.; Dai, T.; Xu, Q.; Hu, X. Y. Encapsulation of luminescent guests to construct luminescent metal-organic frameworks for chemical sensing. ACS Sens. 2021, 6, 641–658.

[30]

Guo, X. Q.; Zhou, L. P.; Cai, L. X.; Sun, Q. F. Self-assembled bright luminescent lanthanide-organic polyhedra for ratiometric temperature sensing. Chem.—Eur. J. 2018, 24, 6936–6940.

[31]

Zhang, S. D.; Chen, L. X.; Xie, J.; Zhang, Y. G.; Huang, F.; Wang, X.; Li, K.; Zhai, F. W.; Yang, Q.; Chen, L. H. et al. Turn-up luminescent sensing of ultraviolet radiation by lanthanide metal-organic frameworks. Inorg. Chem. 2022, 61, 4561–4565.

[32]

Jiang, B.; Zhang, J.; Ma, J. Q.; Zheng, W.; Chen, L. J.; Sun, B.; Li, C.; Hu, B. W.; Tan, H. W.; Li, X. P. et al. Vapochromic behavior of a chair-shaped supramolecular metallacycle with ultra-stability. J. Am. Chem. Soc. 2016, 138, 738–741.

[33]

Zhou, Z. J.; Zhang, L.; Peng, L. Y.; Li, Y. J.; Zhu, X. L.; Wu, Y. D.; Qiu, Z. B.; He, G.; Qin, M. L.; Peng, H. N. et al. Dynamic response and discrimination of gaseous sarin using a boron-difluoride complex film-based fluorescence sensor. Aggregate 2024, 5, e629.

[34]

Liu, C. L.; Zhang, R. L.; Lin, C. S.; Zhou, L. P.; Cai, L. X.; Kong, J. T.; Yang, S. Q.; Han, K. L.; Sun, Q. F. Intraligand charge transfer sensitization on self-assembled europium tetrahedral cage leads to dual-selective luminescent sensing toward anion and cation. J. Am. Chem. Soc. 2017, 139, 12474–12479.

[35]

Suh, M. P.; Cheon, Y. E.; Lee, E. Y. Syntheses and functions of porous metallosupramolecular networks. Coord. Chem. Rev. 2008, 252, 1007–1026.

[36]

Hu, S. J.; Guo, X. Q.; Zhou, L. P.; Yan, D. N.; Cheng, P. M.; Cai, L. X.; Li, X. Z.; Sun, Q. F. Guest-driven self-assembly and chiral induction of photofunctional lanthanide tetrahedral cages. J. Am. Chem. Soc. 2022, 144, 4244–4253.

[37]

Winnik, F. M. Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media. Chem. Rev. 1993, 93, 587–614.

[38]

Chen, D. G.; Chen, Y.; Wu, C. H.; Chen, Y. A.; Chen, M. C.; Lin, J. A.; Huang, C. Y.; Su, J. H.; Tian, H.; Chou, P. T. Phenothiazine scope: Steric strain induced planarization and excimer formation. Angew. Chem., Int. Ed. 2019, 58, 13297–13301.

[39]

Yang, J.; Dong, C. C.; Chen, X. L.; Sun, X.; Wei, J. Y.; Xiang, J. F.; Sessler, J. L.; Gong, H. Y. Excimer disaggregation enhanced emission: A fluorescence “turn-on” approach to oxoanion recognition. J. Am. Chem. Soc. 2019, 141, 4597–4612.

[40]

Wang, J.; Zhang, Q. B.; Chen, Z. M.; Lan, X.; Shi, W. J.; Li, Z. Q. Tailoring photoluminescence and multifunctionalities of lanthanide coordination complexes employing ligand-controlled aggregation states. Inorg. Chem. Front. 2023, 10, 6077–6085.

[41]

Shigemitsu, H.; Kawakami, K.; Nagata, Y.; Kajiwara, R.; Yamada, S.; Mori, T.; Kida, T. Cyclodextrins with Multiple Pyrenyl groups: An approach to organic molecules exhibiting bright excimer circularly polarized luminescence. Angew. Chem., Int. Ed. 2022, 61, e202114700.

[42]

Shen, S.; Baryshnikov, G. V.; Xie, Q. S.; Wu, B.; Lv, M.; Sun, H.; Li, Z. Y.; Ågren, H.; Chen, J. Q.; Zhu, L. L. Making multi-twisted luminophores produce persistent room-temperature phosphorescence. Chem. Sci. 2023, 14, 970–978.

[43]

Zhou, F.; Gu, P. Y.; Luo, Z. P.; Bisoyi, H. K.; Ji, Y. J.; Li, Y. Y.; Xu, Q. F.; Li, Q.; Lu, J. M. Unexpected organic hydrate luminogens in the solid state. Nat. Commun. 2021, 12, 2339.

[44]

Chen, Y. X.; Cao, Z.; Feng, T. L.; Zhang, X. B.; Li, Z. Y.; Dong, X.; Huang, S. Y.; Liu, Y. C.; Cao, X. Y.; Sue, A. C. et al. Enantioselective self-assembly of a homochiral tetrahedral cage comprising only achiral precursors. Angew. Chem., Int. Ed. 2024, 63, e202400467.

[45]

Wu, M. X.; Hong, Q. Y.; Li, M. H.; Jiang, W. L.; Huang, B.; Lu, S.; Wang, H.; Yang, H. B.; Zhao, X. L.; Shi, X. L. Self-assembly of conformation-adaptive dihydrophenazine-based coordination cages. Chem. Commun. 2024, 60, 1184–1187.

[46]

Jin, T. X.; Zeng, K.; Zhang, X.; Dou, W. T.; Hu, L. R.; Zhang, D. W.; Zhu, W. P.; Qian, X. H.; Yang, H. B.; Xu, L. Efficient Self-sorting behaviours of metallacages with subtle structural differences. Angew. Chem., Int. Ed. 2024, 63, e202409878.

[47]

Tang, X. H.; Meng, C. L.; Rampal, N.; Li, A.; Chen, X.; Gong, W.; Jiang, H.; Fairen-Jimenez, D.; Cui, Y.; Liu, Y. Homochiral porous metal-organic polyhedra with multiple kinds of vertices. J. Am. Chem. Soc. 2023, 145, 2561–2571.

[48]

Yang, Y.; Jing, X.; Shi, Y. P.; Wu, Y. C.; Duan, C. Y. Modifying enzymatic substrate binding within a metal-organic capsule for supramolecular catalysis. J. Am. Chem. Soc. 2023, 145, 10136–10148.

[49]

Hu, S. J.; Guo, X. Q.; Zhou, L. P.; Cai, L. X.; Tian, C. B.; Sun, Q. F. Ionic radius dependent kinetic behavior for the self-assemblyand chiral amplification of lanthanide tetrahedral cages. Chin. J. Chem. 2023, 41, 797–804.

[50]

Jansze, S. M.; Cecot, G.; Wise, M. D.; Zhurov, K. O.; Ronson, T. K.; Castilla, A. M.; Finelli, A.; Pattison, P.; Solari, E.; Scopelliti, R. et al. Ligand aspect ratio as a decisive factor for the self-assembly of coordination cages. J. Am. Chem. Soc. 2016, 138, 2046–2054.

[51]

Li, X. Z.; Tian, C. B.; Sun, Q. F. Coordination-directed self-assembly of functional polynuclear lanthanide supramolecular architectures. Chem. Rev. 2022, 122, 6374–6458.

[52]

Wang, W.; Wang, Y. X.; Yang, H. B. Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chem. Soc. Rev. 2016, 45, 2656–2693.

[53]

McConnell, A. J.; Wood, C. S.; Neelakandan, P. P.; Nitschke, J. R. Stimuli-responsive metal-ligand assemblies. Chem. Rev. 2015, 115, 7729–7793.

[54]

Cai, L. X.; Yan, D. N.; Cheng, P. M.; Xuan, J. J.; Li, S. C.; Zhou, L. P.; Tian, C. B.; Sun, Q. F. Controlled self-assembly and multistimuli-responsive interconversions of three conjoined twin-cages. J. Am. Chem. Soc. 2021, 143, 2016–2024.

[55]

Kim, H. J.; Kim, T.; Lee, M. Responsive nanostructures from aqueous assembly of rigid-flexible block molecules. Acc. Chem. Res. 2011, 44, 72–82.

[56]

Pang, X. Y.; Zhou, H.; Xie, X. J.; Jiang, W.; Yang, Y. H.; Sessler, J. L.; Gong, H. Y. 1,3,5-2,4,6-Functionalized benzene molecular cage: An environmentally responsive scaffold that supports hierarchical superstructures. Angew. Chem., Int. Ed. 2024, 63, e202407805.

[57]

Liu, H. K.; Ronson, T. K.; Wu, K.; Luo, D.; Nitschke, J. R. Anionic templates drive conversion between a ZnII9L6 tricapped trigonal prism and ZnII6L4 pseudo-octahedra. J. Am. Chem. Soc. 2023, 145, 15990–15996.

[58]

Zhang, Z.; Bai, Q. X.; Zhai, Z. R.; Long, Q. W.; Han, E. M.; Zhao, H.; Zhou, C. W.; Lin, H. B.; Zhang, W.; Ning, G. H. et al. Multiple-stimuli fluorescent responsive metallo-organic helicated cage arising from monomer and excimer emission. Nat. Commun. 2024, 15, 7261.

[59]

Yan, X. Z.; Cook, T. R.; Wang, P.; Huang, F. H.; Stang, P. J. Highly emissive platinum(II) metallacages. Nat. Chem. 2015, 7, 342–348.

[60]

Bell, D. J.; Natrajan, L. S.; Riddell, I. A. Design of lanthanide based metal-organic polyhedral cages for application in catalysis, sensing, separation and magnetism. Coord. Chem. Rev. 2022, 472, 214786.

[61]

Li, B.; Wen, H. M.; Cui, Y. J.; Qian, G. D.; Chen, B. L. Multifunctional lanthanide coordination polymers. Prog. Polym. Sci. 2015, 48, 40–84.

[62]

Huang, W. L.; Wang, X. D.; Ao, Y. F.; Wang, Q. Q.; Wang, D. X. Artificial chloride-selective channel: Shape and function mimic of the clc channel selective pore. J. Am. Chem. Soc. 2020, 142, 13273–13277.

[63]

Scattergood, P. A.; Roberts, J.; Omar, S. A. E.; Elliott, P. I. P. Observation of an inversion in photophysical tuning in a systematic study of luminescent triazole-based osmium(II) complexes. Inorg. Chem. 2019, 58, 8607–8621.

[64]

Maity, D.; Govindaraju, T. Pyrrolidine constrained bipyridyl-dansyl click fluoroionophore as selective Al3+ sensor. Chem. Commun. 2010, 46, 4499–4501.

[65]

Guo, W. J.; Peng, T. K.; Zhu, W. P.; Ma, S. X.; Wang, G.; Li, Y.; Liu, B.; Peng, H. Q. Visualization of supramolecular assembly by aggregation-induced emission. Aggregate 2023, 4, e297.

[66]

Kieffer, M.; Garcia, A. M.; Haynes, C. J. E.; Kralj, S.; Iglesias, D.; Nitschke, J. R.; Marchesan, S. Embedding and positioning of two FeII4L4 cages in supramolecular tripeptide gels for selective chemical segregation. Angew. Chem., Int. Ed. 2019, 58, 7982–7986.

[67]

Jahović, I.; Zou, Y. Q.; Adorinni, S.; Nitschke, J. R.; Marchesan, S. Cages meet gels: Smart materials with dual porosity. Matter 2021, 4, 2123–2140.

[68]

Zheng, W.; Yang, G.; Shao, N. N.; Chen, L. J.; Ou, B.; Jiang, S. T.; Chen, G. S.; Yang, H. B. CO2 stimuli-responsive, injectable block copolymer hydrogels cross-linked by discrete organoplatinum(II) metallacycles via stepwise post-assembly polymerization. J. Am. Chem. Soc. 2017, 139, 13811–13820.

[69]

Duan, X. F.; Zhou, L. P.; Li, H. R.; Hu, S. J.; Zheng, W.; Xu, X.; Zhang, R. L.; Chen, X. Y.; Guo, X. Q.; Sun, Q. F. Excited-multimer mediated supramolecular upconversion on multicomponent lanthanide-organic assemblies. J. Am. Chem. Soc. 2023, 145, 23121–23130.

[70]

Cui, Y. J.; Song, R. J.; Yu, J. C.; Liu, M.; Wang, Z. Q.; Wu, C. D.; Yang, Y.; Wang, Z. Y.; Chen, B. L.; Qian, G. D. Dual-emitting MOF dye composite for ratiometric temperature sensing. Adv. Mater. 2015, 27, 1420–1425.

Nano Research
Article number: 94907327
Cite this article:
Deng X, Li R, Zhou L-P, et al. Tunable luminescence and ratiometric temperature sensing by hierarchical self-assembly of lanthanide-organic cage. Nano Research, 2025, 18(4): 94907327. https://doi.org/10.26599/NR.2025.94907327
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return