PDF (12 MB)
Collect
Submit Manuscript
Show Outline
Figures (4)

Tables (1)
Table 1
Research Article | Open Access

High-selective Fischer–Tropsch synthesis to jet fuel over confined iron catalysts inside carbon nanocages

Fujie Gao1Xinyi Wang1Ou Zhuo2Changkai Zhou1Lijun Yang1Qiang Wu1Yining Fan1Xizhang Wang1 ()Hongwen Huang1 ()Zheng Hu1 ()
Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
Show Author Information

Graphical Abstract

View original image Download original image
Filling K-promoted Fe-based active species into hierarchical carbon nanocages (hCNC) produces jet fuel with a selectivity of 60% in Fischer–Tropsch synthesis, exceeding the Anderson–Schulz–Flory maximum of ~ 41%. This excellent performance is due to the CO enrichment inside the nanocavities, which results from the sieving effect of the micropores across the hCNC shells (~ 6 Å).

Abstract

Selective production of specific products, such as jet fuel, in Fischer–Tropsch synthesis (FTS) is a huge challenge due to the Anderson–Schulz–Flory (ASF) distribution law. Herein, by filling K-promoted Fe-based active species, which usually produces medium-to-short chain hydrocarbons in high-temperature FTS, into the hierarchical carbon nanocages (hCNC), jet fuel with high selectivity of 60% is directly obtained in FTS at 300 °C, exceeding the ASF maximum limitation of ca. 41%. Through the theoretical simulations, we attribute this performance to the CO enrichment inside the nanocavities due to the sieving effect of the micropores across the hCNC shells (~ 6 Å) and the increased collision frequency in confined space. These two factors thereby promote the CO conversion and carbon-chain growth longer over the catalytically active Fe5C2 phase, resulting in the remarkable selectivity to jet fuel. The effects of the length and size of micropores on the CO/H2 diffusion and FTS performance are examined, which corroborate the crucial role of micropores in the high-selective FTS to jet fuel. This work not only provides a remarkable catalyst to the selective jet fuel synthesis, but also offers an alternative way to design advanced catalysts for FTS.

Electronic Supplementary Material

Download File(s)
7331_ESM.pdf (5.1 MB)

References

[1]

Schäppi, R.; Rutz, D.; Dähler, F.; Muroyama, A.; Haueter, P.; Lilliestam, J.; Patt, A.; Furler, P.; Steinfeld, A. Drop-in fuels from sunlight and air. Nature 2022, 601, 63–68.

[2]
Robinson, P. R.; Dolbear, G. E. Hydrotreating and hydrocracking: fundamentals. In Practical Advances in Petroleum Processing. Hsu, C. S.; Robinson, P. R. Eds.; Springer: New York, 2006; pp 177–218.
[3]

Zhang, Q. H.; Kang, J. C.; Wang, Y. Development of novel catalysts for Fischer–Tropsch synthesis: Tuning the product selectivity. ChemCatChem 2010, 2, 1030–1058.

[4]

Sun, J.; Yang, G. H.; Peng, X. B.; Kang, J. C.; Wu, J. H.; Liu, G. B.; Tsubaki, N. Beyond cars: Fischer–Tropsch synthesis for non-automotive applications. ChemCatChem 2019, 11, 1412–1424.

[5]

Li, J.; He, Y. L.; Tan, L.; Zhang, P. P.; Peng, X. B.; Oruganti, A.; Yang, G. H.; Abe, H.; Wang, Y.; Tsubaki, N. Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nat. Catal. 2018, 1, 787–793.

[6]

Yang, M.; Zhu, L. J.; Zhuo, Y. X.; Liang, J. C.; Wang, S. R. Selective Fischer–Tropsch synthesis for jet fuel production over Y3+ modified Co/H-β catalysts. Sustain. Energy Fuels 2020, 4, 3528–3536.

[7]

Lin, T. J.; An, Y. L.; Yu, F.; Gong, K.; Yu, H. L.; Wang, C. Q.; Sun, Y. H.; Zhong, L. S. Advances in selectivity control for Fischer–Tropsch synthesis to fuels and chemicals with high carbon efficiency. ACS Catal. 2022, 12, 12092–12112.

[8]

Li, J.; Yang, G. H.; Yoneyama, Y.; Vitidsant, T.; Tsubaki, N. Jet fuel synthesis via Fischer–Tropsch synthesis with varied 1-olefins as additives using Co/ZrO2–SiO2 bimodal catalyst. Fuel 2016, 171, 159–166.

[9]

Li, J.; Sun, J.; Fan, R. G.; Yoneyama, Y.; Yang, G. H.; Tsubaki, N. Selectively converting biomass to jet fuel in large-scale apparatus. ChemCatChem 2017, 9, 2668–2674.

[10]

Chen, Y. P.; Batalha, N.; Marinova, M.; Impéror-Clerc, M.; Ma, C. R.; Ersen, O.; Baaziz, W.; Stewart, J. A.; Curulla-Ferré, D.; Khodakov, A. Y. et al. Ruthenium silica nanoreactors with varied metal-wall distance for efficient control of hydrocarbon distribution in Fischer–Tropsch synthesis. J. Catal. 2018, 365, 429–439.

[11]

Xie, R. Y.; Wang, H.; Gao, P.; Xia, L.; Zhang, Z. Z.; Zhao, T. J.; Sun, Y. H. Core@shell Co3O4@C-m-SiO2 catalysts with inert C modified mesoporous channel for desired middle distillate. Appl. Catal. A 2015, 492, 93–99.

[12]

Pan, X. L.; Fan, Z. L.; Chen, W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat. Mater. 2007, 6, 507–511.

[13]

Yuan, Y.; Huang, E. W.; Hwang, S.; Liu, P.; Chen, J. G. Confining platinum clusters in indium-modified ZSM-5 zeolite to promote propane dehydrogenation. Nat. Commun. 2024, 15, 6529.

[14]

Shen, Z.; Chen, G. H.; Cheng, X. Y.; Xu, F. F.; Huang, H. W.; Wang, X. Z.; Yang, L. J.; Wu, Q.; Hu, Z. Self-enhanced localized alkalinity at the encapsulated Cu catalyst for superb electrocatalytic nitrate/nitrite reduction to NH3 in neutral electrolyte. Sci. Adv. 2024, 10, eadm9325.

[15]

Liu, J.; Wickramaratne, N. P.; Qiao, S. Z.; Jaroniec, M. Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 2015, 14, 763–774.

[16]

Tavakkoli, M.; Kallio, T.; Reynaud, O.; Nasibulin, A. G.; Johans, C.; Sainio, J.; Jiang, H.; Kauppinen, E. I.; Laasonen, K. Single-shell carbon-encapsulated iron nanoparticles: Synthesis and high electrocatalytic activity for hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 4535–4538.

[17]

Yang, H. Q.; Zhang, L.; Zhong, L.; Yang, Q. H.; Li, C. Enhanced cooperative activation effect in the hydrolytic kinetic resolution of epoxides on [Co(salen)] catalysts confined in nanocages. Angew. Chem., Int. Ed. 2007, 46, 6861–6865.

[18]

Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Carbon-based nanocages: A new platform for advanced energy storage and conversion. Adv. Mater. 2020, 32, 1904177.

[19]

Dry, M. E. The Fischer–Tropsch process: 1950–2000. Catal. Today 2002, 71, 227–241.

[20]

de Klerk, A. Can Fischer–Tropsch syncrude be refined to on-specification diesel fuel. Energy Fuels 2009, 23, 4593–4604.

[21]

Zhang, M. T.; Wang, M.; Xu, B. J.; Ma, D. How to measure the reaction performance of heterogeneous catalytic reactions reliably. Joule 2019, 3, 2876–2883.

[22]

Zhuo, O.; Yang, L. J.; Gao, F. J.; Xu, B. L.; Wu, Q.; Fan, Y. N.; Zhang, Y.; Jiang, Y. F.; Huang, R. S.; Wang, X. Z. et al. Stabilizing the active phase of iron-based Fischer–Tropsch catalysts for lower olefins: Mechanism and strategy. Chem. Sci. 2019, 10, 6083–6090.

[23]
Wikipedia. "Surface sensitivity", can be found under [Online]. https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy (accessed Sep 12, 2024).
[24]

Torres Galvis, H. M.; Bitter, J. H.; Davidian, T.; Ruitenbeek, M.; Dugulan, A. I.; de Jong, K. P. Iron particle size effects for direct production of lower olefins from synthesis Gas. J. Am. Chem. Soc. 2012, 134, 16207–16215.

[25]

Yang, C.; Zhao, H. B.; Hou, Y. L.; Ma, D. Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer–Tropsch synthesis. J. Am. Chem. Soc. 2012, 134, 15814–15821.

[26]

Zhai, P.; Xu, C.; Gao, R.; Liu, X.; Li, M. Z.; Li, W. Z.; Fu, X. P.; Jia, C. J.; Xie, J. L.; Zhao, M. et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst. Angew. Chem., Int. Ed. 2016, 55, 9902–9907.

[27]

Yang, Y.; Xiang, H. W.; Xu, Y. Y.; Bai, L.; Li, Y. W. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer–Tropsch synthesis. Appl. Catal. A 2004, 266, 181–194.

[28]

Nakhaei Pour, A.; Housaindokht, M. R.; Irani, M.; Kamali Shahri, S. M. Size-dependent studies of Fischer–Tropsch synthesis on iron based catalyst: New kinetic model. Fuel 2014, 116, 787–793.

[29]

Huo, C. F.; Wu, B. S.; Gao, P.; Yang, Y.; Li, Y. W.; Jiao, H. J. The mechanism of potassium promoter: Enhancing the stability of active surfaces. Angew. Chem., Int. Ed. 2011, 50, 7403–7406.

[30]

Guan, J.; Pan, X. L.; Liu, X.; Bao, X. H. Syngas segregation induced by confinement in carbon nanotubes: A combined first-principles and Monte Carlo study. J. Phys. Chem. C 2009, 113, 21687–21692.

[31]

Pan, X. L.; Bao, X. H. The effects of confinement inside carbon nanotubes on catalysis. Acc. Chem. Res. 2011, 44, 553–562.

[32]

Bai, S. Y.; Li, B.; Peng, J.; Zhang, X. M.; Yang, Q. H.; Li, C. Promoted activity of Cr(Salen) in a nanoreactor for kinetic resolution of terminal epoxides. Chem. Sci. 2012, 3, 2864–2867.

[33]

Wu, W. L.; Luo, J. H.; Zhao, J. K.; Wang, M. L.; Luo, L.; Hu, S. P.; He, B. X.; Ma, C.; Li, H. L.; Zeng, J. Facet sensitivity of iron carbides in Fischer–Tropsch synthesis. Nat. Commun. 2024, 15, 6108.

[34]

Li, Y. B.; He, Y. L.; Fujihara, K.; Gu, Y. Q.; Gao, W. Z.; Yasuda, S.; Yang, G. H.; Tsubaki, N. Directly Converting CO2 to light hydrocarbons on a FeCoAl Prussian blue analogue-based core–shell catalyst via Fischer–Tropsch synthesis. ACS Catal. 2023, 13, 12174–12185.

[35]

Schulz, H. Short history and present trends of Fischer–Tropsch synthesis. Appl. Catal. A 1999, 186, 3–12.

[36]

Shen, L. M.; Sun, T.; Zhuo, O.; Che, R. C.; Li, D. Q.; Ji, Y. C.; Bu, Y. F.; Wu, Q.; Yang, L. J.; Chen, Q. et al. Alcohol-tolerant platinum electrocatalyst for oxygen reduction by encapsulating platinum nanoparticles inside nitrogen-doped carbon nanocages. ACS Appl. Mater. Interfaces 2016, 8, 16664–16669.

[37]

Zhao, J.; Fan, H.; Li, G. C.; Wu, Q.; Yang, L. J.; Ma, Y. W.; Wang, X. Z.; Hu, Z. Enlarging ion-transfer micropore channels of hierarchical carbon nanocages for ultrahigh energy and power densities. Sci. China Mater. 2021, 64, 2173–2181.

Nano Research
Article number: 94907331
Cite this article:
Gao F, Wang X, Zhuo O, et al. High-selective Fischer–Tropsch synthesis to jet fuel over confined iron catalysts inside carbon nanocages. Nano Research, 2025, 18(4): 94907331. https://doi.org/10.26599/NR.2025.94907331
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return