Selective production of specific products, such as jet fuel, in Fischer–Tropsch synthesis (FTS) is a huge challenge due to the Anderson–Schulz–Flory (ASF) distribution law. Herein, by filling K-promoted Fe-based active species, which usually produces medium-to-short chain hydrocarbons in high-temperature FTS, into the hierarchical carbon nanocages (hCNC), jet fuel with high selectivity of 60% is directly obtained in FTS at 300 °C, exceeding the ASF maximum limitation of ca. 41%. Through the theoretical simulations, we attribute this performance to the CO enrichment inside the nanocavities due to the sieving effect of the micropores across the hCNC shells (~ 6 Å) and the increased collision frequency in confined space. These two factors thereby promote the CO conversion and carbon-chain growth longer over the catalytically active Fe5C2 phase, resulting in the remarkable selectivity to jet fuel. The effects of the length and size of micropores on the CO/H2 diffusion and FTS performance are examined, which corroborate the crucial role of micropores in the high-selective FTS to jet fuel. This work not only provides a remarkable catalyst to the selective jet fuel synthesis, but also offers an alternative way to design advanced catalysts for FTS.
Schäppi, R.; Rutz, D.; Dähler, F.; Muroyama, A.; Haueter, P.; Lilliestam, J.; Patt, A.; Furler, P.; Steinfeld, A. Drop-in fuels from sunlight and air. Nature 2022, 601, 63–68.
Zhang, Q. H.; Kang, J. C.; Wang, Y. Development of novel catalysts for Fischer–Tropsch synthesis: Tuning the product selectivity. ChemCatChem 2010, 2, 1030–1058.
Sun, J.; Yang, G. H.; Peng, X. B.; Kang, J. C.; Wu, J. H.; Liu, G. B.; Tsubaki, N. Beyond cars: Fischer–Tropsch synthesis for non-automotive applications. ChemCatChem 2019, 11, 1412–1424.
Li, J.; He, Y. L.; Tan, L.; Zhang, P. P.; Peng, X. B.; Oruganti, A.; Yang, G. H.; Abe, H.; Wang, Y.; Tsubaki, N. Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nat. Catal. 2018, 1, 787–793.
Yang, M.; Zhu, L. J.; Zhuo, Y. X.; Liang, J. C.; Wang, S. R. Selective Fischer–Tropsch synthesis for jet fuel production over Y3+ modified Co/H-β catalysts. Sustain. Energy Fuels 2020, 4, 3528–3536.
Lin, T. J.; An, Y. L.; Yu, F.; Gong, K.; Yu, H. L.; Wang, C. Q.; Sun, Y. H.; Zhong, L. S. Advances in selectivity control for Fischer–Tropsch synthesis to fuels and chemicals with high carbon efficiency. ACS Catal. 2022, 12, 12092–12112.
Li, J.; Yang, G. H.; Yoneyama, Y.; Vitidsant, T.; Tsubaki, N. Jet fuel synthesis via Fischer–Tropsch synthesis with varied 1-olefins as additives using Co/ZrO2–SiO2 bimodal catalyst. Fuel 2016, 171, 159–166.
Li, J.; Sun, J.; Fan, R. G.; Yoneyama, Y.; Yang, G. H.; Tsubaki, N. Selectively converting biomass to jet fuel in large-scale apparatus. ChemCatChem 2017, 9, 2668–2674.
Chen, Y. P.; Batalha, N.; Marinova, M.; Impéror-Clerc, M.; Ma, C. R.; Ersen, O.; Baaziz, W.; Stewart, J. A.; Curulla-Ferré, D.; Khodakov, A. Y. et al. Ruthenium silica nanoreactors with varied metal-wall distance for efficient control of hydrocarbon distribution in Fischer–Tropsch synthesis. J. Catal. 2018, 365, 429–439.
Xie, R. Y.; Wang, H.; Gao, P.; Xia, L.; Zhang, Z. Z.; Zhao, T. J.; Sun, Y. H. Core@shell Co3O4@C-m-SiO2 catalysts with inert C modified mesoporous channel for desired middle distillate. Appl. Catal. A 2015, 492, 93–99.
Pan, X. L.; Fan, Z. L.; Chen, W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat. Mater. 2007, 6, 507–511.
Yuan, Y.; Huang, E. W.; Hwang, S.; Liu, P.; Chen, J. G. Confining platinum clusters in indium-modified ZSM-5 zeolite to promote propane dehydrogenation. Nat. Commun. 2024, 15, 6529.
Shen, Z.; Chen, G. H.; Cheng, X. Y.; Xu, F. F.; Huang, H. W.; Wang, X. Z.; Yang, L. J.; Wu, Q.; Hu, Z. Self-enhanced localized alkalinity at the encapsulated Cu catalyst for superb electrocatalytic nitrate/nitrite reduction to NH3 in neutral electrolyte. Sci. Adv. 2024, 10, eadm9325.
Liu, J.; Wickramaratne, N. P.; Qiao, S. Z.; Jaroniec, M. Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 2015, 14, 763–774.
Tavakkoli, M.; Kallio, T.; Reynaud, O.; Nasibulin, A. G.; Johans, C.; Sainio, J.; Jiang, H.; Kauppinen, E. I.; Laasonen, K. Single-shell carbon-encapsulated iron nanoparticles: Synthesis and high electrocatalytic activity for hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 4535–4538.
Yang, H. Q.; Zhang, L.; Zhong, L.; Yang, Q. H.; Li, C. Enhanced cooperative activation effect in the hydrolytic kinetic resolution of epoxides on [Co(salen)] catalysts confined in nanocages. Angew. Chem., Int. Ed. 2007, 46, 6861–6865.
Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Carbon-based nanocages: A new platform for advanced energy storage and conversion. Adv. Mater. 2020, 32, 1904177.
Dry, M. E. The Fischer–Tropsch process: 1950–2000. Catal. Today 2002, 71, 227–241.
de Klerk, A. Can Fischer–Tropsch syncrude be refined to on-specification diesel fuel. Energy Fuels 2009, 23, 4593–4604.
Zhang, M. T.; Wang, M.; Xu, B. J.; Ma, D. How to measure the reaction performance of heterogeneous catalytic reactions reliably. Joule 2019, 3, 2876–2883.
Zhuo, O.; Yang, L. J.; Gao, F. J.; Xu, B. L.; Wu, Q.; Fan, Y. N.; Zhang, Y.; Jiang, Y. F.; Huang, R. S.; Wang, X. Z. et al. Stabilizing the active phase of iron-based Fischer–Tropsch catalysts for lower olefins: Mechanism and strategy. Chem. Sci. 2019, 10, 6083–6090.
Torres Galvis, H. M.; Bitter, J. H.; Davidian, T.; Ruitenbeek, M.; Dugulan, A. I.; de Jong, K. P. Iron particle size effects for direct production of lower olefins from synthesis Gas. J. Am. Chem. Soc. 2012, 134, 16207–16215.
Yang, C.; Zhao, H. B.; Hou, Y. L.; Ma, D. Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer–Tropsch synthesis. J. Am. Chem. Soc. 2012, 134, 15814–15821.
Zhai, P.; Xu, C.; Gao, R.; Liu, X.; Li, M. Z.; Li, W. Z.; Fu, X. P.; Jia, C. J.; Xie, J. L.; Zhao, M. et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst. Angew. Chem., Int. Ed. 2016, 55, 9902–9907.
Yang, Y.; Xiang, H. W.; Xu, Y. Y.; Bai, L.; Li, Y. W. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer–Tropsch synthesis. Appl. Catal. A 2004, 266, 181–194.
Nakhaei Pour, A.; Housaindokht, M. R.; Irani, M.; Kamali Shahri, S. M. Size-dependent studies of Fischer–Tropsch synthesis on iron based catalyst: New kinetic model. Fuel 2014, 116, 787–793.
Huo, C. F.; Wu, B. S.; Gao, P.; Yang, Y.; Li, Y. W.; Jiao, H. J. The mechanism of potassium promoter: Enhancing the stability of active surfaces. Angew. Chem., Int. Ed. 2011, 50, 7403–7406.
Guan, J.; Pan, X. L.; Liu, X.; Bao, X. H. Syngas segregation induced by confinement in carbon nanotubes: A combined first-principles and Monte Carlo study. J. Phys. Chem. C 2009, 113, 21687–21692.
Pan, X. L.; Bao, X. H. The effects of confinement inside carbon nanotubes on catalysis. Acc. Chem. Res. 2011, 44, 553–562.
Bai, S. Y.; Li, B.; Peng, J.; Zhang, X. M.; Yang, Q. H.; Li, C. Promoted activity of Cr(Salen) in a nanoreactor for kinetic resolution of terminal epoxides. Chem. Sci. 2012, 3, 2864–2867.
Wu, W. L.; Luo, J. H.; Zhao, J. K.; Wang, M. L.; Luo, L.; Hu, S. P.; He, B. X.; Ma, C.; Li, H. L.; Zeng, J. Facet sensitivity of iron carbides in Fischer–Tropsch synthesis. Nat. Commun. 2024, 15, 6108.
Li, Y. B.; He, Y. L.; Fujihara, K.; Gu, Y. Q.; Gao, W. Z.; Yasuda, S.; Yang, G. H.; Tsubaki, N. Directly Converting CO2 to light hydrocarbons on a FeCoAl Prussian blue analogue-based core–shell catalyst via Fischer–Tropsch synthesis. ACS Catal. 2023, 13, 12174–12185.
Schulz, H. Short history and present trends of Fischer–Tropsch synthesis. Appl. Catal. A 1999, 186, 3–12.
Shen, L. M.; Sun, T.; Zhuo, O.; Che, R. C.; Li, D. Q.; Ji, Y. C.; Bu, Y. F.; Wu, Q.; Yang, L. J.; Chen, Q. et al. Alcohol-tolerant platinum electrocatalyst for oxygen reduction by encapsulating platinum nanoparticles inside nitrogen-doped carbon nanocages. ACS Appl. Mater. Interfaces 2016, 8, 16664–16669.
Zhao, J.; Fan, H.; Li, G. C.; Wu, Q.; Yang, L. J.; Ma, Y. W.; Wang, X. Z.; Hu, Z. Enlarging ion-transfer micropore channels of hierarchical carbon nanocages for ultrahigh energy and power densities. Sci. China Mater. 2021, 64, 2173–2181.