PDF (15 MB)
Collect
Submit Manuscript
Review Article | Open Access

Cationic carbon dots: A novel class of mimetic enzymes

Xin Wu1Zhuang Tong1Yunliang Liu1Yi Yang1Yaxi Li1Yuanyuan Cheng1Jingwen Yu1Naiyun Liu1 ()Chanyuan Jin2 ()Haitao Li1 ()
Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
Second Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, China
Show Author Information

Graphical Abstract

View original image Download original image
This review aims to analyze the recent advances in cationic carbon dots, including different synthetic strategies and applications.

Abstract

Natural enzymes are highly efficient catalysts with strong substrate specificity, making them ideal for biomedical applications. However, they often face issues such as variability, high costs, challenging preparation processes, and difficulties in large-scale production. This has led to significant efforts in developing effective nanoenzymes and exploring their application potential. In recent years, carbon dots (CDs) have gained attention due to their strong fluorescence, excellent biocompatibility, and low cytotoxicity. Cationic CDs, which possess a positively charged surface, have shown the ability to mimic natural enzyme applications. The positive charge on the surfaces of these nanomaterials significantly influences their fluorescence, biological activity, and interactions with other biomolecules. Therefore, understanding how surface charge affects the performance of CDs is crucial for enhancing their usability. Considerable progress has been made in the design, synthesis, and mechanistic research of enzyme-like cationic CDs, as well as their advanced applications. This article reviews the latest research on the design structure, catalytic mechanisms, biosensing capabilities, and biomedical applications of enzyme-like cationic CDs. First, we review the synthesis strategies for cationic CDs and how surface charge influences their physical and chemical properties. Next, we highlight various applications of these cationic CDs, demonstrating their use in areas such as detection, biomedical applications (including antibacterial agents, gene carriers, and therapeutic agents), catalysis, and more. Finally, we discuss the challenges and obstacles faced in the development of cationic CDs and look forward to exploring new applications in the future.

References

[1]

Ren, X. Y.; Chen, D. X.; Wang, Y.; Li, H. F.; Zhang, Y. B.; Chen, H. Y.; Li, X.; Huo, M. F. Nanozymes-recent development and biomedical applications. J. Nanobiotechnol. 2022, 20, 92.

[2]

Zhang, R. F.; Fan, K. L.; Yan, X. Y. Nanozymes: Created by learning from nature. Sci. China Life Sci. 2020, 63, 1183–1200.

[3]

Zhao, K. Y.; Zhao, Y.; Wang, Y. W.; Han, B.; Lian, M. L. Progress in antibacterial applications of nanozymes. Front. Chem. 2024, 12, 1478273.

[4]

Hamed, E. M.; Fung, F. M.; Li, S. F. Y. Unleashing the potential of single-atom nanozymes: Catalysts for the future. ACS Sens. 2024, 9, 3840–3847.

[5]

Han, J. P.; Gu, Y. H.; Yang, C. Y.; Meng, L. C.; Ding, R. M.; Wang, Y. F.; Shi, K. R.; Yao, H. Q. Single-atom nanozymes: Classification, regulation strategy, and safety concerns. J. Mater. Chem. B 2023, 11, 9840–9866.

[6]

Zeng, Q. D.; Zhong, H. H.; Liao, J. H.; Huo, Q.; Miao, B. P.; Zeng, L.; Zhang, B.; Nie, G. H. Antioxidant activities of metal single-atom nanozymes in biomedicine. Biomater. Sci. 2024, 12, 5150–5163.

[7]

Jin, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002.

[8]

Li, H. T.; Kang, Z. H.; Liu, Y.; Lee, S. T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012, 22, 24230–24253.

[9]

Sun, X. C.; Lei, Y. Fluorescent carbon dots and their sensing applications. TrAC Trends Anal. Chem. 2017, 89, 163–180.

[10]

Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.

[11]

Atchudan, R.; Edison, T. N. J. I.; Perumal, S.; Vinodh, R.; Sundramoorthy, A. K.; Babu, R. S.; Lee, Y. R. Leftover kiwi fruit peel-derived carbon dots as a highly selective fluorescent sensor for detection of ferric ion. Chemosensors 2021, 9, 166.

[12]

Chen, H. X.; Zhu, X. L.; Zong, H. B.; Zeng, G. X.; Miao, H. H.; Mo, Z.; Hossain, M. S.; Yan, J.; Wang, L.; Xu, H. Strongly coupled NH2NH-modified high crystallinity Graphene quantum dots/carbon nitride for efficient photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2023, 48, 36818–36824.

[13]

Xiang, Y.; Cao, F.; Cao, J.; Chen, X. N.; XiOng, Q. Effects of high-temperature annealing on microstructure and mechanical property of SiO2 f /SiO2 composites. Vacuum 2017, 144, 1–7.

[14]

Luo, L. J.; Liu, X. H.; Bi, X. Y.; Li, L. B.; You, T. Y. Facile fabrication and application of an innovative self-enhanced luminophore with outstanding electrochemiluminescence properties. Sens. Actuators A: Phys. 2020, 312, 112167.

[15]

Gowthaman, N. S. K.; Sinduja, B.; Karthikeyan, R.; Rubini, K.; Abraham John, S. Fabrication of nitrogen-doped carbon dots for screening the purine metabolic disorder in human fluids. Biosens. Bioelectron. 2017, 94, 30–38.

[16]

Zheng, M.; Ruan, S. B.; Liu, S.; Sun, T. T.; Qu, D.; Zhao, H. F.; Xie, Z. G.; Gao, H. L.; Jing, X. B.; Sun, Z. C. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano 2015, 9, 11455–11461.

[17]

Li, L. P.; Lu, C. X.; Li, S. J.; Liu, S. J.; Wang, L. J. E.; Cai, W. W.; Xu, W.; Yang, X.; Liu, Y. D.; Zhang, R. P. A high-yield and versatile method for the synthesis of carbon dots for bioimaging applications. J. Mater. Chem. B 2017, 5, 1935–1942.

[18]

Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726–6744.

[19]

Hu, L. M.; Sun, Y.; Li, S. L.; Wang, X. L.; Hu, K. L.; Wang, L. R.; Liang, X. J.; Wu, Y. Multifunctional carbon dots with high quantum yield for imaging and gene delivery. Carbon 2014, 67, 508–513.

[20]

Nguyen, H. V.; Richtera, L.; Moulick, A.; Xhaxhiu, K.; Kudr, J.; Cernei, N.; Polanska, H.; Heger, Z.; Masarik, M.; Kopel, P. et al. Electrochemical sensing of etoposide using carbon quantum dot modified glassy carbon electrode. Analyst 2016, 141, 2665–2675.

[21]

Tetsuka, H.; Asahi, R.; Nagoya, A.; Okamoto, K.; Tajima, I.; Ohta, R.; Okamoto, A. Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 2012, 24, 5333–5338.

[22]

Li, P. F.; Sun, L.; Xue, S. S.; Qu, D.; An, L.; Wang, X. Y.; Sun, Z. C. Recent advances of carbon dots as new antimicrobial agents. SmartMat 2022, 3, 226–248.

[23]

Zhou, J.; Zhou, H.; Tang, J. B.; Deng, S. E.; Yan, F.; Li, W. J.; Qu, M. H. Carbon dots doped with heteroatoms for fluorescent bioimaging: A review. Microchim. Acta 2017, 184, 343–368.

[24]

Zhang, Z. T.; Yi, G. Y.; Li, P.; Zhang, X. X.; Fan, H. Y.; Zhang, Y. L.; Wang, X. D.; Zhang, C. X. A minireview on doped carbon dots for photocatalytic and electrocatalytic applications. Nanoscale 2020, 12, 13899–13906.

[25]

Mohammadinejad, R.; Dadashzadeh, A.; Moghassemi, S.; Ashrafizadeh, M.; Dehshahri, A.; Pardakhty, A.; Sassan, H.; Sohrevardi, S. M.; Mandegary, A. Shedding light on gene therapy: Carbon dots for the minimally invasive image-guided delivery of plasmids and noncoding RNAs - a review. J. Adv. Res. 2019, 18, 81–93.

[26]

Que, X. Y.; Fu, F. M.; Yang, G. R.; Lei, B. F.; Ali, S.; Wang, X. M. A positively charged carbon dot complex improves the bioactivity of Isaria fumosorosea against Plutella xylostella (Linnaeus). Chem. Biol. Technol. Agric. 2024, 11, 192.

[27]

Ma, J.; Kang, K.; Zhang, Y. J.; Yi, Q. Y.; Gu, Z. W. Detachable polyzwitterion-coated ternary nanoparticles based on peptide dendritic carbon dots for efficient drug delivery in cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 43923–43935.

[28]

Chowdhury, D.; Gogoi, N.; Majumdar, G. Fluorescent carbon dots obtained from chitosan gel. RSC Adv. 2012, 2, 12156–12159.

[29]

Sahiner, N.; Suner, S. S.; Sahiner, M.; Silan, C. Nitrogen and sulfur doped carbon dots from amino acids for potential biomedical applications. J. Fluoresc. 2019, 29, 1191–1200.

[30]

Guo, R. B.; Chen, B.; Li, F. L.; Weng, S. H.; Zheng, Z. F.; Chen, M.; Wu, W.; Lin, X. H.; Yang, C. Y. Positive carbon dots with dual roles of nanoquencher and reference signal for the ratiometric fluorescence sensing of DNA. Sens. Actuators B: Chem. 2018, 264, 193–201.

[31]

Jian, H. J.; Wu, R. S.; Lin, T. Y.; Li, Y. J.; Lin, H. J.; Harroun, S. G.; Lai, J. Y.; Huang, C. C. Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano 2017, 11, 6703–6716.

[32]

Chen, Y. C.; Chen, H. H.; Lin, H. J.; Huang, C. C.; Chen, K. F.; Peng, Y. P.; Tsang, Y. F.; Chen, Y. H.; Lin, K. Y. A.; Lin, C. H. Hepatotoxicity evaluations of different surface charged carbon quantum dots in vivo and in vitro. Colloids Surf. B: Biointerfaces 2024, 234, 113760.

[33]

Jiang, P. L.; Hong, Y. Y.; Yang, L. Y.; Lin, H. J.; Huang, C. C.; Chen, Y. H.; Lin, C. H.; Chen, Y. C. Comprehensive evaluation of the nephrotoxicity of carbon quantum dots: Effects of the surface charge. Chemosphere 2024, 367, 143604.

[34]

Li, X. C.; Fu, Y. Z.; Zhao, S. J.; Xiao, J. F.; Lan, M. H.; Wang, B. H.; Zhang, K.; Song, X. Z.; Zeng, L. T. Metal ions-doped carbon dots: Synthesis, properties, and applications. Chem. Eng. J. 2022, 430, 133101.

[35]

Yu, J.; Huang, X.; Chen, X. H.; Hu, P. Y.; Liu, T.; Zhang, T. T.; Cheng, R.; Cui, T. T.; Li, J. Antibacterial and anti-inflammatory Bi-functional carbon dots hydrogel dressing for robust promotion of wound healing. Carbon 2024, 226, 119202.

[36]

Shi, Y. P.; Pan, Y.; Zhong, J.; Yang, J.; Zheng, J. H.; Cheng, J. L.; Song, R.; Yi, C. Q. Facile synthesis of gadolinium (III) chelates functionalized carbon quantum dots for fluorescence and magnetic resonance dual-modal bioimaging. Carbon 2015, 93, 742–750.

[37]

Sun, H. Z.; Wu, P. Y. Tuning the functional groups of carbon quantum dots in thin film nanocomposite membranes for nanofiltration. J. Membr. Sci. 2018, 564, 394–403.

[38]

Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381.

[39]

Zhang, Y.; Zhao, J. R.; Sun, X. B.; Pan, W.; Yu, G. F.; Wang, J. P. Fluorescent carbon dots for probing the effect of thiram on the membrane of fungal cell and its quantitative detection in aqueous solution. Sens. Actuators B: Chem. 2018, 273, 1833–1842.

[40]

Kudr, J.; Richtera, L.; Xhaxhiu, K.; Hynek, D.; Heger, Z.; Zitka, O.; Adam, V. Carbon dots based FRET for the detection of DNA damage. Biosens. Bioelectron. 2017, 92, 133–139.

[41]

Bahadur, R.; Kumawat, M. K.; Thakur, M.; Srivastava, R. Multi-fluorescent cationic carbon dots for solid-state fingerprinting. J. Lumin. 2019, 208, 428–436.

[42]

Zhai, X. Y.; Zhang, P.; Liu, C. J.; Bai, T.; Li, W. C.; Dai, L. M.; Liu, W. G. Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem. Commun. 2012, 48, 7955–7957.

[43]

Pierrat, P.; Wang, R. R.; Kereselidze, D.; Lux, M.; Didier, P.; Kichler, A.; Pons, F.; Lebeau, L. Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers. Biomaterials 2015, 51, 290–302.

[44]

Kasprzyk, W.; Bednarz, S.; Żmudzki, P.; Galica, M.; Bogdał, D. Novel efficient fluorophores synthesized from citric acid. RSC Adv. 2015, 5, 34795–34799.

[45]

Qian, Z. S.; Ma, J. J.; Shan, X. Y.; Feng, H.; Shao, L. X.; Chen, J. R. Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform. Chem. -Eur. J. 2014, 20, 2254–2263.

[46]

Xue, W.; Lin, Z.; Chen, H.; Lu, C.; Lin, J. M. Enhancement of ultraweak chemiluminescence from reaction of hydrogen peroxide and bisulfite by water-soluble carbon nanodots. J. Phys. Chem. C 2011, 115, 21707–21714.

[47]

Ran, H. H.; Cheng, X. T.; Bao, Y. W.; Hua, X. W.; Gao, G.; Zhang, X. D.; Jiang, Y. W.; Zhu, Y. X.; Wu, F. G. Multifunctional quaternized carbon dots with enhanced biofilm penetration and eradication efficiencies. J. Mater. Chem. B 2019, 7, 5104–5114.

[48]

Zhou, J.; Deng, W. W.; Wang, Y.; Cao, X.; Chen, J. J.; Wang, Q.; Xu, W. Q.; Du, P.; Yu, Q. T.; Chen, J. X. et al. Cationic carbon quantum dots derived from alginate for gene delivery: One-step synthesis and cellular uptake. Acta Biomater. 2016, 42, 209–219.

[49]

Yang, X. D.; Wang, Y.; Shen, X. R.; Su, C. Y.; Yang, J. H.; Piao, M.; Jia, F.; Gao, G. H.; Zhang, L.; Lin, Q. One-step synthesis of photoluminescent carbon dots with excitation-independent emission for selective bioimaging and gene delivery. J. Colloid Interface Sci. 2017, 492, 1–7.

[50]

Li, H.; Kong, W. Q.; Liu, J.; Liu, N. Y.; Huang, H.; Liu, Y.; Kang, Z. H. Fluorescent N-doped carbon dots for both cellular imaging and highly-sensitive catechol detection. Carbon 2015, 91, 66–75.

[51]

Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.; Dubey, M.; Ajayan, P. M. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 2010, 4, 6337–6342.

[52]

Li, Y.; Zhao, Y.; Cheng, H. H.; Hu, Y.; Shi, G. Q.; Dai, L. M.; Qu, L. T. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 2012, 134, 15–18.

[53]

Robinson, J. T.; Burgess, J. S.; Junkermeier, C. E.; Badescu, S. C.; Reinecke, T. L.; Perkins, F. K.; Zalalutdniov, M. K.; Baldwin, J. W.; Culbertson, J. C.; Sheehan, P. E. et al. Properties of fluorinated graphene films. Nano Lett. 2010, 10, 3001–3005.

[54]

Long, P.; Feng, Y. Y.; Cao, C.; Li, Y.; Han, J. K.; Li, S. W.; Peng, C.; Li, Z. Y.; Feng, W. Self-protective room-temperature phosphorescence of fluorine and nitrogen codoped carbon dots. Adv. Funct. Mater. 2018, 28, 1800791.

[55]

O'Hagan, D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 2008, 37, 308–319.

[56]

Li, H.; Wang, H. B.; Guo, J. Q.; Ye, S.; Shi, W. L.; Peng, X.; Song, J.; Qu, J. L. Long-wavelength excitation of carbon dots as the probe for real-time imaging of the living-cell cycle process. Sens. Actuators B: Chem. 2020, 311, 127891.

[57]

Sun, B. H.; Wu, F.; Zhang, Q. C.; Chu, X. H.; Wang, Z. X.; Huang, X. R.; Li, J.; Yao, C.; Zhou, N. L.; Shen, J. Insight into the effect of particle size distribution differences on the antibacterial activity of carbon dots. J. Colloid Interface Sci. 2021, 584, 505–519.

[58]

Geng, B. J.; Qin, H.; Shen, W. W.; Li, P.; Fang, F. L.; Li, X. K.; Pan, D. Y.; Shen, L. X. Carbon dot/WS2 heterojunctions for NIR-II enhanced photothermal therapy of osteosarcoma and bone regeneration. Chem. Eng. J. 2020, 383, 123102.

[59]

Yang, Q. Y.; Liu, J. W.; Cai, W. T.; Liang, X.; Zhuang, Z. C.; Liao, T.; Zhang, F. X.; Hu, W. K.; Liu, P. X.; Fan, S. J. et al. Non-heme iron single-atom nanozymes as peroxidase mimics for tumor catalytic therapy. Nano Lett. 2023, 23, 8585–8592.

[60]
Zhuang, Z. C.; Wang, D. S. Advancing hydrogen energy through enzyme-mimetic electrocatalysis. Front. Energy, in press, DOI: 10.1007/s11708-025-0975-7.
[61]

Chen, G.; Khan, I. M.; He, W. S.; Li, Y. X.; Jin, P.; Campanella, O. H.; Zhang, H. H.; Huo, Y. R.; Chen, Y.; Yang, H. Q. et al. Rebuilding the lid region from conformational and dynamic features to engineering applications of lipase in foods: Current status and future prospects. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2688–2714.

[62]

Han, J.; Feng, H.; Wu, J. C.; Li, Y. Y.; Zhou, Y.; Wang, L.; Luo, P.; Wang, Y. Construction of multienzyme co-immobilized hybrid nanoflowers for an efficient conversion of cellulose into glucose in a cascade reaction. J. Agric. Food Chem. 2021, 69, 7910–7921.

[63]

Ngolong Ngea, G. L.; Yang, Q. Y.; Castoria, R.; Zhang, X. Y.; Routledge, M. N.; Zhang, H. Y. Recent trends in detecting, controlling, and detoxifying of patulin mycotoxin using biotechnology methods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2447–2472.

[64]

Ouyang, Q.; Wang, L.; Ahmad, W.; Rong, Y. W.; Li, H. H.; Hu, Y. Q.; Chen, Q. S. A highly sensitive detection of carbendazim pesticide in food based on the upconversion-MnO2 luminescent resonance energy transfer biosensor. Food Chem. 2021, 349, 129157.

[65]

Xu, Y.; Hassan, M. M.; Sharma, A. S.; Li, H. H.; Chen, Q. S. Recent advancement in nano-optical strategies for detection of pathogenic bacteria and their metabolites in food safety. Compr. Rev. Food Sci. Nutr. 2023, 63, 486–504.

[66]

Zhu, W. R.; Li, L. B.; Zhou, Z.; Yang, X. D.; Hao, N.; Guo, Y. S.; Wang, K. A colorimetric biosensor for simultaneous ochratoxin A and aflatoxins B1 detection in agricultural products. Food Chem. 2020, 319, 126544.

[67]

Hu, X. T.; Li, Y. X.; Xu, Y. W.; Gan, Z. Y.; Zou, X. B.; Shi, J. Y.; Huang, X. W.; Li, Z. H.; Li, Y. H. Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk. Food Chem. 2021, 339, 127775.

[68]

Hu, X. T.; Shi, J. Y.; Shi, Y. Q.; Zou, X. B.; Arslan, M.; Zhang, W.; Huang, X. W.; Li, Z. H.; Xu, Y. W. Use of a smartphone for visual detection of melamine in milk based on Au@Carbon quantum dots nanocomposites. Food Chem. 2019, 272, 58–65.

[69]

Li, X. C.; Zhao, S. J.; Li, B. L.; Yang, K.; Lan, M. H.; Zeng, L. T. Advances and perspectives in carbon dot-based fluorescent probes: Mechanism, and application. Coord. Chem. Rev. 2021, 431, 213686.

[70]

Jiang, T. Y.; Li, L. X.; Li, L. H.; Liu, Y. H.; Zhang, D. X.; Zhang, D. Q.; Li, H. T.; Mao, B. D.; Shi, W. D. Ultra-thin shelled Cu2- x S/MoS2 quantum dots for enhanced electrocatalytic nitrogen reduction. Chem. Eng. J. 2021, 426, 130650.

[71]

Li, L. B.; Zhao, W. L.; Wang, Y.; Liu, X. H.; Jiang, P. N.; Luo, L. J.; Bi, X. Y.; Meng, X. L.; Niu, Q. J.; Wu, X. F. et al. Gold nanocluster-confined covalent organic frameworks as bifunctional probes for electrochemiluminescence and colorimetric dual-response sensing of Pb2+. J. Hazard. Mater. 2023, 457, 131558.

[72]

Cao, H. W.; Wang, X. X.; Liu, J.; Sun, Z.; Yu, Z. Q.; Battino, M.; El‐Seedi, H.; Guan, X. Mechanistic insights into the changes of enzyme activity in food processing under microwave irradiation. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2465–2487.

[73]

Liang, N. N.; Hu, X. T.; Li, W. T.; Mwakosya, A. W.; Guo, Z. A.; Xu, Y. W.; Huang, X. W.; Li, Z. H.; Zhang, X. N.; Zou, X. B. et al. Fluorescence and colorimetric dual-mode sensor for visual detection of malathion in cabbage based on carbon quantum dots and gold nanoparticles. Food Chem. 2021, 343, 128494.

[74]

Sharma, A. S.; Ali, S.; Sabarinathan, D.; Murugavelu, M.; Li, H. H.; Chen, Q. S. Recent progress on graphene quantum dots‐based fluorescence sensors for food safety and quality assessment applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5765–5801.

[75]

Wang, S. L.; Liang, N. N.; Hu, X. T.; Li, W. T.; Guo, Z. A.; Zhang, X. N.; Huang, X. W.; Li, Z. H.; Zou, X. B.; Shi, J. Y. Carbon dots and covalent organic frameworks based FRET immunosensor for sensitive detection of Escherichia coli O157:H7. Food Chem. 2024, 447, 138663.

[76]

Lu, W. J.; Guo, Y. J.; Zhang, J. H.; Yue, Y. F.; Fan, L.; Li, F.; Dong, C.; Shuang, S. M. A high catalytic activity nanozyme based on cobalt-doped carbon dots for biosensor and anticancer cell effect. ACS Appl. Mater. Interfaces 2022, 14, 57206–57214.

[77]

Yang, W. Q.; Ni, J. C.; Luo, F.; Weng, W.; Wei, Q. H.; Lin, Z. Y.; Chen, G. N. Cationic carbon dots for modification-free detection of hyaluronidase via an electrostatic-controlled ratiometric fluorescence assay. Anal. Chem. 2017, 89, 8384–8390.

[78]

Raj, P.; Lee, S. Y.; Lee, T. Y. Carbon dot/naphthalimide based ratiometric fluorescence biosensor for hyaluronidase detection. Materials 2021, 14, 1313.

[79]

Siotto, M.; Squitti, R. Copper imbalance in Alzheimer’s disease: Overview of the exchangeable copper component in plasma and the intriguing role albumin plays. Coord. Chem. Rev. 2018, 371, 86–95.

[80]

Squitti, R.; Ghidoni, R.; Simonelli, I.; Ivanova, I. D.; Colabufo, N. A.; Zuin, M.; Benussi, L.; Binetti, G.; Cassetta, E.; Rongioletti, M. et al. Copper dyshomeostasis in Wilson disease and Alzheimer's disease as shown by serum and urine copper indicators. J. Trace Elem. Med. Biol. 2018, 45, 181–188.

[81]

Ahuja, A.; Dev, K.; Tanwar, R. S.; Selwal, K. K.; Tyagi, P. K. Copper mediated neurological disorder: Visions into amyotrophic lateral sclerosis, Alzheimer and Menkes disease. J. Trace Elem. Med. Biol. 2015, 29, 11–23.

[82]

Ilyechova, E. Y.; Miliukhina, I. V.; Orlov, I. A.; Muruzheva, Z. M.; Puchkova, L. V.; Karpenko, M. N. A low blood copper concentration is a co-morbidity burden factor in Parkinson's disease development. Neurosci. Res. 2018, 135, 54–62.

[83]

Kim, M. J.; Oh, S. B.; Kim, J.; Kim, K.; Ryu, H. S.; Kim, M. S.; Ayton, S.; Bush, A. I.; Lee, J. Y.; Chung, S. J. Association of metals with the risk and clinical characteristics of Parkinson's disease. Parkinsonism Relat. Disord. 2018, 55, 117–121.

[84]

Meng, H.; Wang, Y.; Wu, R. X.; Li, Y. M.; Wei, D. L.; Li, M. W.; Zhu, N. F.; Zhu, F.; Zhang, Z.; Zhao, H. J. Identification of multi-component metal ion mixtures in complex systems using fluorescence sensor arrays. J. Hazard. Mater. 2023, 455, 131546.

[85]

Feng, F.; Miao, C. F.; Zhang, Y. L.; Huang, Z. J.; Weng, S. H. Positively charged and pH-sensitive carbon dots for fluorescence detection of copper ion. Bull. Korean Chem. Soc. 2021, 42, 227–234.

[86]

Parks, H. C. W.; McCoy, T. M.; Tabor, R. F. Carbon quantum dot assisted adsorption of graphene oxide to the oil-water interface for copper sensing emulsions. Adv. Mater. Interfaces 2019, 6, 1900392.

[87]

Wang, L.; Cao, H. X.; He, Y. S.; Pan, C. G.; Sun, T. K.; Zhang, X. Y.; Wang, C. Y.; Liang, G. X. Facile preparation of amino-carbon dots/gold nanoclusters FRET ratiometric fluorescent probe for sensing of Pb2+/Cu2+. Sens. Actuators B: Chem. 2019, 282, 78–84.

[88]

Han, B. Y.; Li, Y.; Hu, X. X.; Yan, Q.; Jiang, J. M.; Yu, M. B.; Peng, T. T.; He, G. H. Paper-based visual detection of silver ions and L-cysteine with a dual-emissive nanosystem of carbon quantum dots and gold nanoclusters. Anal. Methods 2018, 10, 3945–3950.

[89]

Wu, X. L.; Song, Y.; Yan, X.; Zhu, C. Z.; Ma, Y. Q.; Du, D.; Lin, Y. H. Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination. Biosens. Bioelectron. 2017, 94, 292–297.

[90]

Dong, W. J.; Wang, R. P.; Gong, X. J.; Liang, W. T.; Dong, C. A far-red FRET fluorescent probe for ratiometric detection of L-cysteine based on carbon dots and N-acetyl-L-cysteine-capped gold nanoparticles. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2019, 213, 90–96.

[91]

Li, Y. H.; Cai, J. B.; Liu, F. J.; Yang, H.; Lin, Y.; Li, S. X.; Huang, X. G.; Lin, L. X. Construction of a turn off-on fluorescent nanosensor for cholesterol based on fluorescence resonance energy transfer and competitive host-guest recognition. Talanta 2019, 201, 82–89.

[92]

Wang, B.; Chen, Y. F.; Wu, Y. Y.; Weng, B.; Liu, Y. S.; Lu, Z. S.; Li, C. M.; Yu, C. Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1. Biosens. Bioelectron. 2016, 78, 23–30.

[93]

Liu, S. S.; Li, H. H.; Hassan, M. M.; Ali, S.; Chen, Q. A. SERS based artificial peroxidase enzyme regulated multiple signal amplified system for quantitative detection of foodborne pathogens. Food Control 2021, 123, 107733.

[94]

Yu, S.; Guo, F.; Luo, Y. Z.; Zhang, X. F.; Wang, C. Y.; Liu, Y. H.; Zhang, H. Y. Electropositive citric acid-polyethyleneimine carbon dots carrying the PINK1 gene regulate ATP-related metabolic dysfunction in APP/PS1-N2a cells. Molecules 2024, 29, 1907.

[95]

Shen, J.; Zhang, G. M.; Zhang, Z. D.; Zhang, L. D.; Zhuang, Z. C.; Qian, Y. P.; Dou, Y. H.; Wang, S. B.; Wang, D. S.; Wang, Y. G. High-throughput screening and general synthesis strategy of single-atom nanozymes for oral squamous cell carcinoma therapy. Adv. Mater. 2025, 37, 2416463.

[96]

Xia, J. K.; Xu, J. W.; Yu, B.; Liang, X.; Qiu, Z.; Li, H.; Feng, H. J.; Li, Y. F.; Cai, Y. J.; Wei, H. Y. et al. A metal-sulfur-carbon catalyst mimicking the two-component architecture of nitrogenase. Angew. Chem., Int. Ed. 2024, 63, e202412740.

[97]

Iqbal, M. W.; Riaz, T.; Mahmood, S.; Bilal, M.; Manzoor, M. F.; Qamar, S. A.; Qi, X. H. Fucoidan-based nanomaterial and its multifunctional role for pharmaceutical and biomedical applications. Compr. Rev. Food Sci. Nutr. 2024, 64, 354–380.

[98]

Marimuthu, M.; Arumugam, S. S.; Sabarinathan, D.; Li, H. H.; Chen, Q. S. Metal organic framework based fluorescence sensor for detection of antibiotics. Trends Food Sci. Technol. 2021, 116, 1002–1028.

[99]

Wang, L.; Li, W. X.; Liu, Y. Y.; Zhi, W. J.; Han, J.; Wang, Y.; Ni, L. Green separation of bromelain in food sample with high retention of enzyme activity using recyclable aqueous two-phase system containing a new synthesized thermo-responsive copolymer and salt. Food Chem. 2019, 282, 48–57.

[100]

Jing, Y. L.; Zhang, Y. H.; Han, I.; Wang, P.; Mei, Q. W.; Huang, Y. J. Effects of different straw biochars on soil organic carbon, nitrogen, available phosphorus, and enzyme activity in paddy soil. Sci. Rep. 2020, 10, 8837.

[101]

Li, W. T.; Hu, X. T.; Li, Q.; Shi, Y. Q.; Zhai, X. D.; Xu, Y. W.; Li, Z. H.; Huang, X. W.; Wang, X.; Shi, J. Y. et al. Copper nanoclusters @ nitrogen-doped carbon quantum dots-based ratiometric fluorescence probe for lead (II) ions detection in porphyra. Food Chem. 2020, 320, 126623.

[102]

Bourlinos, A. B.; Bakandritsos, A.; Kouloumpis, A.; Gournis, D.; Krysmann, M.; Giannelis, E. P.; Polakova, K.; Safarova, K.; Hola, K.; Zboril, R. Gd(III)-doped carbon dots as a dual fluorescent-MRI probe. J. Mater. Chem. 2012, 22, 23327–23330.

[103]

Ren, X. Y.; Liu, L. H.; Li, Y.; Dai, Q.; Zhang, M.; Jing, X. L. Facile preparation of gadolinium(III) chelates functionalized carbon quantum dot-based contrast agent for magnetic resonance/fluorescence multimodal imaging. J. Mater. Chem. B 2014, 2, 5541–5549.

[104]

Xu, Y.; Jia, X. H.; Yin, X. B.; He, X. W.; Zhang, Y. K. Carbon quantum dot stabilized gadolinium nanoprobe prepared via a one-pot hydrothermal approach for magnetic resonance and fluorescence dual-modality bioimaging. Anal. Chem. 2014, 86, 12122–12129.

[105]

Gong, N. Q.; Wang, H.; Li, S.; Deng, Y. L.; Chen, X.; Ye, L.; Gu, W. Microwave-assisted polyol synthesis of gadolinium-doped green luminescent carbon dots as a bimodal nanoprobe. Langmuir 2014, 30, 10933–10939.

[106]

Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674.

[107]

Wang, L. M.; Wang, B. Z.; Liu, E. S.; Zhao, Y. Y.; He, B. C.; Wang, C. F.; Xing, G. C.; Tang, Z. K.; Zhou, Y. N.; Qu, S. N. Polyetherimide functionalized carbon dots with enhanced red emission in aqueous solution for bioimaging. Chin. Chem. Lett. 2022, 33, 4111–4115.

[108]

Sun, J. B.; Li, H. C.; Ouyang, M.; Cheng, J.; Xu, D.; Tan, X. F.; Lin, Q. L. User-friendly multifunctional red-emissive carbon dots for rapid cell nucleus staining via targeting nuclear proteins. Anal. Chem. 2024, 96, 8432–8440.

[109]

Zhu, Z. M.; Lin, X. Y.; Wu, L. N.; Zhao, C. F.; Li, S. G.; Liu, A. L.; Lin, X. H.; Lin, L. Q. Nitrogen-doped carbon dots as a ratiometric fluorescent probe for determination of the activity of acid phosphatase, for inhibitor screening, and for intracellular imaging. Mikrochim. Acta 2019, 186, 558.

[110]

Hoan, B. T.; Tam, P. D.; Pham, V. H. Green synthesis of highly luminescent carbon quantum dots from lemon juice. J. Nanotechnol. 2019, 2019, 2852816.

[111]

Fang, H. Y.; Huang, W. M.; Chen, D. H. One-step synthesis of positively charged bifunctional carbon dot/silver composite nanoparticles for killing and fluorescence imaging of gram-negative bacteria. Nanotechnology 2019, 30, 365603.

[112]

Chen, Q.; Duan, X. M.; Yu, Y.; Ni, R. R.; Song, G. J.; Yang, X.; Zhu, L.; Zhong, Y.; Zhang, K.; Qu, K. et al. Target functionalized carbon dot nanozymes with dual-model photoacoustic and fluorescence imaging for visual therapy in atherosclerosis. Adv. Sci. 2024, 11, 2307441.

[113]

Zhang, M. X.; Liang, Y. L.; Zhang, Y. N.; Zhang, L. M.; Wang, N.; Zhou, Y.; Wang, Y. F.; Cui, M. L.; Yu, Z. X.; Zhang, M. Z. et al. Oral carbon dot nanozymes with red fluorescence and superoxide dismutase-like activity for colitis bioimaging and inflammation management. Chem. Eng. J. 2024, 493, 152842.

[114]

Li, Y.; Ma, W. S.; Sun, J.; Lin, M.; Niu, Y. S.; Yang, X. C.; Xu, Y. H. Electrochemical generation of Fe3C/N-doped graphitic carbon nanozyme for efficient wound healing in vivo. Carbon 2020, 159, 149–160.

[115]

Lu, J.; Qin, Y. Y.; Zhang, Q.; Yu, C.; Wu, Y. L.; Yan, Y. S.; Fan, H. G.; Meng, M. J.; Li, C. X. Antibacterial, high-flux and 3D porous molecularly imprinted nanocomposite sponge membranes for cross-flow filtration of emodin from analogues. Chem. Eng. J. 2019, 360, 483–493.

[116]

Meziani, M. J.; Dong, X. L.; Zhu, L.; Jones, L. P.; LeCroy, G. E.; Yang, F.; Wang, S. Y.; Wang, P.; Zhao, Y. P.; Yang, L. J. et al. Visible-light-activated bactericidal functions of carbon "quantum" dots. ACS Appl. Mater. Interfaces 2016, 8, 10761–10766.

[117]

Jijie, R.; Barras, A.; Bouckaert, J.; Dumitrascu, N.; Szunerits, S.; Boukherroub, R. Enhanced antibacterial activity of carbon dots functionalized with ampicillin combined with visible light triggered photodynamic effects. Colloids Surf. B: Biointerfaces 2018, 170, 347–354.

[118]

Stanković, N. K.; Bodík, M.; Šiffalovič, P.; Kotlár, M.; Mičušík, M.; Špitálský, Z.; Danko, M.; Milivojević, D. D.; Kleinová, A.; Kubát, P. et al. Antibacterial and antibiofouling properties of light triggered fluorescent hydrophobic carbon quantum dots Langmuir-Blodgett thin films. ACS Sustain. Chem. Eng. 2018, 6, 4154–4163.

[119]

Wang, C. B.; Li, Y. P.; Huang, L. Y.; Yang, L.; Wang, H.; Liu, J.; Liu, J. W.; Song, Z. W.; Huang, L. J. Enhanced photocatalytic antibacterial and degradation performance by n-p type 0D/2D SnO2− x /BiOI photocatalyst under LED light. Chem. Eng. J. 2021, 411, 128505.

[120]

Travlou, N. A.; Giannakoudakis, D. A.; Algarra, M.; Labella, A. M.; Rodríguez-Castellón, E.; Bandosz, T. J. S- and N-doped carbon quantum dots: Surface chemistry dependent antibacterial activity. Carbon 2018, 135, 104–111.

[121]

Zhao, C. F.; Wang, X. W.; Wu, L. N.; Wu, W.; Zheng, Y. J.; Lin, L. Q.; Weng, S. H.; Lin, X. H. Nitrogen-doped carbon quantum dots as an antimicrobial agent against Staphylococcus for the treatment of infected wounds. Colloids Surf. B: Biointerfaces 2019, 179, 17–27.

[122]

Hao, X. L.; Huang, L. L.; Zhao, C. F.; Chen, S. N.; Lin, W. J.; Lin, Y. N.; Zhang, L. R.; Sun, A.; Miao, C. F.; Lin, X. H. et al. Antibacterial activity of positively charged carbon quantum dots without detectable resistance for wound healing with mixed bacteria infection. Mater. Sci. Eng.: C 2021, 123, 111971.

[123]

Feng, T.; Ai, X. Z.; An, G. H.; Yang, P. P.; Zhao, Y. L. Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 2016, 10, 4410–4420.

[124]

Barras, A.; Sauvage, F.; de Hoon, I.; Braeckmans, K.; Hua, D. W.; Buvat, G.; Fraire, J. C.; Lethien, C.; Sebag, J.; Harrington, M. et al. Carbon quantum dots as a dual platform for the inhibition and light-based destruction of collagen fibers: Implications for the treatment of eye floaters. Nanoscale Horiz. 2021, 6, 449–461.

[125]

Lei, H.; Alu, A.; Yang, J. Y.; He, X.; He, C.; Ren, W. Y.; Chen, Z. M.; Hong, W. Q.; Chen, L.; He, X. M. et al. Cationic crosslinked carbon dots-adjuvanted intranasal vaccine induces protective immunity against Omicron-included SARS-CoV-2 variants. Nat. Commun. 2023, 14, 2678.

[126]

Guerra, J.; Herrero, M. A.; Vázquez, E. Carbon nanohorns as alternative gene delivery vectors. RSC Adv. 2014, 4, 27315–27321.

[127]

Mehta, V. N.; Jha, S.; Kailasa, S. K. One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria ( Escherichia coli) and yeast ( Saccharomyces cerevisiae) cells. Mater. Sci. Eng.: C 2014, 38, 20–27.

[128]

Mehta, V. N.; Jha, S.; Singhal, R. K.; Kailasa, S. K. Preparation of multicolor emitting carbon dots for HeLa cell imaging. New J. Chem. 2014, 38, 6152–6160.

[129]

Mehta, V. N.; Jha, S.; Basu, H.; Singhal, R. K.; Kailasa, S. K. One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sens. Actuators B: Chem. 2015, 213, 434–443.

[130]

Peng, J. X.; Wang, H. H.; Cao, H. X.; Liu, P. F.; Wang, H. Y.; Zhao, K. R.; Wang, L. A tandem DNA nanomachines-supported electrochemiluminescence assay for attomolar detection of miRNA at ambient-temperature. Chem. Eng. J. 2024, 480, 148161.

[131]

Tao, Y.; Li, Z. H.; Ju, E. G.; Ren, J. S.; Qu, X. G. Polycations-functionalized water-soluble gold nanoclusters: A potential platform for simultaneous enhanced gene delivery and cell imaging. Nanoscale 2013, 5, 6154–6160.

[132]

Miao, L.; Zhang, K.; Qiao, C.; Jin, X.; Zheng, C.; Yang, B.; Sun, H. Antitumor effect of human TRAIL on adenoid cystic carcinoma using magnetic nanoparticle-mediated gene expression. Nanomed.: Nanotechnol. Biol. Med. 2013, 9, 141–150.

[133]

Posadas, I.; Guerra, F. J.; Ceña, V. Nonviral vectors for the delivery of small interfering RNAs to the CNS. Nanomedicine 2010, 5, 1219–1236.

[134]

Liang, Q. H.; Ma, W. J.; Shi, Y.; Li, Z.; Yang, X. M. Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon 2013, 60, 421–428.

[135]

Diroll, B. T.; Murray, C. B. High-temperature photoluminescence of CdSe/CdS core/shell nanoheterostructures. ACS Nano 2014, 8, 6466–6474.

[136]

Naraginti, S.; Yu, Y. Y.; Fang, Z.; Yong, Y. C. Novel tetrahedral Ag3PO4@N-rGO for photocatalytic detoxification of sulfamethoxazole: Process optimization, transformation pathways and biotoxicity assessment. Chem. Eng. J. 2019, 375, 122035.

[137]

Cao, X.; Deng, W. W.; Qu, R.; Yu, Q. T.; Li, J.; Yang, Y.; Cao, Y.; Gao, X. D.; Xu, X. M.; Yu, J. N. Non-viral co-delivery of the four yamanaka factors for generation of human induced pluripotent stem cells via calcium phosphate nanocomposite particles. Adv. Funct. Mater. 2013, 23, 5403–5411.

[138]

Deng, W. W.; Fu, M.; Cao, Y.; Cao, X.; Wang, M.; Yang, Y.; Qu, R.; Li, J.; Xu, X. M.; Yu, J. N. Angelica sinensis polysaccharide nanoparticles as novel non-viral carriers for gene delivery to mesenchymal stem cells. Nanomed.: Nanotechnol. Biol. Med. 2013, 9, 1181–1191.

[139]

Shu, M. J.; Gao, F.; Yu, C. L.; Zeng, M.; He, G. L.; Wu, Y.; Su, Y. J.; Hu, N. T.; Zhou, Z. H.; Yang, Z. et al. Dual-targeted therapy in HER2-positive breast cancer cells with the combination of carbon dots/HER3 siRNA and trastuzumab. Nanotechnology 2020, 31, 335102.

[140]

Algarra, M.; Gonzalez-Muñoz, E. Efficient and scalable gene delivery method with easily generated cationic carbon dots. Biol. Proced. Online 2024, 26, 6.

[141]

Wang, J.; Liu, S. Y.; Chang, Y.; Fang, L.; Han, K.; Li, M. High efficient delivery of siRNA into tumor cells by positively charged carbon dots. J. Macromol. Sci. A 2018, 55, 770–774.

[142]

Chen, J. Y.; Li, F.; Zhao, B. W.; Gu, J.; Brejcha, N. M.; Bartoli, M.; Zhang, W.; Zhou, Y. Q.; Fu, S. W.; Domena, J. B. et al. Gene transfection efficiency improvement with lipid conjugated cationic carbon dots. ACS Appl. Mater. Interfaces 2024, 16, 27087–27101.

[143]

Goy-López, S.; Juárez, J.; Alatorre-Meda, M.; Casals, E.; Puntes, V. F.; Taboada, P.; Mosquera, V. Physicochemical characteristics of protein-NP bioconjugates: The role of particle curvature and solution conditions on human serum albumin conformation and fibrillogenesis inhibition. Langmuir 2012, 28, 9113–9126.

[144]

Sun, H. H.; Zhang, J.; Zhang, Y. Z.; Yang, L. Y.; Yuan, L. L.; Liu, Y. Interaction of human serum albumin with 10-hydroxycamptothecin: Spectroscopic and molecular modeling studies. Mol. Biol. Rep. 2012, 39, 5115–5123.

[145]

Li, M. Y.; Xiao, C. Q.; Xu, Z. Q.; Yin, M. M.; Yang, Q. Q.; Yin, Y. L.; Liu, Y. Role of surface charge on the interaction between carbon nanodots and human serum albumin. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2018, 204, 484–494.

[146]

Liu, N. Y.; Wu, R. Q.; Liu, Y. X.; Liu, Y. L.; Deng, P. J.; Li, Y. X.; Du, Y. C.; Cheng, Y. Y.; Zhuang, Z. C.; Kang, Z. H. et al. Oxygen vacancy engineering of Fe-doped NiMoO4 for electrocatalytic N2 fixation to NH3. Inorg. Chem. 2023, 62, 11990–12000.

[147]

Liu, Y. L.; Zhuang, Z. C.; Liu, Y. X.; Liu, N. Y.; Li, Y. X.; Cheng, Y. Y.; Yu, J. W.; Yu, R. H.; Wang, D. S.; Li, H. T. Shear-strained Pd single-atom electrocatalysts for nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2024, 63, e202411396.

[148]
Lang, Z. Q.; Wang, X. X.; Jabeen, S.; Cheng, Y. Y.; Liu, N. Y.; Liu, Z. H.; Gan, T.; Zhuang, Z. C.; Li, H. T.; Wang, D. S. Destabilization of single-atom catalysts: Characterization, mechanisms, and regeneration strategies. Adv. Mater., in press, DOI: 10.1002/adma.202418942.
[149]

Li, Y. X.; Liu, Y. X.; Liu, X.; Liu, Y. L.; Cheng, Y. Y.; Zhang, P.; Deng, P. J.; Deng, J. J.; Kang, Z. H.; Li, H. T. Fe-doped SnO2 nanosheet for ambient electrocatalytic nitrogen reduction reaction. Nano Res. 2022, 15, 6026–6035.

[150]

Tang, G.; Wang, J. L.; Xiao, J. H.; Liu, Y. L.; Huang, Y. Q.; Zhou, Z. Y.; Zhang, X. H.; Hu, G. H.; Yan, W. Y.; Cao, Y. S. Amphiphilic cationic carbon dots for efficient delivery of light-dependent herbicide. Adv. Sci. 2024, 11, 2406523.

[151]

Xiao, X. F.; Zhuang, Z. C.; Yin, S. H.; Zhu, J. X.; Gan, T.; Yu, R. H.; Wu, J. S.; Tian, X. C.; Jiang, Y. X.; Wang, D. S. et al. Topological transformation of microbial proteins into iron single-atom sites for selective hydrogen peroxide electrosynthesis. Nat. Commun. 2024, 15, 10758.

[152]

Otero, P.; Carpena, M.; Garcia-Oliveira, P.; Echave, J.; Soria-Lopez, A.; Garcia-Perez, P.; Fraga-Corral, M.; Cao, H.; Nie, S. P.; Xiao, J. B. et al. Seaweed polysaccharides: Emerging extraction technologies, chemical modifications and bioactive properties. Compr. Rev. Food Sci. Nutr. 2023, 63, 1901–1929.

[153]

Wu, Y. Q.; Zhang, J. J.; Hu, X. T.; Huang, X. W.; Zhang, X. N.; Zou, X. B.; Shi, J. Y. Preparation of edible antibacterial films based on corn starch/carbon nanodots for bioactive food packaging. Food Chem. 2024, 444, 138467.

[154]

Liu, Y. L.; Zheng, Z. Y.; Jabeen, S.; Liu, N. Y.; Liu, Y. X.; Cheng, Y. Y.; Li, Y. X.; Yu, J. W.; Wu, X.; Yan, N. N. et al. Mechanochemical route to fabricate an efficient nitrate reduction electrocatalyst. Nano Res. 2024, 17, 4889–4897.

[155]

Hao, J. C.; Wang, T. D.; Cai, J.; Gao, G. H.; Zhuang, Z. C.; Yu, R. H.; Wu, J. S.; Wu, G. M.; Lu, S. L.; Wang, X. F. et al. Suppression of structural heterogeneity in high-entropy intermetallics for electrocatalytic upgrading of waste plastics. Angew. Chem., Int. Ed. 2025, 64, e202419369.

[156]

Hao, J. C.; Wang, T. D.; Yu, R. H.; Cai, J.; Gao, G. H.; Zhuang, Z. C.; Kang, Q.; Lu, S. L.; Liu, Z. H.; Wu, J. S. et al. Integrating few-atom layer metal on high-entropy alloys to catalyze nitrate reduction in tandem. Nat. Commun. 2024, 15, 9020.

[157]

Cheng, Y. Y.; Jabeen, S.; Lei, S. W.; Liu, N. Y.; Liu, Y. X.; Liu, Y. L.; Li, Y. X.; Wu, X.; Tong, Z.; Yu, J. W. et al. N-doped carbon dots-modulated interfacial charge transfer and surface structure in FeNbO4 photocatalysts for enhanced CO2 conversion selectivity to CH4. Chem. Eng. J. 2024, 498, 155576.

[158]

Tong, Z.; Liu, Y. L.; Wu, X.; Cheng, Y. Y.; Yu, J. W.; Zhang, X. Y.; Liu, N. Y.; Liu, X.; Li, H. T. Carbon quantum dots/Cu2O photocatalyst for room temperature selective oxidation of benzyl alcohol. Nanomaterials 2024, 14, 212.

[159]

Madonia, A.; Martin-Sabi, M.; Sadaoui, A.; Ruhlmann, L.; Ammar, S.; Schaming, D. Dawson-type polyoxometalates photosensitized with carbon dots for photocatalytic reduction of silver ions. Mater. Res. Bull. 2022, 149, 111721.

[160]

Zhao, S. D.; Chen, J. R.; Liu, Y. F.; Jiang, Y.; Jiang, C. G.; Yin, Z. L.; Xiao, Y. G.; Cao, S. S. Silver nanoparticles confined in shell-in-shell hollow TiO2 manifesting efficiently photocatalytic activity and stability. Chem. Eng. J. 2019, 367, 249–259.

[161]

Hu, W.; Che, G. B.; Che, H. N.; Hu, H.; Jiang, E. H.; Ruan, X. W.; Zhang, X. X.; Liu, C. B.; Dong, H. J. Construction of mesoporous NCQDs-BiOCL composites for photocatalytic-degrading organic pollutants in water under visible and near-infrared light. J. Environ. Eng. 2019, 145, 04019031.

[162]

Gocyla, M.; Dolinska, J.; Rostkowska, N.; Opallo, M. Electrochemical detection of positively charged carbon nanoparticles suspension in flow. Electroanalysis 2018, 30, 1965–1970.

[163]

Gan, H.; Han, W. Z.; Fu, Z. D.; Wang, L. P. The chain-like Au/carbon dots nanocomposites with peroxidase-like activity and their application for glucose detection. Colloids Surf. B: Biointerfaces 2021, 199, 111553.

[164]

Wang, Y. T.; Li, T. L.; Lin, L. X.; Wang, D.; Feng, L. Y. Copper-doped cherry blossom carbon dots with peroxidase-like activity for antibacterial applications. RSC Adv. 2024, 14, 27873–27882.

[165]

Yang, W.; Leng, T. C.; Miao, W. C.; Cao, X.; Chen, H. R.; Xu, F. F.; Fang, Y. M. Photo-switchable peroxidase/catalase-like activity of carbon quantum dots. Angew. Chem., Int. Ed. 2024, 63, e202403581.

[166]

Zhang, Y. J.; Gao, W. H.; Ma, Y. N.; Cheng, L. L.; Zhang, L.; Liu, Q. G.; Chen, J. Y.; Zhao, Y. R.; Tu, K. S.; Zhang, M. Z. et al. Integrating Pt nanoparticles with carbon nanodots to achieve robust cascade superoxide dismutase-catalase nanozyme for antioxidant therapy. Nano Today 2023, 49, 101768.

Nano Research
Article number: 94907333
Cite this article:
Wu X, Tong Z, Liu Y, et al. Cationic carbon dots: A novel class of mimetic enzymes. Nano Research, 2025, 18(4): 94907333. https://doi.org/10.26599/NR.2025.94907333
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return