PDF (14.3 MB)
Collect
Submit Manuscript
Research Article | Open Access

Processable subnanowire-liquid crystal ink for encryption and anti-counterfeiting

Jiangxiao Li1Wenxiong Shi2Shange Qi1Shuai Lin1Simin Zhang1 ()Xun Wang3 ()
School of Chemistry and Chemical Engineering, Beijing Institution of Technology, Beijing 100081, China
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

View original image Download original image
The subnanowire (SNW)-liquid crystal (LC) ink is prepared with Bi2O3-PMoO SNWs and commercial LCs 4’-pentyl-[1,1’-biphenyl]-4-carbonitrile (5CB). Through combining photothermal conversion performance of SNWs with thermotropic phase transition of LCs and smart design and patterning, different forms of SNW-LC materials with good photoresponsive performance can be applied in multiple-modes information encryption and anti-counterfeiting effectively.

Abstract

Information encrypting and anti-counterfeiting have attracted increasing attention in the fields of information communications and Internet of Things. It is of great significance to construct advanced stimuli-responsive materials with simple encryption/decryption procedures and high reliability. Herein, the subnanowire (SNW)-liquid crystal (LC) ink was prepared with Bi2O3-PMoO SNWs and commercial LCs 4’-pentyl-[1,1’-biphenyl]-4-carbonitrile (5CB), which can be used for preparing films and patterning through blade coating or writing/printing. Through combining photothermal conversion performance of SNWs with thermotropic phase transition of LCs and smart design and patterning, different forms of SNW-LC materials with photoresponsive performance can be applied in multiple-mode information encryption and anti-counterfeiting effectively, exhibiting fast response rate (within 10 s), high sensitivity (even flashlight of mobile phone), and great stability (over 100 cycles). Considering the versatility and easy processability of SNW-LC ink and the good responsiveness and high reliability of SNW-LC materials, combination of SNWs and LCs may be a potential candidate for effective encryption and anti-counterfeiting.

Electronic Supplementary Material

Video
7334_ESM_Movie S1.mp4
Download File(s)
7334_ESM.pdf (886.7 KB)

References

[1]

Arppe, R.; Sørensen, T. J. Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat. Rev. Chem. 2017, 1, 0031.

[2]

Yang, Y. B.; Li, Q. Y.; Zhang, H. W.; Liu, H.; Ji, X. F.; Tang, B. Z. Codes in code: AIE supramolecular adhesive hydrogels store huge amounts of information. Adv. Mater 2021, 33, 2105418.

[3]

Pang, X. K.; Zhang, Q.; Wang, J. Y.; Jiang, X.; Wu, M. L.; Cui, M. Y.; Feng, Z. X.; Xu, W. X.; Song, B.; He, Y. Artificial optical microfingerprints for advanced anti-counterfeiting. Nano Res. 2024, 17, 4371–4378.

[4]

Duan, R.; Tang, R. Q.; Tong, Y. P.; Zhao, D. Y.; Tang, B. Z. Double-state anticounterfeiting labels based on light-emitting polymer-stabilized blue phase. Adv. Funct. Mater. 2023, 33, 2306069.

[5]

Yang, X. R.; Sheng, Y. H.; Zhang, L. L.; Yang, L.; Xing, F. J.; Di, Y. S.; Liu, C. H.; Hu, F. R.; Yang, X. F.; Yang, G. F. et al. Five-level anti-counterfeiting based on versatile luminescence of tri-doped double perovskites. Nano Res. 2024, 17, 9971–9979.

[6]

Wang, X. J.; Zhao, B.; Deng, J. P. Liquid crystals doped with chiral fluorescent polymer: Multi-color circularly polarized fluorescence and room-temperature phosphorescence with high dissymmetry factor and anti-counterfeiting application. Adv. Mater. 2023, 35, 2304405.

[7]

Zhang, J. Y.; Song, C. J.; Zhang, S. N.; Qin, S. Y.; Ren, Y. X.; Zhang, L. Y.; Xiao, J. M.; Li, K. X.; Hu, W.; Yang, H. Time-dependent information encryption in liquid crystalline polymer with programmable glass transition temperature. Adv. Funct. Mater. 2024, 34, 2400030.

[8]

Guo, X.; Sun, X. N.; Zhang, J. F.; Huang, Y. F.; Liu, X. H.; Liu, X.; Xu, W. L.; Chen, D. Z. Luminescent mechanism and anti-counterfeiting application of hydrophilic, undoped room-temperature phosphorescent silicon nanocrystals. Small 2024, 20, 2303464.

[9]

Liu, Q.; Liu, X. Q.; Yu, X. X.; Zhang, X. H.; Zhu, M. F.; Cheng, Y. H. Circularly polarized room temperature phosphorescence through twisting-induced helical structures from polyvinyl alcohol-based fibers containing hydrogen-bonded dyes. Angew. Chem., Int. Ed. 2024, 63, e202403391.

[10]

Gao, Y. F.; Ge, K. Y.; Zhang, Z.; Li, Z.; Hu, S. W.; Ji, H. J.; Li, M. Y.; Feng, H. H. Fine optimization of colloidal photonic crystal structural color for physically unclonable multiplex encryption and anti-counterfeiting. Adv. Sci. 2024, 11, 2305876.

[11]

Huang, H. W.; Li, H. T.; Yin, J. M.; Gu, K.; Guo, J.; Wang, C. Butterfly-inspired tri-state photonic crystal composite film for multilevel information encryption and anti-counterfeiting. Adv. Mater. 2023, 35, 2211117.

[12]

Ma, W. B.; Da, B. X.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Facile preparation of robust microgrooves based photonic crystals film for anti-counterfeiting. Polymer 2023, 276, 125889.

[13]

Qi, Y.; Zhang, S. F. Recent advances in multifunctional shape memory photonic crystals and practical applications. Nano Res. 2024, 17, 79–96.

[14]

Li, Z. L.; Dai, Q.; Deng, L. G.; Zheng, G. X.; Li, G. F. Structural-color nanoprinting with hidden watermarks. Opt. Lett. 2021, 46, 480–483.

[15]

Jeon, H. J.; Leem, J. W.; Ji, Y.; Park, S. M.; Park, J.; Kim, K. Y.; Kim, S. W.; Kim, Y. L. Cyber-physical watermarking with inkjet edible bioprinting. Adv. Funct. Mater. 2022, 32, 2112479.

[16]

He, Z. H.; Liu, K. X.; Cao, L. C. Watermarking and encryption for holographic communication. Photonics 2022, 9, 675.

[17]

Tschierske, C. Liquid crystal engineering—New complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chem. Soc. Rev. 2007, 36, 1930–1970.

[18]

Gao, Y. Z.; Feng, K.; Zhang, J.; Zhang, L. Y. Finger-temperature-detecting liquid crystal composite film for anti-counterfeiting labels. Molecules 2020, 25, 521.

[19]

Yu, J. S.; Son, H. J.; Kim, J. H. An anti-counterfeit technique using elastic and optical properties of liquid crystals. Liq. Cryst. 2023, 50, 1617–1623.

[20]

Yang, X. F.; Jin, X.; Zheng, A. Y.; Duan, P. F. Dual band-edge enhancing overall performance of upconverted near-infrared circularly polarized luminescence for anticounterfeiting. ACS Nano 2023, 17, 2661–2668.

[21]

Anusuyadevi, P. R.; Shanker, R.; Cui, Y. X.; Riazanova, A. V.; Järn, M.; Jonsson, M. P.; Svagan, A. J. Photoresponsive and polarization-sensitive structural colors from cellulose/liquid crystal nanophotonic structures. Adv. Mater. 2021, 33, 2101519.

[22]

Liu, X. Y.; Wei, R. B.; Hoang, P. T.; Wang, X. G.; Liu, T.; Keller, P. Reversible and rapid laser actuation of liquid crystalline elastomer micropillars with inclusion of gold nanoparticles. Adv. Funct. Mater. 2015, 25, 3022–3032.

[23]

Wang, H. Q.; Tang, Y. Q.; Huang, Z. Y.; Wang, F. Z.; Qiu, P. F.; Zhang, X. F.; Li, C. H.; Li, Q. A dual-responsive liquid crystal elastomer for multi-level encryption and transient information display. Angew. Chem., Int. Ed. 2023, 62, e202313728.

[24]

Choi, J.; Choi, Y.; Lee, J. H.; Kim, M. C.; Park, S.; Hyun, K.; Lee, K. M.; Yoon, T. H.; Ahn, S. K. Direct-ink-written cholesteric liquid crystal elastomer with programmable mechanochromic response. Adv. Funct. Mater. 2024, 34, 2310658.

[25]

Chen, G. C.; Jin, B. J.; Shi, Y. P.; Zhao, Q.; Shen, Y. Q.; Xie, T. Rapidly and repeatedly reprogrammable liquid crystalline elastomer via a shape memory mechanism. Adv. Mater. 2022, 34, 2201679.

[26]

Hussain, S.; Park, S. Y. Photonic cholesteric liquid-crystal elastomers with reprogrammable helical pitch and handedness. ACS Appl. Mater. Interfaces 2021, 13, 59275–59287.

[27]

Herbert, K. M.; Fowler, H. E.; McCracken, J. M.; Schlafmann, K. R.; Koch, J. A.; White, T. J. Synthesis and alignment of liquid crystalline elastomers. Nat. Rev. Mater. 2021, 7, 23–38.

[28]

Chen, G. N.; Wei, W.; Li, S.; Zhou, X. P.; Li, Z. A.; Peng, H. Y.; Xie, X. L. Liquid crystal-assisted manufacturing of flexible holographic polymer nanocomposites for high-security level anticounterfeiting. Mater. Chem. Front. 2022, 6, 3531–3542.

[29]

Li, K.; Wang, J. W.; Cai, W. F.; He, H. L.; Cen, M. J.; Liu, J. X.; Luo, D.; Mu, Q. Q.; Gérard, D.; Liu, Y. J. Electrically switchable, polarization-sensitive encryption based on aluminum nanoaperture arrays integrated with polymer-dispersed liquid crystals. Nano Lett. 2021, 21, 7183–7190.

[30]

Lu, Y. F.; Yang, D. L.; Gao, H.; Du, X.; Zhao, Y. Z.; Wang, D.; He, Z. M.; Miao, Z. C.; Cao, H.; Yang, Z. et al. Enhanced electro-optical properties of polymer-dispersed liquid crystals co-doped with fluorescent molecules and nanoparticles for multifunctional applications. Chem. Eng. J. 2024, 485, 149654.

[31]

Chu, Y. Q.; Miao, Z. C.; Wang, D. Stepwise driving and multi-transparency of polymer dispersion liquid crystals. Liq. Cryst. 2023, 50, 222–230.

[32]

Bagiński, M.; Tupikowska, M.; González-Rubio, G.; Wójcik, M.; Lewandowski, W. Shaping liquid crystals with gold nanoparticles: Helical assemblies with tunable and hierarchical structures via thin-film cooperative interactions. Adv. Mater. 2020, 32, 1904581.

[33]

Gharbi, M. A.; Manet, S.; Lhermitte, J.; Brown, S.; Milette, J.; Toader, V.; Sutton, M.; Reven, L. Reversible nanoparticle cubic lattices in blue phase liquid crystals. ACS Nano 2016, 10, 3410–3415.

[34]

Grzelak, J.; Żuk, M.; Tupikowska, M.; Lewandowski, W. Modifying thermal switchability of liquid crystalline nanoparticles by alkyl ligands variation. Nanomaterials 2018, 8, 147.

[35]

Zhang, S. M.; Shi, W. X.; Wang, X. Locking volatile organic molecules by subnanometer inorganic nanowire-based organogels. Science 2022, 377, 100–104.

[36]

Ni, B.; Shi, Y. A.; Wang, X. The sub-nanometer scale as a new focus in nanoscience. Adv. Mater. 2018, 30, 1802031.

[37]

Zhang, S. M.; Lu, Q. C.; Yu, B.; Cheng, X. J.; Zhuang, J.; Wang, X. Polyoxometalates facilitating synthesis of subnanometer nanowires. Adv. Funct. Mater. 2021, 31, 2100703.

[38]

Lu, Q. C.; Huang, B. L.; Zhang, Q. H.; Chen, S. M.; Gu, L.; Song, L.; Yang, Y.; Wang, X. Single-crystal inorganic helical architectures induced by asymmetrical defects in sub-nanometric wires. J. Am. Chem. Soc. 2021, 143, 9858–9865.

[39]

Jiang, K. Z.; Zhao, D. D.; Guo, S. J.; Zhang, X.; Zhu, X.; Guo, J.; Lu, G.; Huang, X. Q. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires. Sci. Adv. 2017, 3, e1601705.

[40]

Liu, J. L.; Li, Y. Q.; Chen, Z.; Liu, N.; Zheng, L. R.; Shi, W. X.; Wang, X. Polyoxometalate cluster-incorporated high entropy oxide sub-1 nm nanowires. J. Am. Chem. Soc. 2022, 144, 23191–23197.

[41]

Li, M. G.; Zhao, Z. L.; Zhang, W. Y.; Luo, M. C.; Tao, L.; Sun, Y. J.; Xia, Z. H.; Chao, Y. G.; Yin, K.; Zhang, Q. H. et al. Sub-monolayer YO x /MoO x on ultrathin Pt nanowires boosts alcohol oxidation electrocatalysis. Adv. Mater. 2021, 33, 2103762.

[42]

Yuan, F.; Ouyang, C.; Yang, M. Z.; Shi, W. X.; Ren, W. B.; Shen, Y.; Wei, Y.; Deng, X. L.; Wang, X. Regulating the mechanical and optical properties of polymer-based nanocomposites by sub-nanowires. Angew. Chem., Int. Ed. 2023, 62, e202214571.

[43]

Zhang, F. H.; Li, Z.; Wang, X. Mechanically tunable organogels from highly charged polyoxometalate clusters loaded with fluorescent dyes. Nat. Commun. 2023, 14, 8327.

[44]

Liu, Q. D.; Sheng, Z.; Shi, W. X.; Cheng, X. J.; Xu, X. X.; Wang, X. Tuning the chirality evolution in achiral subnanometer systems by judicious control of molecule interactions. J. Am. Chem. Soc. 2024, 146, 12819–12827.

[45]

Liu, Q. D.; Zhang, Q. H.; Shi, W. X.; Hu, H. S.; Zhuang, J.; Wang, X. Self-assembly of polyoxometalate clusters into two-dimensional clusterphene structures featuring hexagonal pores. Nat. Chem. 2022, 14, 433–440.

[46]

Zhang, S. M.; Shi, W. X.; Rong, S. J.; Li, S. Z.; Zhuang, J.; Wang, X. Chirality evolution from sub-1 nanometer nanowires to the macroscopic helical structure. J. Am. Chem. Soc. 2020, 142, 1375–1381.

[47]

He, Z.; Wang, J. L.; Chen, S. M.; Liu, J. W.; Yu, S. H. Self-assembly of nanowires: From dynamic monitoring to precision control. Acc. Chem. Res. 2022, 55, 1480–1491.

[48]

Shi, Y. A.; Shi, W. X.; Zhang, S. M.; Wang, X. Revealing the flexibility of inorganic sub-nanowires by single-molecule force spectroscopy. CCS Chem. 2023, 5, 2956–2965.

[49]

Zhang, S. M.; Lin, H. F.; Yang, H. Z.; Ni, B.; Li, H. Y.; Wang, X. Highly flexible and stretchable nanowire superlattice fibers achieved by spring-like structure of sub-1 nm nanowires. Adv. Funct. Mater. 2019, 29, 1903477.

[50]

Zhang, S. M.; Li, J. X.; Shi, W. X.; Zhang, J. T.; Wang, X. Freestanding scattering polarizer assembled with subnanowires and liquid crystals. Adv. Funct. Mater. 2024, 34, 2405243.

[51]

Liu, H. L.; Gong, Q. H.; Yue, Y. H.; Guo, L.; Wang, X. Sub-1 nm nanowire based superlattice showing high strength and low modulus. J. Am. Chem. Soc. 2017, 139, 8579–8585.

Nano Research
Article number: 94907334
Cite this article:
Li J, Shi W, Qi S, et al. Processable subnanowire-liquid crystal ink for encryption and anti-counterfeiting. Nano Research, 2025, 18(5): 94907334. https://doi.org/10.26599/NR.2025.94907334
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return