Glioblastoma (GBM) interventions necessitate exceptional precision due to the presence of blood-brain barrier (BBB) and its intricate co-growth with neuron and glial cells. Here, we developed a blocked bioorthogonal chemistry enabled liposome, termed Bioorthosome, with switchable BBB-crossing ligand that could block the bioorthogonal moieties in normal tissue and blood circulation. Upon traversing the BBB and reaching tumor region, the BBB-crossing ligand could detach from the Bioorthosome under acidic tumor microenvironment and switch to the bioorthogonal moieties to react with the metabolically expressed azide-containing sialylations on GBM cell surface. This switchable bioorthogonal chemistry ensures that only GBM cells are targeted, thereby enhancing the precision of liposomal drug delivery. In vitro and in vivo studies have demonstrated that the Bioorthosome efficiently crosses the BBB and undergoes a ligand-switching process to selectively recognize GBM cells while sparing normal brain tissue, leading to enhanced therapeutic efficacy and reduced off-target accumulation. By integrating bioorthogonal reactions with a tumor microenvironment-responsive ligand-switching mechanism, our Bioorthosome design overcomes the limitations of inefficient BBB permeability and suboptimal anti-GBM drug delivery, paving the way for more precise GBM-targeted therapies and the advancement of more effective treatment strategies.
Louis, D. N.; Perry, A.; Wesseling, P.; Brat, D. J.; Cree, I. A.; Figarella-Branger, D.; Hawkins, C.; Ng, H. K.; Pfister, S. M.; Reifenberger, G. et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 2021, 23, 1231–1251.
Price, M.; Ballard, C.; Benedetti, J.; Neff, C.; Cioffi, G.; Waite, K. A.; Kruchko, C.; Barnholtz-Sloan, J. S.; Ostrom, Q. T. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the united states in 2017-2021. Neuro-Oncol. 2024, 26, vi1–vi85.
Weller, M.; Wen, P. Y.; Chang, S. M.; Dirven, L.; Lim, M.; Monje, M.; Reifenberger, G. Glioma. Nat. Rev. Dis. Primers 2024, 10, 33.
Arvanitis, C. D.; Ferraro, G. B.; Jain, R. K. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 2020, 20, 26–41.
Ruan, S. B.; Zhou, Y.; Jiang, X. G.; Gao, H. L. Rethinking CRITID procedure of brain targeting drug delivery: Circulation, blood brain barrier recognition, intracellular transport, diseased cell targeting, internalization, and drug release. Adv. Sci. 2021, 8, 2004025.
Xue, X. D.; Qu, H. J.; Li, Y. P. Stimuli-responsive crosslinked nanomedicine for cancer treatment. Exploration 2022, 2, 20210134.
Zhang, D. Y.; Sun, Y. J.; Wang, S. Y.; Zou, Y.; Zheng, M.; Shi, B. Y. Brain-targeting metastatic tumor cell membrane cloaked biomimetic nanomedicines mediate potent chemodynamic and RNAi combinational therapy of glioblastoma. Adv. Funct. Mater. 2022, 32, 2209239.
Tong, F.; Zhou, Y.; Xu, Y. Y.; Chen, Y. X.; Yudintceva, N.; Shevtsov, M.; Gao, H. L. Supramolecular nanomedicines based on host-guest interactions of cyclodextrins. Exploration 2023, 3, 20210111.
Cheng, W.; Qu, H. J.; Yang, J. J.; Chen, H.; Pan, Y. Q.; Duan, Z. R.; Xue, X. D. Hierarchically engineered self-adaptive nanoplatform guided intuitive and precision interventions for deep-seated glioblastoma. ACS Nano 2025, 19, 557–579.
Li, S. J.; Meng, C. T.; Hao, Q.; Zhou, R. N.; Dai, L. Y.; Guo, Y. C.; Zhao, S. T.; Zhou, X.; Lou, C. J.; Xu, J. et al. “On/off”-switchable crosslinked PTX-nanoformulation with improved precise delivery for NSCLC brain metastases and restrained adverse reaction over nab-PTX. Biomaterials 2024, 307, 122537.
Anraku, Y.; Kuwahara, H.; Fukusato, Y.; Mizoguchi, A.; Ishii, T.; Nitta, K.; Matsumoto, Y.; Toh, K.; Miyata, K.; Uchida, S. et al. Glycaemic control boosts glucosylated nanocarrier crossing the BBB into the brain. Nat. Commun. 2017, 8, 1001.
Zhang, Y.; Qu, H. J.; Xue, X. D. Blood-brain barrier penetrating liposomes with synergistic chemotherapy for glioblastoma treatment. Biomater. Sci. 2022, 10, 423–434.
Jiang, S. P.; Li, W. P.; Yang, J.; Zhang, T.; Zhang, Y. Q.; Xu, L.; Hu, B.; Li, Z.; Gao, H. L.; Huang, Y. Y. et al. Cathepsin B-responsive programmed brain targeted delivery system for chemo-immunotherapy combination therapy of glioblastoma. ACS Nano 2024, 18, 6445–6462.
Zou, Y.; Sun, X. H.; Yang, Q. S.; Zheng, M.; Shimoni, O.; Ruan, W. M.; Wang, Y. B.; Zhang, D. Y.; Yin, J. L.; Huang, X. G. et al. Blood-brain barrier-penetrating single CRISPR–Cas9 nanocapsules for effective and safe glioblastoma gene therapy. Sci. Adv. 2022, 8, eabm8011.
Ruan, S. B.; Qin, L.; Xiao, W.; Hu, C.; Zhou, Y.; Wang, R. R.; Sun, X.; Yu, W. Q.; He, Q.; Gao, H. L. Acid-responsive transferrin dissociation and GLUT mediated exocytosis for increased blood-brain barrier transcytosis and programmed glioma targeting delivery. Adv. Funct. Mater. 2018, 28, 1802227.
Liu, Y. J.; Wang, W. D.; Zhang, D. Y.; Sun, Y. J.; Li, F. Z.; Zheng, M.; Lovejoy, D. B.; Zou, Y.; Shi, B. Y. Brain co-delivery of first-line chemotherapy drug and epigenetic bromodomain inhibitor for multidimensional enhanced synergistic glioblastoma therapy. Exploration 2022, 2, 20210274.
Liu, Y. J.; Zhang, D. Y.; An, Y.; Sun, Y. J.; Li, J.; Zheng, M.; Zou, Y.; Shi, B. Y. Non-invasive PTEN mRNA brain delivery effectively mitigates growth of orthotopic glioblastoma. Nano Today 2023, 49, 101790.
Tylawsky, D. E.; Kiguchi, H.; Vaynshteyn, J.; Gerwin, J.; Shah, J.; Islam, T.; Boyer, J. A.; Boué, D. R.; Snuderl, M.; Greenblatt, M. B. et al. P-selectin-targeted nanocarriers induce active crossing of the blood-brain barrier via caveolin-1-dependent transcytosis. Nat. Mater. 2023, 22, 391–399.
Pandit, R.; Chen, L. Y.; Götz, J. The blood-brain barrier: Physiology and strategies for drug delivery. Adv. Drug Delivery Rev. 2020, 165–166, 1–14.
Zou, Y.; Wang, Y. B.; Xu, S.; Liu, Y. J.; Yin, J. L.; Lovejoy, D. B.; Zheng, M.; Liang, X. J.; Park, J. B.; Efremov, Y. M. et al. Brain co-delivery of temozolomide and cisplatin for combinatorial glioblastoma chemotherapy. Adv. Mater. 2022, 34, 2203958.
Fan, Q.; Kuang, L.; Wang, B. Y.; Yin, Y.; Dong, Z. F.; Tian, N. X.; Wang, J. J.; Yin, T. Y.; Wang, Y. Z. Multiple synergistic effects of the microglia membrane-bionic nanoplatform on mediate tumor microenvironment remodeling to amplify glioblastoma immunotherapy. ACS Nano 2024, 18, 14469–14486.
Cheng, W.; Duan, Z. R.; Chen, H.; Wang, Y. J.; Wang, C.; Pan, Y. Q.; Wu, J.; Wang, N.; Qu, H. J.; Xue, X. D. Macrophage membrane-camouflaged pure-drug nanomedicine for synergistic chemo- and interstitial photodynamic therapy against glioblastoma. Acta Biomater. 2025, 193, 392–405.
Yoon, H. Y.; Koo, H.; Kim, K.; Kwon, I. C. Molecular imaging based on metabolic glycoengineering and bioorthogonal click chemistry. Biomaterials 2017, 132, 28–36.
Zheng, C. X.; Wang, Q. X.; Wang, Y.; Zhao, X. Z.; Gao, K. M.; Liu, Q.; Zhao, Y.; Zhang, Z. Z.; Zheng, Y. D.; Cao, J. J. et al. In situ modification of the tumor cell surface with immunomodulating nanoparticles for effective suppression of tumor growth in mice. Adv. Mater. 2019, 31, e1902542.
Chang, P. V.; Chen, X.; Smyrniotis, C.; Xenakis, A.; Hu, T. S.; Bertozzi, C. R.; Wu, P. Metabolic labeling of sialic acids in living animals with alkynyl sugars. Angew. Chem., Int. Ed. 2009, 48, 4030–4033.
Fan, M.; Zhang, X.; Liu, H. F.; Li, L. Y.; Wang, F.; Luo, L.; Zhou, X. H.; Liang, X. J.; Zhang, J.; Li, Z. H. Reversing immune checkpoint inhibitor-associated cardiotoxicity via bioorthogonal metabolic engineering-driven extracellular vesicle redirecting. Adv. Mater. 2024, 36, 2412340.
Laughlin, S. T.; Bertozzi, C. R. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via staudinger ligation. Nat. Protoc. 2007, 2, 2930–2944.
Hudak, J. E.; Canham, S. M.; Bertozzi, C. R. Glycocalyx engineering reveals a siglec-based mechanism for NK cell immunoevasion. Nat. Chem. Biol. 2014, 10, 69–75.
Kelly, P. N. The cancer immunotherapy revolution. Science 2018, 359, 1344–1345.
Lu, X. Y.; Xu, Z. X.; Shu, F.; Wang, Y. D.; Han, Y. H.; Yang, X. R.; Shi, P. L.; Fan, C. Q.; Wang, L. L.; Yu, F. et al. Reactive oxygen species responsive multifunctional fusion extracellular nanovesicles: Prospective treatments for acute heart transplant rejection. Adv. Mater. 2024, 36, 2406758.
Koo, H.; Lee, S.; Na, J. H.; Kim, S. H.; Hahn, S. K.; Choi, K.; Kwon, I. C.; Jeong, S. Y.; Kim, K. Bioorthogonal copper-free click chemistry in vivo for tumor-targeted delivery of nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 11836–11840.
Yang, J. J.; Yang, K. Y.; Du, S. Y.; Luo, W.; Wang, C.; Liu, H. M.; Liu, K. G.; Zhang, Z. B.; Gao, Y. F.; Han, X. et al. Bioorthogonal reaction-mediated tumor-selective delivery of CRISPR/Cas9 system for dual-targeted cancer immunotherapy. Angew. Chem. 2023, 135, e202306863.
Shajahan, A.; Parashar, S.; Goswami, S.; Ahmed, S. M.; Nagarajan, P.; Sampathkumar, S. G. Carbohydrate-neuroactive hybrid strategy for metabolic glycan engineering of the central nervous system in vivo. J. Am. Chem. Soc. 2017, 139, 693–700.
Wu, H.; Lu, H. W.; Xiao, W. W.; Yang, J. F.; Du, H. X.; Shen, Y. B.; Qu, H. J.; Jia, B.; Manna, S. K.; Ramachandran, M. et al. Sequential targeting in crosslinking nanotheranostics for tackling the multibarriers of brain tumors. Adv. Mater. 2020, 32, 1903759.
Saxon, E.; Bertozzi, C. R. Cell surface engineering by a modified staudinger reaction. Science 2000, 287, 2007–2010.
Charter, N. W.; Mahal, L. K.; Koshland, D. E. Jr. ; Bertozzi, C. R. Differential effects of unnatural sialic acids on the polysialylation of the neural cell adhesion molecule and neuronal behavior. J. Biol. Chem. 2002, 277, 9255–9261.
Li, T. L.; Xu, D.; Ruan, Z.; Zhou, J.; Sun, W. B.; Rao, B.; Xu, H. B. Metabolism/immunity dual-regulation thermogels potentiating immunotherapy of glioblastoma through lactate-excretion inhibition and PD–1/PD–L1 blockade. Adv. Sci. 2024, 11, e2310163.
Wang, X. L.; Ding, B. B.; Liu, W.; Qi, L. S.; Li, J. T.; Zheng, X.; Song, Y. Q.; Li, Q. Y.; Wu, J. W.; Zhang, M. et al. Dual starvations induce pyroptosis for orthotopic pancreatic cancer therapy through simultaneous deprivation of glucose and glutamine. J. Am. Chem. Soc. 2024, 146, 17854–17865.