PDF (47.1 MB)
Collect
Submit Manuscript
Research Article | Open Access

Blocked bioorthogonal chemistry enabled switchable bioorthosome to improve liposomal drug delivery for glioblastoma therapy

Chao Wang1,2Jie Wu2Zhiran Duan2Yuqing Pan2Haijing Qu2Wei Cheng2Ning Wang2Han Chen2Xiaoli Gao1Mengqing Hou1Ying Zhang1 ()Xiangdong Xue2 ()
Key Laboratory of Resource Biology and Biotechnology of Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, China
Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
Show Author Information

Graphical Abstract

View original image Download original image
This study presents a novel glioblastoma-targeting strategy by synthesizing Ac3ManNAz-NA, a bioorthogonal mannosyl derivative capable of crossing the blood-brain barrier, and designing a pH-responsive liposome platform (Bioorthosome). The system leverages bioorthogonal chemistry and tumor microenvironment responsiveness to achieve precise drug delivery and enhanced therapeutic efficacy for glioblastoma treatment.

Abstract

Glioblastoma (GBM) interventions necessitate exceptional precision due to the presence of blood-brain barrier (BBB) and its intricate co-growth with neuron and glial cells. Here, we developed a blocked bioorthogonal chemistry enabled liposome, termed Bioorthosome, with switchable BBB-crossing ligand that could block the bioorthogonal moieties in normal tissue and blood circulation. Upon traversing the BBB and reaching tumor region, the BBB-crossing ligand could detach from the Bioorthosome under acidic tumor microenvironment and switch to the bioorthogonal moieties to react with the metabolically expressed azide-containing sialylations on GBM cell surface. This switchable bioorthogonal chemistry ensures that only GBM cells are targeted, thereby enhancing the precision of liposomal drug delivery. In vitro and in vivo studies have demonstrated that the Bioorthosome efficiently crosses the BBB and undergoes a ligand-switching process to selectively recognize GBM cells while sparing normal brain tissue, leading to enhanced therapeutic efficacy and reduced off-target accumulation. By integrating bioorthogonal reactions with a tumor microenvironment-responsive ligand-switching mechanism, our Bioorthosome design overcomes the limitations of inefficient BBB permeability and suboptimal anti-GBM drug delivery, paving the way for more precise GBM-targeted therapies and the advancement of more effective treatment strategies.

Electronic Supplementary Material

Download File(s)
7338_ESM.pdf (3.8 MB)

References

[1]

Louis, D. N.; Perry, A.; Wesseling, P.; Brat, D. J.; Cree, I. A.; Figarella-Branger, D.; Hawkins, C.; Ng, H. K.; Pfister, S. M.; Reifenberger, G. et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 2021, 23, 1231–1251.

[2]

Price, M.; Ballard, C.; Benedetti, J.; Neff, C.; Cioffi, G.; Waite, K. A.; Kruchko, C.; Barnholtz-Sloan, J. S.; Ostrom, Q. T. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the united states in 2017-2021. Neuro-Oncol. 2024, 26, vi1–vi85.

[3]

Weller, M.; Wen, P. Y.; Chang, S. M.; Dirven, L.; Lim, M.; Monje, M.; Reifenberger, G. Glioma. Nat. Rev. Dis. Primers 2024, 10, 33.

[4]

Arvanitis, C. D.; Ferraro, G. B.; Jain, R. K. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 2020, 20, 26–41.

[5]

Ruan, S. B.; Zhou, Y.; Jiang, X. G.; Gao, H. L. Rethinking CRITID procedure of brain targeting drug delivery: Circulation, blood brain barrier recognition, intracellular transport, diseased cell targeting, internalization, and drug release. Adv. Sci. 2021, 8, 2004025.

[6]

Xue, X. D.; Qu, H. J.; Li, Y. P. Stimuli-responsive crosslinked nanomedicine for cancer treatment. Exploration 2022, 2, 20210134.

[7]

Zhang, D. Y.; Sun, Y. J.; Wang, S. Y.; Zou, Y.; Zheng, M.; Shi, B. Y. Brain-targeting metastatic tumor cell membrane cloaked biomimetic nanomedicines mediate potent chemodynamic and RNAi combinational therapy of glioblastoma. Adv. Funct. Mater. 2022, 32, 2209239.

[8]

Tong, F.; Zhou, Y.; Xu, Y. Y.; Chen, Y. X.; Yudintceva, N.; Shevtsov, M.; Gao, H. L. Supramolecular nanomedicines based on host-guest interactions of cyclodextrins. Exploration 2023, 3, 20210111.

[9]

Cheng, W.; Qu, H. J.; Yang, J. J.; Chen, H.; Pan, Y. Q.; Duan, Z. R.; Xue, X. D. Hierarchically engineered self-adaptive nanoplatform guided intuitive and precision interventions for deep-seated glioblastoma. ACS Nano 2025, 19, 557–579.

[10]

Li, S. J.; Meng, C. T.; Hao, Q.; Zhou, R. N.; Dai, L. Y.; Guo, Y. C.; Zhao, S. T.; Zhou, X.; Lou, C. J.; Xu, J. et al. “On/off”-switchable crosslinked PTX-nanoformulation with improved precise delivery for NSCLC brain metastases and restrained adverse reaction over nab-PTX. Biomaterials 2024, 307, 122537.

[11]

Anraku, Y.; Kuwahara, H.; Fukusato, Y.; Mizoguchi, A.; Ishii, T.; Nitta, K.; Matsumoto, Y.; Toh, K.; Miyata, K.; Uchida, S. et al. Glycaemic control boosts glucosylated nanocarrier crossing the BBB into the brain. Nat. Commun. 2017, 8, 1001.

[12]

Zhang, Y.; Qu, H. J.; Xue, X. D. Blood-brain barrier penetrating liposomes with synergistic chemotherapy for glioblastoma treatment. Biomater. Sci. 2022, 10, 423–434.

[13]

Jiang, S. P.; Li, W. P.; Yang, J.; Zhang, T.; Zhang, Y. Q.; Xu, L.; Hu, B.; Li, Z.; Gao, H. L.; Huang, Y. Y. et al. Cathepsin B-responsive programmed brain targeted delivery system for chemo-immunotherapy combination therapy of glioblastoma. ACS Nano 2024, 18, 6445–6462.

[14]

Zou, Y.; Sun, X. H.; Yang, Q. S.; Zheng, M.; Shimoni, O.; Ruan, W. M.; Wang, Y. B.; Zhang, D. Y.; Yin, J. L.; Huang, X. G. et al. Blood-brain barrier-penetrating single CRISPR–Cas9 nanocapsules for effective and safe glioblastoma gene therapy. Sci. Adv. 2022, 8, eabm8011.

[15]

Ruan, S. B.; Qin, L.; Xiao, W.; Hu, C.; Zhou, Y.; Wang, R. R.; Sun, X.; Yu, W. Q.; He, Q.; Gao, H. L. Acid-responsive transferrin dissociation and GLUT mediated exocytosis for increased blood-brain barrier transcytosis and programmed glioma targeting delivery. Adv. Funct. Mater. 2018, 28, 1802227.

[16]

Liu, Y. J.; Wang, W. D.; Zhang, D. Y.; Sun, Y. J.; Li, F. Z.; Zheng, M.; Lovejoy, D. B.; Zou, Y.; Shi, B. Y. Brain co-delivery of first-line chemotherapy drug and epigenetic bromodomain inhibitor for multidimensional enhanced synergistic glioblastoma therapy. Exploration 2022, 2, 20210274.

[17]

Liu, Y. J.; Zhang, D. Y.; An, Y.; Sun, Y. J.; Li, J.; Zheng, M.; Zou, Y.; Shi, B. Y. Non-invasive PTEN mRNA brain delivery effectively mitigates growth of orthotopic glioblastoma. Nano Today 2023, 49, 101790.

[18]

Tylawsky, D. E.; Kiguchi, H.; Vaynshteyn, J.; Gerwin, J.; Shah, J.; Islam, T.; Boyer, J. A.; Boué, D. R.; Snuderl, M.; Greenblatt, M. B. et al. P-selectin-targeted nanocarriers induce active crossing of the blood-brain barrier via caveolin-1-dependent transcytosis. Nat. Mater. 2023, 22, 391–399.

[19]

Pandit, R.; Chen, L. Y.; Götz, J. The blood-brain barrier: Physiology and strategies for drug delivery. Adv. Drug Delivery Rev. 2020, 165–166, 1–14.

[20]
Yang, J.; Li, Y.; Jiang, S. P.; Tian, Y. X.; Zhang, M. J.; Guo, S.; Wu, P. F.; Li, J. N.; Xu, L.; Li, W. P. et al. Engineered brain-targeting exosome for reprogramming immunosuppressive microenvironment of glioblastoma. Exploration, in press, DOI: 10.1002/EXP.20240039.
[21]

Zou, Y.; Wang, Y. B.; Xu, S.; Liu, Y. J.; Yin, J. L.; Lovejoy, D. B.; Zheng, M.; Liang, X. J.; Park, J. B.; Efremov, Y. M. et al. Brain co-delivery of temozolomide and cisplatin for combinatorial glioblastoma chemotherapy. Adv. Mater. 2022, 34, 2203958.

[22]

Fan, Q.; Kuang, L.; Wang, B. Y.; Yin, Y.; Dong, Z. F.; Tian, N. X.; Wang, J. J.; Yin, T. Y.; Wang, Y. Z. Multiple synergistic effects of the microglia membrane-bionic nanoplatform on mediate tumor microenvironment remodeling to amplify glioblastoma immunotherapy. ACS Nano 2024, 18, 14469–14486.

[23]

Cheng, W.; Duan, Z. R.; Chen, H.; Wang, Y. J.; Wang, C.; Pan, Y. Q.; Wu, J.; Wang, N.; Qu, H. J.; Xue, X. D. Macrophage membrane-camouflaged pure-drug nanomedicine for synergistic chemo- and interstitial photodynamic therapy against glioblastoma. Acta Biomater. 2025, 193, 392–405.

[24]

Yoon, H. Y.; Koo, H.; Kim, K.; Kwon, I. C. Molecular imaging based on metabolic glycoengineering and bioorthogonal click chemistry. Biomaterials 2017, 132, 28–36.

[25]

Zheng, C. X.; Wang, Q. X.; Wang, Y.; Zhao, X. Z.; Gao, K. M.; Liu, Q.; Zhao, Y.; Zhang, Z. Z.; Zheng, Y. D.; Cao, J. J. et al. In situ modification of the tumor cell surface with immunomodulating nanoparticles for effective suppression of tumor growth in mice. Adv. Mater. 2019, 31, e1902542.

[26]

Chang, P. V.; Chen, X.; Smyrniotis, C.; Xenakis, A.; Hu, T. S.; Bertozzi, C. R.; Wu, P. Metabolic labeling of sialic acids in living animals with alkynyl sugars. Angew. Chem., Int. Ed. 2009, 48, 4030–4033.

[27]

Fan, M.; Zhang, X.; Liu, H. F.; Li, L. Y.; Wang, F.; Luo, L.; Zhou, X. H.; Liang, X. J.; Zhang, J.; Li, Z. H. Reversing immune checkpoint inhibitor-associated cardiotoxicity via bioorthogonal metabolic engineering-driven extracellular vesicle redirecting. Adv. Mater. 2024, 36, 2412340.

[28]

Laughlin, S. T.; Bertozzi, C. R. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via staudinger ligation. Nat. Protoc. 2007, 2, 2930–2944.

[29]

Hudak, J. E.; Canham, S. M.; Bertozzi, C. R. Glycocalyx engineering reveals a siglec-based mechanism for NK cell immunoevasion. Nat. Chem. Biol. 2014, 10, 69–75.

[30]

Kelly, P. N. The cancer immunotherapy revolution. Science 2018, 359, 1344–1345.

[31]

Lu, X. Y.; Xu, Z. X.; Shu, F.; Wang, Y. D.; Han, Y. H.; Yang, X. R.; Shi, P. L.; Fan, C. Q.; Wang, L. L.; Yu, F. et al. Reactive oxygen species responsive multifunctional fusion extracellular nanovesicles: Prospective treatments for acute heart transplant rejection. Adv. Mater. 2024, 36, 2406758.

[32]

Koo, H.; Lee, S.; Na, J. H.; Kim, S. H.; Hahn, S. K.; Choi, K.; Kwon, I. C.; Jeong, S. Y.; Kim, K. Bioorthogonal copper-free click chemistry in vivo for tumor-targeted delivery of nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 11836–11840.

[33]

Yang, J. J.; Yang, K. Y.; Du, S. Y.; Luo, W.; Wang, C.; Liu, H. M.; Liu, K. G.; Zhang, Z. B.; Gao, Y. F.; Han, X. et al. Bioorthogonal reaction-mediated tumor-selective delivery of CRISPR/Cas9 system for dual-targeted cancer immunotherapy. Angew. Chem. 2023, 135, e202306863.

[34]

Shajahan, A.; Parashar, S.; Goswami, S.; Ahmed, S. M.; Nagarajan, P.; Sampathkumar, S. G. Carbohydrate-neuroactive hybrid strategy for metabolic glycan engineering of the central nervous system in vivo. J. Am. Chem. Soc. 2017, 139, 693–700.

[35]

Wu, H.; Lu, H. W.; Xiao, W. W.; Yang, J. F.; Du, H. X.; Shen, Y. B.; Qu, H. J.; Jia, B.; Manna, S. K.; Ramachandran, M. et al. Sequential targeting in crosslinking nanotheranostics for tackling the multibarriers of brain tumors. Adv. Mater. 2020, 32, 1903759.

[36]

Saxon, E.; Bertozzi, C. R. Cell surface engineering by a modified staudinger reaction. Science 2000, 287, 2007–2010.

[37]

Charter, N. W.; Mahal, L. K.; Koshland, D. E. Jr. ; Bertozzi, C. R. Differential effects of unnatural sialic acids on the polysialylation of the neural cell adhesion molecule and neuronal behavior. J. Biol. Chem. 2002, 277, 9255–9261.

[38]

Li, T. L.; Xu, D.; Ruan, Z.; Zhou, J.; Sun, W. B.; Rao, B.; Xu, H. B. Metabolism/immunity dual-regulation thermogels potentiating immunotherapy of glioblastoma through lactate-excretion inhibition and PD–1/PD–L1 blockade. Adv. Sci. 2024, 11, e2310163.

[39]

Wang, X. L.; Ding, B. B.; Liu, W.; Qi, L. S.; Li, J. T.; Zheng, X.; Song, Y. Q.; Li, Q. Y.; Wu, J. W.; Zhang, M. et al. Dual starvations induce pyroptosis for orthotopic pancreatic cancer therapy through simultaneous deprivation of glucose and glutamine. J. Am. Chem. Soc. 2024, 146, 17854–17865.

Nano Research
Article number: 94907338
Cite this article:
Wang C, Wu J, Duan Z, et al. Blocked bioorthogonal chemistry enabled switchable bioorthosome to improve liposomal drug delivery for glioblastoma therapy. Nano Research, 2025, 18(4): 94907338. https://doi.org/10.26599/NR.2025.94907338
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return