PDF (28.3 MB)
Collect
Submit Manuscript
Research Article | Open Access

Selective ammonia production via nitrite electroreduction over CoFe layered double hydroxides-decorated 3D TiO2 array

Yi Liang1,2Xiaoya Fan1 ()Xun He2Dongdong Zheng3Shengjun Sun3Yongsong Luo2Hao Chen3()Xuping Sun2,4 ()
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
Show Author Information

Graphical Abstract

View original image Download original image
CoFe-layered double hydroxides (CoFe-LDH) on a three-dimensional (3D) TiO2 array is highly active for electrocatalytic NO2 reduction to NH3, attaining an NH3 yield of 1056.4 μmol·h−1·cm−2 with a Faradaic efficiency of 97.4%.

Abstract

Water-soluble nitrite (NO2) in wastewater from agricultural and industrial activities poses ecological and health risks, and its electroreduction shows promise for ammonia (NH3) production, but energy losses from the hydrogen evolution reaction (HER) limit its overall efficiency. In this work, we report the use of CoFe-layered double hydroxides on three-dimensional (3D) TiO2 array (TiO2@CoFe-LDH) as an effective electrocatalyst for NO2 reduction. By offering superior *H species supply and hydroprocessing capability, this catalyst achieves an NH3 yield of 1056.4 μmol·h−1·cm−2 with a 97.4% Faradaic efficiency (FE) at −0.6 V and sustains FE above 87% across a range of applied potentials. Additionally, a 60-h simulated wastewater treatment experiment demonstrates its practical application potential.

Electronic Supplementary Material

Download File(s)
7344_ESM.pdf (3.1 MB)

References

[1]

Gruber, N.; Galloway, J. N. An earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296.

[2]

Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M. A.; Cape, J. N.; Reis, S.; Sheppard, L. J.; Jenkins, A.; Grizzetti, B.; Galloway, J. N. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R Soc. B: Biol. Sci. 2013, 368, 20130164.

[3]

Lehnert, N.; Musselman, B. W.; Seefeldt, L. C. Grand challenges in the nitrogen cycle. Chem. Soc. Rev. 2021, 50, 3640–3646.

[4]

Galloway, J. N.; Townsend, A. R.; Erisman, J. W.; Bekunda, M.; Cai, Z. C.; Freney, J. R.; Martinelli, L. A.; Seitzinger, S. P.; Sutton, M. A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892.

[5]

Kocour Kroupová, H.; Valentová, O.; Svobodová, Z.; Šauer, P.; Máchová, J. Toxic effects of nitrite on freshwater organisms: A review. Rev. Aquac. 2018, 10, 525–542.

[6]

Philips, S.; Laanbroek, H. J.; Verstraete, W. Origin, causes and effects of increased nitrite concentrations in aquatic environments. Rev. Environ. Sci. Biotechnol. 2002, 1, 115–141.

[7]

Mensinga, T. T.; Speijers, G. J. A.; Meulenbelt, J. Health implications of exposure to environmental nitrogenous compounds. Toxicol. Rev. 2003, 22, 41–51.

[8]

Chen, Z. G.; Zheng, X. W.; Chen, Y. X.; Wang, X. J.; Zhang, L. J.; Chen, H. C. Nitrite accumulation stability evaluation for low-strength ammonium wastewater by adsorption and biological desorption of zeolite under different operational temperature. Sci. Total Environ. 2020, 704, 135260.

[9]

Popova, A.; Rattanakom, R.; Yu, Z. Q.; Li, Z. L.; Nakagawa, K.; Fujioka, T. Evaluating the potential of nanofiltration membranes for removing ammonium, nitrate, and nitrite in drinking water sources. Water Res. 2023, 244, 120484.

[10]

Mishra, S.; Singh, V.; Cheng, L.; Hussain, A.; Ormeci, B. Nitrogen removal from wastewater: A comprehensive review of biological nitrogen removal processes, critical operation parameters and bioreactor design. J. Environ. Chem. Eng. 2022, 10, 107387.

[11]

Yang, G. L.; Zhou, P. F.; Liang, J. S.; Li, H.; Wang, F. Opportunities and challenges in aqueous nitrate and nitrite reduction beyond electrocatalysis. Inorg. Chem. Front. 2023, 10, 4610–4631.

[12]

Liang, J.; Li, Z. X.; Zhang, L. C.; He, X.; Luo, Y. S.; Zheng, D. D.; Wang, Y.; Li, T. S.; Yan, H.; Ying, B. W. et al. Advances in ammonia electrosynthesis from ambient nitrate/nitrite reduction. Chem 2023, 9, 1768–1827.

[13]

Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X. G.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res. 2022, 15, 972–977.

[14]

Zhang, R.; Zhang, S. C.; Guo, Y.; Li, C.; Liu, J. H.; Huang, Z. D.; Zhao, Y. W.; Li, Y. Y.; Zhi, C. Y. A Zn-nitrite battery as an energy-output electrocatalytic system for high-efficiency ammonia synthesis using carbon-doped cobalt oxide nanotubes. Energy Environ. Sci. 2022, 15, 3024–3032.

[15]

Wang, C. H.; Zhou, W.; Sun, Z. J.; Wang, Y. T.; Zhang, B.; Yu, Y. F. Integrated selective nitrite reduction to ammonia with tetrahydroisoquinoline semi-dehydrogenation over a vacancy-rich Ni bifunctional electrode. J. Mater. Chem. A 2021, 9, 239–243.

[16]

Xiang, J. Q.; Zhao, H. Y.; Chen, K.; Li, X. C.; Li, X. G.; Chu, K. Atomically dispersed Pd on defective BN nanosheets for nitrite electroreduction to ammonia. J. Colloid Interface Sci. 2024, 653, 390–395.

[17]

Liu, Q.; Wen, G. L.; Zhao, D. L.; Xie, L. S.; Sun, S. J.; Zhang, L. C.; Luo, Y. S.; Ali Alshehri, A.; Hamdy, M. S.; Kong, Q. Q. et al. Nitrite reduction over Ag nanoarray electrocatalyst for ammonia synthesis. J. Colloid Interface Sci. 2022, 623, 513–519.

[18]

Zhang, W.; Wang, T. Y.; Xing, X. J.; Yin, H. H.; Li, J.; Xiong, W.; Li, H. Effects of surfactants on the size distribution and electrocatalytic nitrite reduction of uniformly dispersed Au nanoparticles. ACS Sustainable Chem. Eng. 2024, 12, 10313–10324.

[19]

Wang, F. Z.; Xiang, J. Q.; Zhang, G. K.; Chen, K.; Chu, K. Single-atom Co alloyed Ru for electrocatalytic nitrite reduction to ammonia. Nano Res. 2024, 17, 3660–3666.

[20]

Zhao, X. Y.; Jiang, Y. Z.; Wang, M. F.; Huan, Y. F.; Cheng, Q. Y.; He, Y. Z.; Qian, T.; Yan, C. L. Comprehensive understanding of the thriving electrocatalytic nitrate/nitrite reduction to ammonia under ambient conditions. J. Energy Chem. 2024, 92, 459–483.

[21]

Qiao, L. L.; Duan, G. Y.; Zhang, S.; Ren, Y.; Sun, Y. Z.; Tang, Y.; Wan, P. Y.; Pang, R.; Chen, Y. M.; Russell, A. G. et al. Electrochemical ammonia synthesis catalyzed with a CoFe layered double hydroxide—A new initiative in clean fuel synthesis. J. Cleaner Prod. 2020, 250, 119525.

[22]

Yang, M. S.; Sun, J. Q.; Qin, Y. J.; Yang, H.; Zhang, S. S.; Liu, X. J.; Luo, J. Hollow CoFe-layered double hydroxide polyhedrons for highly efficient CO2 electrolysis. Sci. China Mater. 2022, 65, 536–542.

[23]

Meng, J. Z.; Wang, K. W.; Wang, Y.; Ma, J. P.; Ban, C. G.; Feng, Y. J.; Zhang, B.; Zhou, K.; Gan, L. Y.; Han, G. et al. Bismuth clusters pinned on TiO2 porous nanowires boosting charge transfer for CO2 photoreduction to CH4. Nano Res. 2024, 17, 1190–1198.

[24]

Meng, C. H.; Liu, Z. Y.; Zhang, T. R.; Zhai, J. Layered MoS2 nanoparticles on TiO2 nanotubes by a photocatalytic strategy for use as high-performance electrocatalysts in hydrogen evolution reactions. Green Chem. 2015, 17, 2764–2768.

[25]

Hoang, S.; Guo, Y. B.; Binder, A. J.; Tang, W. X.; Wang, S. B.; Liu, J. Y.; Tran, H.; Lu, X. X.; Wang, Y.; Ding, Y. et al. Activating low-temperature diesel oxidation by single-atom Pt on TiO2 nanowire array. Nat. Commun. 2020, 11, 1062.

[26]

Gao, J. N.; Jiang, B.; Ni, C. C.; Qi, Y. F.; Zhang, Y. Q.; Oturan, N.; Oturan, M. A. Non-precious Co3O4-TiO2/Ti cathode based electrocatalytic nitrate reduction: Preparation, performance and mechanism. Appl. Catal. B: Environ. 2019, 254, 391–402.

[27]

Yang, M. S.; Wei, T. R.; He, J.; Liu, Q.; Feng, L. G.; Li, H. Y.; Luo, J.; Liu, X. J. Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia. Nano Res. 2024, 17, 1209–1216.

[28]

Li, S. X.; Liang, J.; Wei, P. P.; Liu, Q.; Xie, L. S.; Luo, Y. L.; Sun, X. P. ITO@TiO2 nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions. eScience 2022, 2, 382–388.

[29]

Ouyang, L.; He, X.; Sun, S. J.; Luo, Y. S.; Zheng, D. D.; Chen, J.; Li, Y. W.; Lin, Y. X.; Liu, Q.; Asiri, A. M. et al. Enhanced electrocatalytic nitrite reduction to ammonia over P-doped TiO2 nanobelt array. J. Mater. Chem. A 2022, 10, 23494–23498.

[30]

Wang, H. P.; Zhang, F.; Jin, M. M.; Zhao, D. L.; Fan, X. Y.; Li, Z. R.; Luo, Y. S.; Zheng, D. D.; Li, T. S.; Wang, Y. et al. V-doped TiO2 nanobelt array for high-efficiency electrocatalytic nitrite reduction to ammonia. Mater. Today Phys. 2023, 30, 100944.

[31]

Fan, X. Y.; Zhao, D. L.; Deng, Z. Q.; Zhang, L. C.; Li, J.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Zheng, D. D.; Wang, Y. et al. Constructing Co@TiO2 nanoarray heterostructure with schottky contact for selective electrocatalytic nitrate reduction to ammonia. Small 2023, 19, 2208036.

[32]

Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.

[33]

Yao, L. C.; Li, R.; Zhang, H. M.; Humayun, M.; Xu, X. F.; Fu, Y. J.; Nikiforov, A.; Wang, C. D. Interface engineering of NiTe@CoFe LDH for highly efficient overall water-splitting. Int. J. Hydrogen Energy 2022, 47, 32394–32404.

[34]

Yang, S. H.; Jiao, F. X.; Gong, Y. Q. Electrochemical crystalline/amorphous Ni(OH)S@CoFe-LDH/NF for efficient oxygen evolution reaction. Sep. Purif. Technol. 2024, 331, 125716.

[35]

Kong, F. Y.; Wu, A. P.; Wang, S. Y.; Zhang, X. H.; Tian, C. G.; Fu, H. G. The “mediated molecular”-assisted construction of Mo2N islands dispersed on Co-based nanosheets for high-efficient electrocatalytic hydrogen evolution reaction. Nano Res. 2023, 16, 10857–10866.

[36]

Nie, F.; Li, Z.; Dai, X. P.; Yin, X. L.; Gan, Y. H.; Yang, Z. H.; Wu, B. Q.; Ren, Z. T.; Cao, Y. H.; Song, W. Y. Interfacial electronic modulation on heterostructured NiSe@CoFe LDH nanoarrays for enhancing oxygen evolution reaction and water splitting by facilitating the deprotonation of OH to O. Chem. Eng. J. 2022, 431, 134080.

[37]

Shankar Naik, S.; Theerthagiri, J.; Nogueira, F. S.; Lee, S. J.; Min, A.; Kim, G. A.; Maia, G.; Pinto, L. M. C.; Choi, M. Y. Dual-cation-coordinated CoFe-layered double-hydroxide nanosheets using the pulsed laser ablation technique for efficient electrochemical water splitting: Mechanistic screening by in situ/ operando Raman and density functional theory calculations. ACS Catal. 2023, 13, 1477–1491.

[38]

Fan, X. Y.; Xie, L. S.; Liang, J.; Ren, Y. C.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. L.; Li, N.; Tang, B. et al. In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Res. 2022, 15, 3050–3055.

[39]

Guo, Y.; Zhang, R.; Zhang, S. C.; Zhao, Y. W.; Yang, Q.; Huang, Z. D.; Dong, B. B.; Zhi, C. Y. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries. Energy Environ. Sci. 2021, 14, 3938–3944.

[40]

Liu, Y.; Kong, X. D.; Guo, X.; Li, Q. Y.; Ke, J. W.; Wang, R. Y.; Li, Q. X.; Geng, Z. G.; Zeng, J. Enhanced N2 electroreduction over LaCoO3 by introducing oxygen vacancies. ACS Catal. 2020, 10, 1077–1085.

[41]

Zhang, A. L.; Liang, Y. M.; He, X.; Fan, X. Y.; Yang, C. L.; Ouyang, L.; Zheng, D. D.; Sun, S. J.; Cai, Z. W.; Luo, Y. L. et al. High-performance electrocatalytic reduction of nitrite to ammonia under ambient conditions on a FeP@TiO2 nanoribbon array. Inorg. Chem. 2023, 62, 12644–12649.

[42]

Xu, H. G.; Zhang, X. Y.; Ding, Y. L.; Fu, H. Q.; Wang, R.; Mao, F. X.; Liu, P. F.; Yang, H. G. Rational design of hydrogen evolution reaction electrocatalysts for commercial alkaline water electrolysis. Small Struct. 2023, 4, 2200404.

[43]

Fan, K.; Xie, W. F.; Li, J. Z.; Sun, Y. N.; Xu, P. C.; Tang, Y.; Li, Z. H.; Shao, M. F. Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nat. Commun. 2022, 13, 7958.

[44]

Luo, W. J.; Guo, Z. Y.; Ye, L.; Wu, S. L.; Jiang, Y. Y.; Xu, P.; Wang, H.; Qian, J. J.; Zhou, X. M.; Tang, H. et al. Electrical-driven directed-evolution of copper nanowires catalysts for efficient nitrate reduction to ammonia. Small 2024, 20, 2311336.

[45]

Liang, S. Z.; Teng, X.; Xu, H.; Chen, L. S.; Shi, J. L. H* species regulation by Mn-Co(OH)2 for efficient nitrate electro-reduction in neutral solution. Angew. Chem. , Int. Ed. 2024, 63, e202400206.

[46]

Chen, W.; Wu, B. B.; Wang, Y. Y.; Zhou, W.; Li, Y. Y.; Liu, T. Y.; Xie, C.; Xu, L. T.; Du, S. Q.; Song, M. L. et al. Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy Environ. Sci. 2021, 14, 6428–6440.

[47]

Fan, Z. H.; Cao, C. M.; Yang, X. C.; Yuan, W. C.; Qin, F. Y.; Hu, Y. T.; Sun, X. B.; Liu, G. J.; Tian, Y.; Xu, L. Interfacial electronic interactions promoted activation for nitrate electroreduction to ammonia over Ag-modified Co3O4. Angew. Chem., Int. Ed. 2024, 63, e202410356.

[48]

Zhang, B. C.; Dai, Z. C.; Chen, Y. X.; Cheng, M. Y.; Zhang, H. K.; Feng, P. Y.; Ke, B. Q.; Zhang, Y. Y.; Zhang, G. Q. Defect-induced triple synergistic modulation in copper for superior electrochemical ammonia production across broad nitrate concentrations. Nat. Commun. 2024, 15, 2816.

Nano Research
Article number: 94907344
Cite this article:
Liang Y, Fan X, He X, et al. Selective ammonia production via nitrite electroreduction over CoFe layered double hydroxides-decorated 3D TiO2 array. Nano Research, 2025, 18(4): 94907344. https://doi.org/10.26599/NR.2025.94907344
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return