PDF (28.9 MB)
Collect
Submit Manuscript
Research Article | Open Access

Cu–N–C support confinement stabilizes active Co sites in oxygen reduction reaction

Longyang Zhang1,§Wei Sang1,§Tingting Wang3 ()Xiaoyu Wei1Zihan Li1Cheng Chen1,2 ()Zongkui Kou1,2 ()Shichun Mu1 ()
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China

§ Longyang Zhang and Wei Sang contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
The inclusion of Cu is pivotal in minimizing Co leaching, thereby significantly enhancing the oxygen reduction reaction (ORR) stability on active Co species. The interaction between Co nanoparticles (NPs) and Co/Cu sites optimizes the interaction strength between Co sites and *OH, facilitating the *OH desorption process.

Abstract

Strengthening the operational durability of oxygen reduction reaction (ORR) catalysts is essential for advancing both fuel cells and metal–air batteries. However, developing highly active and durable catalysts remains a significant challenge. In this study, a catalyst (Co/Cu–N–C) featuring uniformly distributed Co nanoparticles (NPs) and Co/Cu sites has been synthesized via a facile complex-assisted pyrolysis strategy. We observed that Cu–N–C support effectively confines the growth and leaching of Co NPs during both synthesis and ORR catalysis, thereby boosting the stability of the catalyst. Meanwhile, the presence of Co NPs and Cu sites slightly contributes to the ORR activity by optimizing the *OH desorption. The assembled zinc–air battery (ZAB) demonstrates a superhigh power density of 256.1 mW·cm−2 and a long-term operational stability exceeding 500 h. This work not only underscores the potential of bimetallic systems and NPs in enhancing catalyst stability but also provides valuable insights for the synthesis of high-performance ORR electrocatalysts.

Electronic Supplementary Material

Download File(s)
7345_ESM.pdf (9.8 MB)

References

[1]

Shinde, S. S.; Jung, J. Y.; Wagh, N. K.; Lee, C. H.; Kim, D. H.; Kim, S. H.; Lee, S. U.; Lee, J. H. Ampere-hour-scale zinc–air pouch cells. Nat. Energy 2021, 6, 592–604.

[2]

Wu, H. H.; Li, H. B.; Zhao, X. F.; Liu, Q. F.; Wang, J.; Xiao, J. P.; Xie, S. H.; Si, R.; Yang, F.; Miao, S. et al. Highly doped and exposed Cu(I)–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries. Energy Environ. Sci. 2016, 9, 3736–3745.

[3]

Zhang, W.; Zhang, J. W.; Wang, N.; Zhu, K. R.; Yang, C. C.; Ai, Y.; Wang, F. M.; Tian, Y.; Ma, Y. Z.; Ma, Y. et al. Two-electron redox chemistry via single-atom catalyst for reversible zinc–air batteries. Nat. Sustain. 2024, 7, 463–473.

[4]

Li, Y. F.; Huang, A. J.; Zhou, L. X.; Li, B. H.; Zheng, M. Y.; Zhuang, Z. W.; Chen, C.; Chen, C.; Kang, F. Y.; Lv, R. T. Main-group element-boosted oxygen electrocatalysis of Cu–N–C sites for zinc–air battery with cycling over 5000 h. Nat. Commun. 2024, 15, 8365.

[5]

Liu, J. N.; Zhao, C. X.; Wang, J.; Fang, X. Q.; Bi, C. X.; Li, B. Q.; Zhang, Q. A data-driven bifunctional oxygen electrocatalyst with a record-breaking Δ E = 0.57 V for Ampere-hour-scale zinc–air batteries. Joule 2024, 8, 1804–1819.

[6]

Chang, Q.; He, F.; Zhang, Z. H.; Fu, X. L.; Wang, Y.; Huang, C. S.; Li, Y. L. Self-organized integrated electrocatalyst on oxygen conversion for highly durable zinc–air batteries. Angew. Chem., Int. Ed. 2025, 64, e202416664.

[7]

Yang, L. P.; Zhang, X.; Yu, L. X.; Hou, J. H.; Zhou, Z.; Lv, R. T. Atomic Fe–N4/C in flexible carbon fiber membrane as binder-free air cathode for Zn–air batteries with stable cycling over 1000 h. Adv. Mater. 2022, 34, 2105410.

[8]

Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

[9]

Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214.

[10]

Zhao, M. Q.; Liu, H. R.; Zhang, H. W.; Chen, W.; Sun, H. Q.; Wang, Z. H.; Zhang, B.; Song, L.; Yang, Y.; Ma, C. et al. A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn–air batteries. Energy Environ. Sci. 2021, 14, 6455–6463.

[11]

Liu, Y. Y.; Zhou, L. M.; Liu, S. L.; Li, S. Q.; Zhou, J. J.; Li, X.; Chen, X. M.; Sun, K.; Li, B. J.; Jiang, J. C. et al. Fe, N-inducing interfacial electron redistribution in NiCo spinel on biomass-derived carbon for Bi-functional oxygen conversion. Angew. Chem., Int. Ed. 2024, 63, e202319983.

[12]

Zeng, R.; Li, H. Q.; Shi, Z. X.; Xu, L.; Meng, J. H.; Xu, W. X.; Wang, H. S.; Li, Q. H.; Pollock, C. J.; Lian, T. Q. et al. Origins of enhanced oxygen reduction activity of transition metal nitrides. Nat. Mater. 2024, 23, 1695–1703.

[13]

Xie, X. H.; He, C.; Li, B. Y.; He, Y. H.; Cullen, D. A.; Wegener, E. C.; Kropf, A. J.; Martinez, U.; Cheng, Y. W.; Engelhard, M. H. et al. Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells. Nat. Catal. 2020, 3, 1044–1054.

[14]

He, Y. H.; Shi, Q. R.; Shan, W. T.; Li, X.; Kropf, A. J.; Wegener, E. C.; Wright, J.; Karakalos, S.; Su, D.; Cullen, D. A. et al. Dynamically unveiling metal–nitrogen coordination during thermal activation to design high-efficient atomically dispersed CoN4 active sites. Angew. Chem., Int. Ed. 2021, 60, 9516–9526.

[15]

Li, Z. J.; Ji, S. Q.; Wang, C.; Liu, H. X.; Leng, L. P.; Du, L.; Gao, J. C.; Qiao, M.; Horton, J. H.; Wang, Y. Geometric and electronic engineering of atomically dispersed copper–cobalt diatomic sites for synergistic promotion of bifunctional oxygen electrocatalysis in zinc–air batteries. Adv. Mater. 2023, 35, 2300905.

[16]

Liu, M. H.; Zhang, J.; Su, H.; Jiang, Y. L.; Zhou, W. L.; Yang, C. Y.; Bo, S. W.; Pan, J.; Liu, Q. H. In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction. Nat. Commun. 2024, 15, 1675.

[17]

Xu, H. B.; Jia, H. X.; Li, H. Z.; Liu, J.; Gao, X. W.; Zhang, J. C.; Liu, M.; Sun, D. L.; Chou, S. L.; Fang, F. et al. Dual carbon-hosted Co–N3 enabling unusual reaction pathway for efficient oxygen reduction reaction. Appl. Catal. B: Environ. 2021, 297, 120390.

[18]

Zhang, Y.; Mu, X. Q.; Liu, Z. Y.; Zhao, H. Y.; Zhuang, Z. C.; Zhang, Y. F.; Mu, S. C.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Twin-distortion modulated ultra-low coordination PtRuNi–O x catalyst for enhanced hydrogen production from chemical wastewater. Nat. Commun. 2024, 15, 10149.

[19]

Zhao, Y. X.; Wen, J. H.; Li, P.; Zhang, P. F.; Wang, S. N.; Li, D. C.; Dou, J. M.; Li, Y. W.; Ma, H. Y.; Xu, L. Q. A “pre-division metal clusters” strategy to mediate efficient dual-active sites ORR catalyst for ultralong rechargeable Zn–air battery. Angew. Chem., Int. Ed. 2023, 62, e202216950.

[20]

Han, Y. C.; Yi, J.; Pang, B. B.; Wang, N.; Li, X. C.; Yao, T.; Novoselov, K. S.; Tian, Z. Q. Graphene-confined ultrafast radiant heating for high-loading subnanometer metal cluster catalysts. Natl. Sci. Rev. 2023, 10, nwad081.

[21]

Yu, P.; Wang, L.; Sun, F. F.; Xie, Y.; Liu, X.; Ma, J. Y.; Wang, X. W.; Tian, C. G.; Li, J. H.; Fu, H. G. Co nanoislands rooted on Co–N–C nanosheets as efficient oxygen electrocatalyst for Zn–air batteries. Adv. Mater. 2019, 31, 1901666.

[22]

Xu, X. C.; Li, X. Y.; Lu, W. T.; Sun, X. Y.; Huang, H.; Cui, X. Q.; Li, L.; Zou, X. X.; Zheng, W. T.; Zhao, X. Collective effect in a multicomponent ensemble combining single atoms and nanoparticles for efficient and durable oxygen reduction. Angew. Chem., Int. Ed. 2024, 63, e202400765.

[23]

Xie, H.; Xie, X. H.; Hu, G. X.; Prabhakaran, V.; Saha, S.; Gonzalez-Lopez, L.; Phakatkar, A. H.; Hong, M.; Wu, M. L.; Shahbazian-Yassar, R. et al. Ta–TiO x nanoparticles as radical scavengers to improve the durability of Fe–N–C oxygen reduction catalysts. Nat. Energy 2022, 7, 281–289.

[24]

Wan, X.; Liu, Q. T.; Liu, J. Y.; Liu, S. Y.; Liu, X. F.; Zheng, L. R.; Shang, J. X.; Yu, R. H.; Shui, J. L. Iron atom-cluster interactions increase activity and improve durability in Fe–N–C fuel cells. Nat. Commun. 2022, 13, 2963.

[25]

Tang, B.; Zhou, Y. N.; Ji, Q. Q.; Zhuang, Z. C.; Zhang, L.; Wang, C.; Hu, H. B.; Wang, H. J.; Mei, B. B.; Song, F. et al. A Janus dual-atom catalyst for electrocatalytic oxygen reduction and evolution. Nat. Synth. 2024, 3, 878–890.

[26]

Qi, C. H.; Yang, H. Y.; Sun, Z. Q.; Wang, H. F.; Xu, N.; Zhu, G. H.; Wang, L. J.; Jiang, W.; Yu, X. Q.; Li, X. P. et al. Modulating electronic structures of iron clusters through orbital rehybridization by adjacent single copper sites for efficient oxygen reduction. Angew. Chem., Int. Ed. 2023, 62, e202308344.

[27]

Liu, Y. R.; Yuan, S.; Sun, C. T.; Wang, C. L.; Liu, X. J.; Lv, Z. H.; Liu, R.; Meng, Y. Z.; Yang, W. X.; Feng, X. et al. Optimizing Fe-3d electron delocalization by asymmetric Fe–Cu diatomic configurations for efficient anion exchange membrane fuel cells. Adv. Energy Mater. 2023, 13, 2302719.

[28]

Zhou, X. Y.; Gao, J. J.; Hu, Y. X.; Jin, Z. Y.; Hu, K. L.; Reddy, K. M.; Yuan, Q. H.; Lin, X.; Qiu, H. J. Theoretically revealed and experimentally demonstrated synergistic electronic interaction of CoFe dual-metal sites on N-doped carbon for boosting both oxygen reduction and evolution reactions. Nano Lett. 2022, 22, 3392–3399.

[29]

Wang, Z.; Jin, X. Y.; Zhu, C.; Liu, Y. P.; Tan, H.; Ku, R. Q.; Zhang, Y. Q.; Zhou, L. J.; Liu, Z.; Hwang, S. J. et al. Atomically dispersed Co2–N6 and Fe–N4 costructures boost oxygen reduction reaction in both alkaline and acidic media. Adv. Mater. 2021, 33, 2104718.

[30]

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu–S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

[31]

Xing, G. Y.; Tong, M. M.; Yu, P.; Wang, L.; Zhang, G. Y.; Tian, C. G.; Fu, H. G. Reconstruction of highly dense Cu–N4 active sites in electrocatalytic oxygen reduction characterized by operando synchrotron radiation. Angew. Chem., Int. Ed. 2022, 61, e202211098.

[32]

Cheng, H.; Li, M. L.; Su, C. Y.; Li, N.; Liu, Z. Q. Cu–Co bimetallic oxide quantum dot decorated nitrogen-doped carbon nanotubes: A high-efficiency bifunctional oxygen electrode for Zn–air batteries. Adv. Funct. Mater. 2017, 27, 1701833.

[33]

Chen, Y. Q.; Mao, J. N.; Zhou, H.; Xing, L. L.; Qiao, S. S.; Yuan, J. L.; Mei, B. B.; Wei, Z. X.; Zhao, S. L.; Tang, Y. H. et al. Coordination shell dependent activity of CuCo diatomic catalysts for oxygen reduction, oxygen evolution, and hydrogen evolution reaction. Adv. Funct. Mater. 2024, 34, 2311664.

[34]
Chen, C.; Sang, W.; Sha, N.; Fan, G. G.; Jiang, B. W.; Chen, Y. X.; Jiang, M. Metal organic complex containing benzimidazole skeleton as well as preparation method and application of metal organic complex. China Patent 114213469B, March 17, 2023.
[35]

Xu, W. X.; Zeng, R.; Rebarchik, M.; Posada-Borbón, A.; Li, H. Q.; Pollock, C. J.; Mavrikakis, M.; Abruña, H. D. Atomically dispersed Zn/Co–N–C as ORR electrocatalysts for alkaline fuel cells. J. Am. Chem. Soc. 2024, 146, 2593–2603.

[36]

Tong, M. M.; Sun, F. F.; Xie, Y.; Wang, Y.; Yang, Y. Q.; Tian, C. G.; Wang, L.; Fu, H. G. Operando cooperated catalytic mechanism of atomically dispersed Cu–N4 and Zn–N4 for promoting oxygen reduction reaction. Angew. Chem. , Int. Ed. 2021, 60, 14005–14012.

[37]

Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe–N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

[38]

Li, H.; Yan, G. L.; Zhao, H. Y.; Howlett, P. C.; Wang, X. G.; Fang, J. Earthworm-inspired Co/Co3O4/CoF2@NSC nanofibrous electrocatalyst with confined channels for enhanced ORR/OER performance. Adv. Mater. 2024, 36, 2311272.

[39]

Kuang, M.; Wang, Q. H.; Han, P.; Zheng, G. F. Cu, Co-embedded N-enriched mesoporous carbon for efficient oxygen reduction and hydrogen evolution reactions. Adv. Energy Mater. 2017, 7, 1700193.

[40]

Nie, Z. C.; Zhang, L.; Zhu, Q. L.; Ke, Z. F.; Zhou, Y. T.; Wågberg, T.; Hu, G. Z. Reversed charge transfer induced by nickel in Fe-Ni/Mo2C@nitrogen-doped carbon nanobox for promoted reversible oxygen electrocatalysis. J. Energy Chem. 2024, 88, 202–212.

[41]

Xu, Y. S.; Li, Z. H.; Cheng, Z. H.; Chaemchuen, S. Facile synthesis of hybridized Co/Fe-ZIF under solvent-free conditions for efficient oxidation evolution reaction electrocatalysis. Nano Res. 2025, 18, 94907022.

[42]

Zheng, Z. H.; Chaemchuen, S.; Gu, J. F.; Hang, J.; Sang, W.; Wang, J. C.; Yuan, Y.; Chen, C. Nanostructured bimetallic Zn/Co in N-doped carbon as an efficient catalyst for the alcohol dehydrogenation to carboxylic acids under solvent-free conditions. J. Mater. Sci. Technol. 2023, 161, 111–122.

[43]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

[44]

Mu, X. Q.; Yu, M.; Liu, X. Y.; Liao, Y. R.; Chen, F. J.; Pan, H. Z.; Chen, Z. Y.; Liu, S. L.; Wang, D. S.; Mu, S. C. High-entropy ultrathin amorphous metal–organic framework-stabilized Ru(Mo) dual-atom sites for water oxidation. ACS Energy Lett. 2024, 9, 5763–5770.

[45]

Qin, Y. L.; Yu, K. D.; Wang, G.; Zhuang, Z. C.; Dou, Y. H.; Wang, D. S.; Chen, Z. B. Adjacent-ligand tuning of atomically precise Cu–Pd sites enables efficient methanol electrooxidation with a CO-free pathway. Angew. Chem., Int. Ed. 2025, 64, e202420817.

[46]

Yang, J.; Liu, W. G.; Xu, M. Q.; Liu, X. Y.; Qi, H. F.; Zhang, L. L.; Yang, X. F.; Niu, S. S.; Zhou, D.; Liu, Y. F. et al. Dynamic behavior of single-atom catalysts in electrocatalysis: Identification of Cu–N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 2021, 143, 14530–14539.

[47]

Gu, J. F.; Chen, C.; Zheng, Z. H.; Hang, J.; Sang, W.; Wang, J. C.; Yuan, Y.; Chaemchuen, S.; Verpoort, F. Zeolitic imidazolate framework-8 as an efficient and facile heterogeneous catalyst for the acceptorless alcohol dehydrogenation to carboxylates. J. Catal. 2023, 417, 202–212.

[48]
Tang, B.; Ji, Q. Q.; Zhang, X. L.; Shi, R. C.; Ma, J.; Zhuang, Z. C.; Sun, M.; Wang, H. J.; Liu, R. Q.; Liu, H. J. et al. Symmetry breaking of FeN4 moiety via edge defects for acidic oxygen reduction reaction. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.202424135.
[49]

Gu, J. F.; Wang, J. C.; Wu, Q.; Wang, C. X.; Verpoort, F.; Chaemchuen, S. A single-atom iron catalyst on hierarchical N-doped carbon for highly efficient oxygen reduction in Zn–air batteries. J. Mater. Chem. A 2024, 12, 16528–16536.

[50]

Lu, D. S.; Cheng, Z. H.; Klomkliang, N.; Koo-Amornpattana, W.; Verpoort, F.; Chaemchuen, S. Hydro-modulator induced defective structure and hieratical pores in UiO-66 for efficient adsorption and catalysis. Mater. Today Chem. 2024, 42, 102420.

[51]

Lu, D. S.; Klomkliang, N.; Verpoort, F.; Chaemchuen, S. Tuning coordination in ZIF-67 through the solid-state thermal synthesis for balancing structural stability and catalytic reactivity. ACS Appl. Mater. Interfaces 2024, 16, 32322–32333.

[52]

Sang, W.; Chaemchuen, S.; Zhang, L. Y.; Wang, Z. C.; Li, X. C.; Nagasaka, C. A.; Xiong, M.; Ogiwara, N.; Chen, C.; Wang, Z. et al. Solid-state stepwise temperature-programmable synthesis of bioinspired Fe–N–C oxygen reduction electrocatalyst featuring Fe–N5 configuration. Nano Res. 2025, 18, 94907245.

[53]

Jiang, Z.; Xu, X. H.; Ma, Y. H.; Cho, H. S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J. et al. Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction. Nature 2020, 586, 549–554.

[54]

Chen, X.; Ma, D. D.; Chen, B.; Zhang, K. X.; Zou, R. Q.; Wu, X. T.; Zhu, Q. L. Metal–organic framework-derived mesoporous carbon nanoframes embedded with atomically dispersed Fe–N x active sites for efficient bifunctional oxygen and carbon dioxide electroreduction. Appl. Catal. B: Environ. 2020, 267, 118720.

[55]

Lu, S. S.; Zhang, Z. P.; Cheng, C. Q.; Zhang, B.; Shi, Y. M. Unveiling the aggregation of M–N–C single atoms into highly efficient MOOH nanoclusters during alkaline water oxidation. Angew. Chem., Int. Ed. 2025, 64, e202413308.

[56]

Wang, M.; Chen, J. L.; Zhang, S. L.; Sun, Y. Y.; Kong, W. L.; Geng, L. N.; Li, Y.; Dai, L. M.; Li, Z. T.; Wu, M. B. Synergistic interactions between Co nanoparticles and unsaturated Co–N2 sites for efficient electrocatalysis. Adv. Funct. Mater. 2024, 34, 2410373.

[57]

Sun, Q. D.; Yue, X.; Yu, L. K.; Li, F. Z.; Zheng, Y. W.; Liu, M. T.; Peng, J. Z.; Hu, X. L.; Chen, H. M.; Li, L. et al. Well-defined Co2 dual-atom catalyst breaks scaling relations of oxygen reduction reaction. J. Am. Chem. Soc. 2024, 146, 35295–35304.

[58]

Zhang, Q. R.; Kumar, P.; Zhu, X. F.; Daiyan, R.; Bedford, N. M.; Wu, K. H.; Han, Z. J.; Zhang, T. R.; Amal, R.; Lu, X. Y. Electronically modified atomic sites within a multicomponent Co/Cu composite for efficient oxygen electroreduction. Adv. Energy Mater. 2021, 11, 2100303.

[59]

Sanad, M. F.; Puente Santiago, A. R.; Tolba, S. A.; Ahsan, M. A.; Fernandez-Delgado, O.; Shawky Adly, M.; Hashem, E. M.; Mahrous Abodouh, M.; El-Shall, M. S.; Sreenivasan, S. T. et al. Co–Cu bimetallic metal–organic framework catalyst outperforms the Pt/C benchmark for oxygen reduction. J. Am. Chem. Soc. 2021, 143, 4064–4073.

[60]

Wang, Y.; Yang, Y.; Jia, S. F.; Wang, X. M.; Lyu, K. J.; Peng, Y. Q.; Zheng, H.; Wei, X.; Ren, H.; Xiao, L. et al. Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells. Nat. Commun. 2019, 10, 1506.

[61]

Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched Ru x Fe3− x O4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.

[62]

Tian, Y. H.; Xu, L.; Li, M.; Yuan, D.; Liu, X. H.; Qian, J. C.; Dou, Y. H.; Qiu, J. X.; Zhang, S. Q. Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn–air batteries. Nano-Micro Lett. 2021, 13, 3.

[63]

Lu, Z. Y.; Wang, B.; Hu, Y. F.; Liu, W.; Zhao, Y. F.; Yang, R. O.; Li, Z. P.; Luo, J.; Chi, B.; Jiang, Z. et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 2622–2626.

[64]

Wang, Z.; Zhu, C.; Tan, H.; Liu, J.; Xu, L. L.; Zhang, Y. Q.; Liu, Y. P.; Zou, X. X.; Liu, Z.; Lu, X. H. Understanding the synergistic effects of cobalt single atoms and small nanoparticles: Enhancing oxygen reduction reaction catalytic activity and stability for zinc–air batteries. Adv. Funct. Mater. 2021, 31, 2104735.

Nano Research
Article number: 94907345
Cite this article:
Zhang L, Sang W, Wang T, et al. Cu–N–C support confinement stabilizes active Co sites in oxygen reduction reaction. Nano Research, 2025, 18(5): 94907345. https://doi.org/10.26599/NR.2025.94907345
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return