Hydrogen energy carrier produced by water electrolysis in alkaline electrolytes is rather meaningful and significant for global sustainability imperatives, while the high-pH condition usually leads to a poor reversibility of proton adsorption and desorption that significantly determines the hydrogen-generation activity in hydrogen evolution reaction (HER) process. Herein, we demonstrate a remarkable Ru–Mo solid–solution nanocrystal catalyst in alkaline HER process by a very simple but feasible pyrolysis and alkali leaching strategy. Benefiting from the pinning effect and local chemical- and electronic-structure regulations of Mo solute atoms, an ultra-low overpotential (17.3 mV) and an exceptional stability (> 100 h) at the typical current density of 10 mA·cm−2 are achieved on the ultrasmall Ru–Mo solid–solution nanocrystal catalyst in 1.0 M KOH electrolyte. Density function theory (DFT) calculations gain an insight into the synergistic effect of neighboring Ru and Mo sites in alkaline HER process, where Mo solute atoms are beneficial for the adsorption and activation of water molecules for proton generation and accumulation due to their rich outermost 4d vacant orbitals, while the energy-favorable Ru sites are responsible for the fast deprotonation kinetics of hydrogen intermediates. Our work may provide an interesting route for the development of efficient and stable solid–solution alloy nanocrystals towards alkaline water electrolysis and beyond.
Li, Z. H.; Lin, G. X.; Wang, L. Q.; Lee, H.; Du, J.; Tang, T.; Ding, G. H.; Ren, R.; Li, W. L.; Cao, X. et al. Seed-assisted formation of NiFe anode catalysts for anion exchange membrane water electrolysis at industrial-scale current density. Nat. Catal. 2024, 7, 944–952.
Wang, N.; Song, S. Z.; Wu, W. T.; Deng, Z. F.; Tang, C. Bridging laboratory electrocatalysts with industrially relevant alkaline water electrolyzers. Adv. Energy Mater. 2024, 14, 2303451.
Hou, L. Q.; Li, Z. J.; Jang, H.; Kim, M. G.; Cho, J.; Liu, S. G.; Liu, X. Grain boundary tailors the local chemical environment on iridium surface for alkaline electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2024, 63, e202315633.
Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X. X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.
Wang, L. Q.; Ma, M. Y.; Zhang, C. C.; Chang, H. H.; Zhang, Y.; Li, L. L.; Chen, H. Y.; Peng, S. J. Manipulating the microenvironment of single atoms by switching support crystallinity for industrial hydrogen evolution. Angew. Chem. 2024, 136, e202317220.
Wang, M. M.; Feng, C.; Zhang, X.; He, P.; Zhu, H. Y.; Liu, Y. Q.; Pan, Y. Coordination structure regulation of Pt-N x O y -S1 catalytic sites for promoting high-efficiency hydrogen evolution. J. Energy Chem. 2025, 102, 661–669.
Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441–446.
Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.
Chen, Z. Q.; Xu, Y. F.; Ding, D.; Song, G.; Gan, X. X.; Li, H.; Wei, W.; Chen, J.; Li, Z. Y.; Gong, Z. M. et al. Thermal migration towards constructing W–W dual-sites for boosted alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 763.
Jiang, X. L.; Jang, H.; Liu, S. G.; Li, Z. J.; Kim, M. G.; Li, C.; Qin, Q.; Liu, X.; Cho, J. The heterostructure of Ru2P/WO3/NPC synergistically promotes H2O dissociation for improved hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 4110–4116.
Dinh, C. T.; Jain, A.; de Arquer, F. P. G.; de Luna, P.; Li, J.; Wang, N.; Zheng, X. L.; Cai, J.; Gregory, B. Z.; Voznyy, O. et al. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nat. Energy 2019, 4, 107–114.
Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 2011, 334, 1256–1260.
Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. High electrocatalytic hydrogen evolution activity of an anomalous Ruthenium catalyst. J. Am. Chem. Soc. 2016, 138, 16174–16181.
Yao, R.; Sun, K. A.; Zhang, K. Y.; Wu, Y.; Du, Y. J.; Zhao, Q.; Liu, G.; Chen, C.; Sun, Y. H.; Li, J. P. Stable hydrogen evolution reaction at high current densities via designing the Ni single atoms and Ru nanoparticles linked by carbon bridges. Nat. Commun. 2024, 15, 2218.
He, Q.; Zhou, Y. Z.; Shou, H. W.; Wang, X. Y.; Zhang, P. J.; Xu, W. J.; Qiao, S. C.; Wu, C. Q.; Liu, H. J.; Liu, D. B. et al. Synergic reaction kinetics over adjacent Ruthenium sites for superb hydrogen generation in alkaline media. Adv. Mater. 2022, 34, 2110604.
Su, J. W.; Yang, Y.; Xia, G. L.; Chen, J. T.; Jiang, P.; Chen, Q. W. Ruthenium–cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 2017, 8, 14969.
Sun, Y. M.; Xue, Z. Q.; Liu, Q. L.; Jia, Y. L.; Li, Y. L.; Liu, K.; Lin, Y. Y.; Liu, M.; Li, G. Q.; Su, C. Y. Modulating electronic structure of metal–organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 2021, 12, 1369.
Habib, A.; Lin, S. S.; Joni, M. H.; Dristy, S. A.; Mandavkar, R.; Jeong, J. H.; Lee, J. Ru/NiMnB spherical cluster pillar for highly proficient green hydrogen electrocatalyst at high current density. J. Energy Chem. 2025, 100, 397–408.
Wang, H. Z.; Yang, P. F.; Sun, X. Y.; Xiao, W. P.; Wang, X. P.; Tian, M. G.; Xu, G. R.; Li, Z. J.; Zhang, Y. B.; Liu, F. S. et al. Co–Ru alloy nanoparticles decorated onto two-dimensional nitrogen doped carbon nanosheets towards hydrogen/oxygen evolution reaction and oxygen reduction reaction. J. Energy Chem. 2023, 87, 286–294.
Kweon, D. H.; Okyay, M. S.; Kim, S. J.; Jeon, J. P.; Noh, H. J.; Park, N.; Mahmood, J.; Baek, J. B. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nat. Commun. 2020, 11, 1278.
Lin, X. G.; Hu, W. F.; Xu, J.; Liu, X. K.; Jiang, W.; Ma, X. H.; He, D. Y.; Wang, Z. H.; Li, W. Q.; Yang, L. M. et al. Alleviating OH blockage on the catalyst surface by the puncture effect of single-atom sites to boost alkaline water electrolysis. J. Am. Chem. Soc. 2024, 146, 4883–4891.
Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z. The hydrogen evolution reaction in alkaline solution: From theory, single crystal models, to practical electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 7568–7579.
Lei, Z. F.; Liu, X. J.; Wu, Y.; Wang, H.; Jiang, S. H.; Wang, S. D.; Hui, X. D.; Wu, Y. D.; Gault, B.; Kontis, P. et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 2018, 563, 546–550.
Curtin, W. A.; Olmsted, D. L.; Hector, L. G. Jr. A predictive mechanism for dynamic strain ageing in aluminium–magnesium alloys. Nat. Mater. 2006, 5, 875–880.
Sun, S.; Han, Z.; Liu, W.; Xia, Q. Y.; Xue, L.; Lei, X. C.; Zhai, T.; Su, D.; Xia, H. Lattice pinning in MoO3 via coherent interface with stabilized Li+ intercalation. Nat. Commun. 2023, 14, 6662.
Chu, S. Y.; Zhang, C. C.; Xu, H.; Guo, S. H.; Wang, P.; Zhou, H. Pinning effect enhanced structural stability toward a zero-strain layered cathode for sodium–ion batteries. Angew. Chem., Int. Ed. 2021, 60, 13366–13371.
Chen, Z. G.; Hu, H. M.; Yin, L. C.; Zhao, Z. G.; Choi, J. H.; Liu, G.; Geng, F. X. Composite non-noble system with bridging oxygen for catalyzing Tafel-type alkaline hydrogen evolution. Proc. Natl. Acad. Sci. USA 2022, 120, e2209760120.
Karmodak, N.; Nørskov, J. K. Activity and stability of single- and di-atom catalysts for the O2 reduction reaction. Angew. Chem., Int. Ed. 2023, 62, e202311113.
Da, P. F.; Zheng, Y.; Hu, Y.; Wu, Z. L.; Zhao, H. Y.; Wei, Y. C.; Guo, L. C.; Wang, J. J.; Wei, Y. P.; Xi, S. B. et al. Synthesis of bandgap-tunable transition metal sulfides through gas-phase cation exchange-induced topological transformation. Angew. Chem., Int. Ed. 2023, 62, e202301802.
Xie, W.; Koyama, M. Theoretical design of a technetium-like alloy and its catalytic properties. Chem. Sci. 2019, 10, 5461–5469.
Chen, Z. G.; Gong, W. B.; Cong, S.; Wang, Z.; Song, G.; Pan, T.; Tang, X. Q.; Chen, J.; Lu, W. B.; Zhao, Z. G. Eutectoid-structured WC/W2C heterostructures: A new platform for long-term alkaline hydrogen evolution reaction at low overpotentials. Nano Energy 2020, 68, 104335.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Ernzerhof, M.; Scuseria, G. E. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 1999, 110, 5029–5036.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.
Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.
Zhao, G. Q.; Rui, K.; Dou, S. X.; Sun, W. P. Heterostructures for electrochemical hydrogen evolution reaction: A review. Adv. Funct. Mater. 2018, 28, 1803291.
Qian, W. W.; Chen, Z.; Zhang, J. F.; Yin, L. C. Monolayer MoSi2N4− x as promising electrocatalyst for hydrogen evolution reaction: A DFT prediction. J. Mater. Sci. Technol. 2022, 99, 215–222.
Chen, Z.; Zhao, J. X.; Jiao, Y.; Wang, T.; Yin, L. C. Achieving efficient N2 electrochemical reduction by stabilizing the N2H* intermediate with the frustrated Lewis pairs. J. Energy Chem. 2022, 66, 628–634.
Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem., Int. Ed. 2015, 54, 52–65.
Yao, Q.; Huang, B. L.; Zhang, N.; Sun, M. Z.; Shao, Q.; Huang, X. Q. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis. Angew. Chem., Int. Ed. 2019, 58, 13983–13988.
Holder, C. F.; Schaak, R. E. Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 2019, 13, 7359–7365.
Kim, Y. Y.; Schenk, A. S.; Ihli, J.; Kulak, A. N.; Hetherington, N. B. J.; Tang, C. C.; Schmahl, W. W.; Griesshaber, E.; Hyett, G.; Meldrum, F. C. A critical analysis of calcium carbonate mesocrystals. Nat. Commun. 2014, 5, 4341.
Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye–Scherrer equation’. Nat. Nanotechnol. 2011, 6, 534.
Li, S.; Chen, B. B.; Wang, Y.; Ye, M. Y.; van Aken, P. A.; Cheng, C.; Thomas, A. Oxygen-evolving catalytic atoms on metal carbides. Nat. Mater. 2021, 20, 1240–1247.
Bin, Z. Y.; Dong, G. F.; Wei, P. C.; Liu, Z. Y.; Zhang, D. D.; Su, R. C.; Qiu, Y.; Duan, L. Making silver a stronger n-dopant than cesium via in situ coordination reaction for organic electronics. Nat. Commun. 2019, 10, 866.
Chen, Z. G.; Gong, W. B.; Wang, J.; Hou, S.; Yang, G.; Zhu, C. F.; Fan, X. Y.; Li, Y. F.; Gao, R.; Cui, Y. Metallic W/WO2 solid-acid catalyst boosts hydrogen evolution reaction in alkaline electrolyte. Nat. Commun. 2023, 14, 5363.
Chen, Z. G.; Gong, W. B.; Liu, Z. B.; Cong, S.; Zheng, Z. H.; Wang, Z.; Zhang, W.; Ma, J. Y.; Yu, H. S.; Li, G. H. et al. Coordination-controlled single-atom tungsten as a non-3D-metal oxygen reduction reaction electrocatalyst with ultrahigh mass activity. Nano Energy 2019, 60, 394–403.
Lin, J. K.; Hu, K. S.; Wang, Y. T.; Tian, W. J.; Hall, T.; Duan, X. G.; Sun, H. Q.; Zhang, H. Y.; Cortés, E.; Wang, S. B. Tandem microplastic degradation and hydrogen production by hierarchical carbon nitride-supported single-atom iron catalysts. Nat. Commun. 2024, 15, 8769.
Zhang, J. X.; Zhang, L. H.; Liu, J. M.; Zhong, C. Z.; Tu, Y. H.; Li, P.; Du, L.; Chen, S. L.; Cui, Z. M. OH spectator at IrMo intermetallic narrowing activity gap between alkaline and acidic hydrogen evolution reaction. Nat. Commun. 2022, 13, 5497.
Limaye, A. M.; Zeng, J. S.; Willard, A. P.; Manthiram, K. Bayesian data analysis reveals no preference for cardinal Tafel slopes in CO2 reduction electrocatalysis. Nat. Commun. 2021, 12, 703.
Zhu, L. L.; Lin, H. P.; Li, Y. Y.; Liao, F.; Lifshitz, Y.; Sheng, M. Q.; Lee, S. T.; Shao, M. W. A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials. Nat. Commun. 2016, 7, 12272.
Nairan, A.; Feng, Z.; Zheng, R. M.; Khan, U.; Gao, J. K. Engineering metallic alloy electrode for robust and active water electrocatalysis with large current density exceeding 2000 mA·cm−2. Adv. Mater. 2024, 36, 2401448.
Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Gong, Y.; Yi, D.; Zhang, Q. H.; Zhu, C. Z.; Saleem, F.; Chen, B.; Lai, Z. C. et al. Evoking ordered vacancies in metallic nanostructures toward a vacated Barlow packing for high-performance hydrogen evolution. Sci. Adv. 2021, 7, eabd6647.
Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.
Wang, L. Q.; Hao, Y. X.; Deng, L. M.; Hu, F.; Zhao, S.; Li, L. L.; Peng, S. J. Rapid complete reconfiguration induced actual active species for industrial hydrogen evolution reaction. Nat. Commun. 2022, 13, 5785.