PDF (15.7 MB)
Collect
Submit Manuscript
Show Outline
Figures (5)

Research Article | Open Access

Roll-to-roll gravure printing ultra-flexible sustained-photoconductivity carbon nanotube photoelectronic synaptic transistors for bio-inspired visual perception and self-recovery simulation

Xueyi Zhang1,2,3,§Nianzi Sui2,3,§Min Li2,3 ()Suyun Wang2,3Shuangshuang Shao2,3Wanrong Liu1Jia Sun1Junliang Yang1 ()Jianwen Zhao2,3 ()
Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
Key Laboratory of Semiconductor Display Materials and Chips, Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou 215123, China
School of Nano Science and Technology, University of Science and Technology of China, No. 166 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, China

§ Xueyi Zhang and Nianzi Sui contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
This study presents the successful fabrication of large-scale, ultra-flexible carbon nanotube photoelectronic synaptic transistor arrays with sustained photoconductivity, which exhibit remarkable electrical performance, photoresponse characteristics, and mechanical durability. Furthermore, these devices demonstrate the capability to emulate bio-inspired visual perception and self-recovery functionalities. Such advancements offer substantial promise for transformative applications in human–computer interaction, environmental sensing, and visual simulation technologies.

Abstract

The development of large-area high-performance flexible photoelectronic synaptic devices has become a hot topic in the field of neuromorphic computing and artificial vision systems. In this work, we have successfully prepared a large-area, ultra-flexible semiconducting single-walled carbon nanotubes (sc-SWCNTs) photoelectronic synaptic thin-film transistors (TFTs) array (33 × 34) using solution-processable AlOx thin film as the dielectrics by roll-to-roll gravure printing. Our photoelectronic synaptic TFTs exhibit excellent electrical properties with high switching ratio (≥ 105), low subthreshold swing (73 mV·dec−1), excellent photoresponse properties over a wide wavelength range (from 270 to 650 nm), sustained photoconductivity effect (only 26.7% drop after removing light source for 36,000 s) and remarkable mechanical reliability and flexibility (maintaining excellent electrical properties after bending more than 15,000 cycles with a bending radius of 5 mm). In addition, concepts such as multimodal optoelectronic synaptic plasticity, optical writing speed perception simulation, and human eye self-recovery model have been successfully demonstrated using printed flexible sc-SWCNTs photoelectronic neuromorphic TFTs arrays. More importantly, we systematically investigated the response characteristics of these devices under deep ultraviolet light stimulation and, for the first time, successfully simulated bio-inspired visual perception self-recovery including the dynamic transition of the visual system from clarity to blurriness and their self-recovery over time. This work indicates that our photoelectronic neuromorphic TFT devices have great practical potential in human–computer interaction, environment perception, and visual simulation.

Electronic Supplementary Material

Download File(s)
7350_ESM.pdf (2 MB)

References

[1]

Gollisch, T.; Meister, M. Eye smarter than scientists believed: Neural computations in circuits of the retina. Neuron 2010, 65, 150–164.

[2]

Pierre, A.; Gaikwad, A.; Arias, A. C. Charge-integrating organic heterojunction phototransistors for wide-dynamic-range image sensors. Nat. Photonics 2017, 11, 193–199.

[3]

Li, S. Q.; Du, J. G.; Lu, J. G.; Lu, B. J.; Zhuge, F.; Yang, R. Q.; Lu, Y. D.; Ye, Z. Z. Regulation of oxygen vacancy on behaviors of memristors based on amorphous ZnTiSnO films. J. Mater. Chem. C 2022, 10, 17154–17162.

[4]

Lu, B. J.; Du, J. G.; Lu, J. G.; Li, S. Q.; Yang, R. Q.; Liu, P. W.; Huang, J. Y.; Chen, L. X.; Zhuge, F.; Ye, Z. Z. Ultralow operating voltage Nb2O5-based multilevel resistive memory with direct observation of Cu conductive filament. ACS Mater. Lett. 2023, 5, 1350–1358.

[5]

Lochner, C. M.; Khan, Y.; Pierre, A.; Arias, A. C. All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 2014, 5, 5745.

[6]

Yang, R. Q.; Wang, Y.; Li, S. Q.; Hu, D. N.; Chen, Q. J.; Zhuge, F.; Ye, Z. Z.; Pi, X. D.; Lu, J. G. All-optically controlled artificial synapse based on full oxides for low-power visible neural network computing. Adv. Funct. Mater. 2024, 34, 2312444.

[7]

Wu, Z. H.; Yao, W. C.; London, A. E.; Azoulay, J. D.; Ng, T. N. Elucidating the detectivity limits in shortwave infrared organic photodiodes. Adv. Funct. Mater. 2018, 28, 1800391.

[8]

Wang, Y.; Wang, K.; Hu, X. Y.; Wang, Y. K.; Gao, W. D.; Zhang, Y. Q.; Liu, Z. H.; Zheng, Y.; Xu, K.; Yang, D. R. et al. Optogenetics-inspired fluorescent synaptic devices with nonvolatility. ACS Nano 2023, 17, 3696–3704.

[9]

Yang, C. S.; Shang, D. S.; Liu, N.; Fuller, E. J.; Agrawal, S.; Talin, A. A.; Li, Y. Q.; Shen, B. G.; Sun, Y. N. All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Adv. Funct. Mater. 2018, 28, 1804170.

[10]

Song, S.; Choi, C.; Ahn, J.; Lee, J. J.; Jang, J.; Yu, B. S.; Hong, J. P.; Ryu, Y. S.; Kim, Y. H.; Hwang, D. K. Artificial optoelectronic synapse based on spatiotemporal irradiation to source-sharing circuitry of synaptic phototransistors. InfoMat 2024, 6, e12479.

[11]

Zhang, C.; Xu, F.; Zhao, X. L.; Zhang, M. X.; Han, W. J.; Yu, H. Y.; Wang, S. Y.; Yang, Y. H.; Tong, Y. H.; Tang, Q. X. et al. Natural polyelectrolyte-based ultraflexible photoelectric synaptic transistors for hemispherical high-sensitive neuromorphic imaging system. Nano Energy 2022, 95, 107001.

[12]

Zhang, J. Y.; Sun, T. L.; Zeng, S.; Hao, D. D.; Yang, B.; Dai, S. L.; Liu, D. P.; Xiong, L. Z.; Zhao, C. R.; Huang, J. Tailoring neuroplasticity in flexible perovskite QDs-based optoelectronic synaptic transistors by dual modes modulation. Nano Energy 2022, 95, 106987.

[13]

Jeong, J. H.; Ma, J. H.; Park, M. H.; Ha, H. J.; Kang, S. J.; Yun, J. M.; Kim, Y. B.; Kim, E.; Kang, S. J. Oxide based pentachromatic-vision inspired optoelectronic synaptic transistor with large conduction states over 512. Adv. Funct. Mater. 2024, 34, 2402222.

[14]

Wei, J. Y.; Zeng, L. Q.; Chen, L. J.; Lei, Y. L.; Chen, L. X.; Zhang, Q. M. Clarify the contribution of shallow and deep interfacial traps to the transistor-type optoelectronic synaptic device. Surf. Interfaces 2024, 51, 104587.

[15]

Huang, Y. J.; Tan, Y. L.; Kang, Y.; Chen, Y. B.; Tang, Y. H.; Jiang, T. Bioinspired sensing-memory-computing integrated vision systems: Biomimetic mechanisms, design principles, and applications. Sci. China Inf. Sci. 2024, 67, 151401.

[16]

Shao, H.; Li, Y. Q.; Zhuang, J. W.; Ji, Y.; He, X.; Wang, R. H.; Wang, L.; Fu, J. W.; Li, W.; Yi, M. D. et al. Retinomorphic photonic synapses for mimicking ultraviolet radiation sensing and damage imaging. Adv. Funct. Mater. 2024, 34, 2316381.

[17]

Sung, S. H.; Kim, T. J.; Shin, H.; Im, T. H.; Lee, K. J. Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse. Nat. Commun. 2022, 13, 2811.

[18]

Zhong, Y. N.; Wang, T.; Gao, X.; Xu, J. L.; Wang, S. D. Synapse-like organic thin film memristors. Adv. Funct. Mater. 2018, 28, 1800854.

[19]

Yu, S. M. Neuro-inspired computing with emerging nonvolatile memorys. Proc. IEEE 2018, 106, 260–285.

[20]

Ren, P.; Song, R. Q.; Zhu, Y.; O’Connor, B.; Dong, J. Y. All electrohydrodynamic printed flexible organic thin film transistors. Adv. Mater. Technol. 2023, 8, 2300410.

[21]

Zhang, S.; Xu, W. T. All-printed ultra-flexible organic nanowire artificial synapses. J. Mater. Chem. C 2020, 8, 11138–11144.

[22]

Xiao, Y. L.; Deng, W.; Hong, J. J.; Ren, X. B.; Zhang, X. J.; Shi, J. L.; Sheng, F. M.; Zhang, X. H.; Jie, J. S. Water-surface-mediated precise patterning of organic single-crystalline films via double-blade coating for high-performance organic transistors. Adv. Funct. Mater. 2023, 33, 2213788.

[23]

Yuan, Y. B.; Giri, G.; Ayzner, A. L.; Zoombelt, A. P.; Mannsfeld, S. C. B.; Chen, J. H.; Nordlund, D.; Toney, M. F.; Huang, J. S.; Bao, Z. N. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 2014, 5, 3005.

[24]

Sun, Y. M.; Meng, X. R.; Qin, G. X. Artificial pain-perceptual nociceptor emulation based on graphene oxide synaptic transistors. Chem. Eng. J. 2024, 498, 155571.

[25]

Zou, J. Y.; Cai, Z. Y.; Lai, Y. J.; Tan, J. Y.; Zhang, R. J.; Feng, S. M.; Wang, G.; Lin, J. H.; Liu, B. L.; Cheng, H. M. Doping concentration modulation in vanadium-doped monolayer molybdenum disulfide for synaptic transistors. ACS Nano 2021, 15, 7340–7347.

[26]

Gao, X. X.; Yin, J.; Zhu, J.; Chang, J. J.; Zhang, J. C.; Hao, Y. Electrolyte-gated flexible MoS2 synaptic transistors with short-term plasticity. IEEE Electron Device Lett. 2024, 45, 605–608.

[27]

He, X.; Xu, M.; Shi, Q.; Wang, K.; Cao, B.; Rao, L.; Xin, X. Long-ionic-gated graphene synaptic transistor with enhanced memory, learning function and humidity perception. Appl. Phys. Lett. 2024, 124, 053501.

[28]

Gao, X.; Jiang, T.; Li, H. C.; Zhang, J. Y.; Huang, J.; Ji, D. Y.; Hu, W. P. Retina-inspired large-area solution-processed flexible multi-band organic neuromorphic synaptic transistor arrays. Chem. Eng. J. 2024, 498, 155237.

[29]

Yu, H. R.; Xu, Y. C.; Deng, Z. H.; Jin, C. X.; Liu, W. R.; Shi, X. F.; Liu, J. Z.; Sun, J.; Yang, J. L. Self-supported flexible organic electrochemical synaptic transistors on self-healing composite electrolyte membranes. Appl. Phys. Lett. 2024, 124, 173703.

[30]

Oh, J.; Park, S.; Lee, S. H.; Kim, S.; Lee, H.; Lee, C.; Hong, W.; Cha, J. H.; Kang, M. G.; Jin, J. H. et al. Ultrathin all-solid-state MoS2-based electrolyte gated synaptic transistor with tunable organic–inorganic hybrid film. Adv. Sci. 2024, 11, 2308847.

[31]

Zhang, C.; Zhang, M. X.; Lin, F. Y.; Zhao, G. D.; Wei, Z. P.; Ni, Y. P.; Li, J. T.; Yu, H. Y.; Zhao, X. L.; Tong, Y. H. et al. Unraveling the mechanism of the light-triggered synaptic plasticity in organic photoelectric synaptic transistors. Adv. Electron. Mater. 2024, 10, 2300878.

[32]

Zhu, Q. B.; Li, B.; Yang, D. D.; Liu, C.; Feng, S.; Chen, M. L.; Sun, Y.; Tian, Y. N.; Su, X.; Wang, X. M. et al. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 2021, 12, 1798.

[33]

Zhang, G. X.; Zhang, Z. C.; Chen, X. D.; Kang, L. X.; Li, Y.; Wang, F. D.; Shi, L.; Shi, K.; Liu, Z. B.; Tian, J. G. et al. Broadband sensory networks with locally stored responsivities for neuromorphic machine vision. Sci. Adv. 2023, 9, eadi5104.

[34]

Xie, T. H.; Wang, Q. N.; Li, M.; Fang, Y. X.; Li, G.; Shao, S. S.; Yu, W. B.; Wang, S. Y.; Gu, W. B.; Zhao, C. et al. Carbon nanotube optoelectronic synapse transistor arrays with ultra-low power consumption for stretchable neuromorphic vision systems. Adv. Funct. Mater. 2023, 33, 2303970.

[35]

Parajuli, S.; Jung, Y.; Shrestha, S.; Park, J.; Ahn, C.; Shrestha, K.; Maskey, B. B.; Cho, T. Y.; Eom, J. H.; Lee, C. et al. Tailoring threshold voltage of R2R printed SWCNT thin film transistors for realizing 4 bit ALU. npj Flex. Electron. 2024, 8, 78.

[36]

Shrestha, S.; Parajuli, S.; Park, J.; Yang, H.; Cho, T. Y.; Eom, J. H.; Cho, S. K.; Lim, J.; Cho, G.; Jung, Y. Improving stability of roll-to-roll (R2R) gravure-printed carbon nanotube-based thin film transistors via R2R plasma-enhanced chemical vapor-deposited silicon nitride. Nanomaterials 2023, 13, 559.

[37]

Sun, J. F.; Sapkota, A.; Park, H.; Wesley, P.; Jung, Y.; Maskey, B. B.; Kim, Y.; Majima, Y.; Ding, J. F.; Ouyang, J. Y. et al. Fully R2R-printed carbon-nanotube-based limitless length of flexible active-matrix for electrophoretic display application. Adv. Electron. Mater. 2020, 6, 1901431.

[38]

Kim, T.; Kim, S. Electronic design automation requirements for R2R printing foundry. Flex. Print. Electron. 2022, 7, 013001.

[39]

Zhang, W.; Shrestha, S.; Parajuli, S.; Maskey, B. B.; Park, J.; Yang, H.; Jung, Y.; Cho, G. Tuning the charge carrier polarity of roll-to-roll gravure printed carbon nanotube-based thin film transistors by an atomic layer deposited alumina nanolayer. Nanoscale Adv. 2023, 5, 3879–3886.

[40]

Zhang, Y. C.; Chen, H.; Sun, W. Q.; Hou, Y. Q.; Cai, Y. H.; Huang, H. All-photonic synapses for biomimetic ocular system. Adv. Funct. Mater. 2024, 34, 2409419.

[41]

Wang, X.; Zhang, L. Y.; Zhao, Y.; Qin, Z. Z.; Hu, B.; Zhang, L.; Jiang, Y. H.; Wang, Q. Y.; Liang, Z. C.; Tang, X. et al. Electro-optically configurable synaptic transistors with cluster-induced photoactive dielectric layer for visual simulation and biomotor stimuli. Adv. Mater. 2024, 36, 2406977.

[42]

Liu, K. Q.; Zhang, T.; Dang, B. J.; Bao, L.; Xu, L. Y.; Cheng, C. D.; Yang, Z.; Huang, R.; Yang, Y. C. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 2022, 5, 761–773.

[43]

Xu, W. Y.; Wang, H.; Xie, F. Y.; Chen, J.; Cao, H. T.; Xu, J. B. Facile and Environmentally friendly solution-processed aluminum oxide dielectric for low-temperature, high-performance oxide thin-film transistors. ACS Appl. Mater. Interfaces 2015, 7, 5803–5810.

[44]

Avis, C.; Jang, J. High-performance solution processed oxide TFT with aluminum oxide gate dielectric fabricated by a sol–gel method. J. Mater. Chem. 2011, 21, 10649–10652.

[45]

Wei, J. L.; Fang, Z. Q.; Peng, J. B.; Cai, W.; Zhu, Z. N.; Yao, R. H.; Zhou, S. X.; Yuan, W. J.; Lu, K. K.; Ning, H. L. High-performance spin-coated aluminum oxide dielectric fabricated by a simple oxygen plasma-treatment process. J. Phys. D: Appl. Phys. 2018, 51, 365101.

[46]

Sui, N.; Ji, Y. X.; Li, M.; Zheng, F. Y.; Shao, S. S.; Li, J. Q.; Liu, Z. X.; Wu, J. J.; Zhao, J. W.; Li, L. J. Photoprogrammed multifunctional optoelectronic synaptic transistor arrays based on photosensitive polymer-sorted semiconducting single-walled carbon nanotubes for image recognition. Adv. Sci. 2024, 11, 2401794.

[47]

Wang, X.; Yang, S. T.; Qin, Z. Z.; Hu, B.; Bu, L. J.; Lu, G. H. Enhanced multiwavelength response of flexible synaptic transistors for human sunburned skin simulation and neuromorphic computation. Adv. Mater. 2023, 35, 2303699.

[48]

Bolat, S.; Sevilla, G. T.; Mancinelli, A.; Gilshtein, E.; Sastre, J.; Vidani, A. C.; Bachmann, D.; Shorubalko, I.; Briand, D.; Tiwari, A. N. et al. Synaptic transistors with aluminum oxide dielectrics enabling full audio frequency range signal processing. Sci. Rep. 2020, 10, 16664.

[49]

Du, H. G.; Tuokedaerhan, K.; Zhang, R. J.; Ibraimov, M.; Sagidolda, Y. Exploring the effect of dy doping on the performance of solution-processed indium oxide thin films and thin-film transistors. IEEE Trans. Electron Devices 2024, 71, 7557–7562.

[50]

Xu, W. Y.; Xu, C. Y.; Zhang, Z. B.; Huang, W. C.; Lin, Q. B.; Zhuo, S. M.; Xu, F.; Liu, X. K.; Zhu, D. L.; Zhao, C. Water-induced nanometer-thin crystalline indium-praseodymium oxide channel layers for thin-film transistors. Nanomaterials 2022, 12, 2880.

[51]

Ding, Y. N.; Fan, C. X.; Fu, C. Y.; Meng, Y.; Liu, G. X.; Shan, F. K. High-performance indium oxide thin-film transistors with aluminum oxide passivation. IEEE Electron Device Lett. 2019, 40, 1949–1952.

[52]

Iqbal, M. Z.; Khan, S.; Siddique, S. Tweaking the properties of aluminum oxide shielded graphene-based transistors. Appl. Surf. Sci. 2019, 491, 742–749.

[53]

Zhou, Y.; Liang, Z. H.; Yao, R. H.; Zuo, W. C.; Zhou, S. X.; Zhu, Z. N.; Wang, Y. P.; Qiu, T.; Ning, H. L.; Peng, J. B. Effect of zirconium doping on electrical properties of aluminum oxide dielectric layer by spin coating method with low temperature preparation. Coatings 2020, 10, 620.

[54]

Jo, J. W.; Kim, Y. H.; Park, J.; Heo, J. S.; Hwang, S.; Lee, W. J.; Yoon, M. H.; Kim, M. G.; Park, S. K. Ultralow-temperature solution-processed aluminum oxide dielectrics via local structure control of nanoclusters. ACS Appl. Mater. Interfaces 2017, 9, 35114–35124.

[55]

Jo, J. W.; Kang, J.; Kim, K. T.; Kang, S. H.; Shin, J. C.; Shin, S. B.; Kim, Y. H.; Park, S. K. Nanocluster-based ultralow-temperature driven oxide gate dielectrics for high-performance organic electronic devices. Materials 2020, 13, 5571.

[56]

Sui, N.; Kang, K. X.; Li, M.; Zhang, D.; Li, B. X.; Shao, S. S.; Wang, H.; Zhao, J. W. Fabrication of carbon nanotube neuromorphic thin film transistor arrays and their applications for flexible olfactory-visual multisensory synergy recognition. Int. J. Extrem. Manuf. 2025, 7, 015503.

[57]

Zhao, Y. F.; Haseena, S.; Ravva, M. K.; Zhang, S. J.; Li, X.; Jiang, J. D.; Fu, Y. J.; Inal, S.; Wang, Q.; Wang, Y. Z. et al. Side chain engineering enhances the high-temperature resilience and ambient stability of organic synaptic transistors for neuromorphic applications. Nano Energy 2022, 104, 107985.

[58]

Zabihipour, M.; Lassnig, R.; Strandberg, J.; Berggren, M.; Fabiano, S.; Engquist, I.; Andersson Ersman, P. High yield manufacturing of fully screen-printed organic electrochemical transistors. npj Flex. Electron. 2020, 4, 15.

[59]

Sadhukhan, R.; Pradhan, A.; Rani, P.; Mondal, S.; Verma, S. P.; Das, A.; Banerjee, R.; Bansal, A.; Banerjee, M.; Goswami, D. K. Bioinspired flexible and low-voltage organic synaptic transistors for UV light-driven vision systems. ACS Appl. Bio Mater. 2024, 7, 6405–6413.

[60]

Li, D. W.; Chen, Y. T.; Ren, H. H.; Tang, Y. J.; Zhang, S. Y.; Wang, Y.; Xing, L. X.; Huang, Q.; Meng, L.; Zhu, B. W. An active-matrix synaptic phototransistor array for in-sensor spectral processing. Adv. Sci. 2024, 11, 2406401.

[61]

Vose, L. R.; Stanton, P. K. Synaptic plasticity, metaplasticity and depression. Curr. Neuropharmacol. 2017, 15, 71–86.

[62]

Tao, J.; Sarkar, D.; Kale, S.; Singh, P. K.; Kapadia, R. Engineering complex synaptic behaviors in a single device: Emulating consolidation of short-term memory to long-term memory in artificial synapses via dielectric band engineering. Nano Lett. 2020, 20, 7793–7801.

[63]

Nunomura, C. Y.; de Faria E Sousa, S. J. Ultraviolet radiation and the human eye. Arq. Bras. Oftalmol. 2022, 86, e2021–0354.

[64]

Marro, M.; Moccozet, L.; Vernez, D. Assessing human eye exposure to UV light: A narrative review. Front. Public Health 2022, 10, 900979.

Nano Research
Article number: 94907350
Cite this article:
Zhang X, Sui N, Li M, et al. Roll-to-roll gravure printing ultra-flexible sustained-photoconductivity carbon nanotube photoelectronic synaptic transistors for bio-inspired visual perception and self-recovery simulation. Nano Research, 2025, 18(5): 94907350. https://doi.org/10.26599/NR.2025.94907350
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return