Highly dispersed Pt-based single-atom alloys have been extensively studied in heterogeneous catalysis, particularly for propane dehydrogenation (PDH). However, Pt-based single-atom alloys still suffer from sintering and coke deposition in high-temperature dehydrogenation reactions. Additionally, the atomic structure of the active sites of Pt-based single-atom alloys for PDH remains elusive, and the solid chemistry occurring on the catalyst surface is still under debate. In this work, we discovered that the coordination environment of the single Pt atom for Pt1Cu30 cluster catalysts, encapsulated with a carbon layer, can be regulated by sequential heat treatment under air and H2 atmosphere. The Pt1Cu30 cluster catalyst, with a single Pt atom coordinated by 9 Cu atoms, is similar to the surface structure of Pt1Cu3 (111) and exhibits excellent catalytic activity and stability at high temperatures, maintaining propane conversion of 43.5% and propylene selectivity of 98.2%, with a deactivation constant (Kd) of 0.01 h−1, even after 32 h of testing at 600 °C. The combination of structural characterizations and temperature programmed analysis reveal that the single Pt atom coordinated by around 9 Cu atoms of the Pt1Cu30 cluster catalyst, serves as the vital active sites for C–H cleavage of propane and propylene desorption due to their electron-rich and geometrically isolated Pt atom structure. Furthermore, the thin carbon layer coated on the surface of Pt1Cu30 clusters can effectively reduce the desorption energy of propylene, thereby avoiding further dehydrogenation and improving the propylene yield and catalytic stability.
Grant, J. T.; Carrero, C. A.; Goeltl, F.; Venegas, J.; Mueller, P.; Burt, S. P.; Specht, S. E.; McDermott, W. P.; Chieregato, A.; Hermans, I. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts. Science 2016, 354, 1570–1573.
Chen, S.; Zeng, L.; Mu, R. T.; Xiong, C. Y.; Zhao, Z. J.; Zhao, C. J.; Pei, C. L.; Peng, L. M.; Luo, J.; Fan, L. S. et al. Modulating lattice oxygen in dual-functional Mo–V–O mixed oxides for chemical looping oxidative dehydrogenation. J. Am. Chem. Soc. 2019, 141, 18653–18657.
Sattler, J. J. H. B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B. M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 2014, 114, 10613–10653.
Hu, Z. P.; Yang, D. D.; Wang, Z.; Yuan, Z. Y. State-of-the-art catalysts for direct dehydrogenation of propane to propylene. Chin. J. Catal. 2019, 40, 1233–1254.
Xiong, H. F.; Lin, S.; Goetze, J.; Pletcher, P.; Guo, H.; Kovarik, L.; Artyushkova, K.; Weckhuysen, B. M.; Datye, A. K. Thermally stable and regenerable platinum-tin clusters for propane dehydrogenation prepared by atom trapping on ceria. Angew. Chem., Int. Ed. 2017, 56, 8986–8991.
Liu, G.; Zhao, Z. J.; Wu, T. F.; Zeng, L.; Gong, J. L. Nature of the active sites of VO x /Al2O3 catalysts for propane dehydrogenation. ACS Catal. 2016, 6, 5207–5214.
Motagamwala, A. H.; Almallahi, R.; Wortman, J.; Igenegbai, V. O.; Linic, S. Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit. Science 2021, 373, 217–222.
Yang, M. L.; Zhu, Y. A.; Zhou, X. G.; Sui, Z. J.; Chen, D. First-principles calculations of propane dehydrogenation over PtSn catalysts. ACS Catal. 2012, 2, 1247–1258.
Zhu, J.; Yang, M. L.; Yu, Y. D.; Zhu, Y. A.; Sui, Z. J.; Zhou, X. G.; Holmen, A.; Chen, D. Size-dependent reaction mechanism and kinetics for propane dehydrogenation over Pt catalysts. ACS Catal. 2015, 5, 6310–6319.
Nawaz, Z.; Tang, X. P.; Wang, Y.; Wei, F. Parametric characterization and influence of tin on the performance of Pt–Sn/SAPO-34 catalyst for selective propane dehydrogenation to propylene. Ind. Eng. Chem. Res. 2010, 49, 1274–1280.
Vu, B. K.; Song, M. B.; Ahn, I. Y.; Suh, Y. W.; Suh, D. J.; Kim, W. I.; Koh, H. L.; Choi, Y. G.; Shin, E. W. Pt–Sn alloy phases and coke mobility over Pt–Sn/Al2O3 and Pt–Sn/ZnAl2O4 catalysts for propane dehydrogenation. Appl. Catal. A: Gen. 2011, 400, 25–33.
Li, Y. X.; Li, J. X.; Yang, X.; Wang, X. T.; Xu, Y. H.; Zhang, L. H. Preparation of CeO2-modified Mg(Al)O-supported Pt–Cu alloy catalysts derived from hydrotalcite-like precursors and their catalytic behavior for direct dehydrogenation of propane. Trans. Tianjin Univ. 2019, 25, 169–184.
Han, Z. P.; Li, S. R.; Jiang, F.; Wang, T.; Ma, X. B.; Gong, J. L. Propane dehydrogenation over Pt–Cu bimetallic catalysts: The nature of coke deposition and the role of copper. Nanoscale 2014, 6, 10000–10008.
Yu, C. L.; Xu, H. Y.; Ge, Q. J.; Li, W. Z. Properties of the metallic phase of zinc-doped platinum catalysts for propane dehydrogenation. J. Mol. Catal. A: Chem. 2007, 266, 80–87.
Cai, W. T.; Mu, R. T.; Zha, S. D.; Sun, G.; Chen, S.; Zhao, Z. J.; Li, H.; Tian, H.; Tang, Y.; Tao, F. et al. Subsurface catalysis-mediated selectivity of dehydrogenation reaction. Sci. Adv. 2018, 4, eaar5418.
Zhu, Y. R.; An, Z.; He, J. Single-atom and small-cluster Pt induced by Sn(IV) sites confined in an LDH lattice for catalytic reforming. J. Catal. 2016, 341, 44–54.
Santhosh Kumar, M.; Chen, D.; Holmen, A.; Walmsley, J. C. Dehydrogenation of propane over Pt-SBA-15 and Pt–Sn-SBA-15: Effect of Sn on the dispersion of Pt and catalytic behavior. Catal. Today 2009, 142, 17–23.
Nakaya, Y.; Furukawa, S. Tailoring single-atom platinum for selective and stable catalysts in propane dehydrogenation. Chempluschem 2022, 87, e202100560.
Chen, S.; Zhao, Z. J.; Mu, R. T.; Chang, X.; Luo, J.; Purdy, S. C.; Kropf, A. J.; Sun, G. D.; Pei, C. L.; Miller, J. T. et al. Propane dehydrogenation on single-site [PtZn4] intermetallic catalysts. Chem 2021, 7, 387–405.
Chang, X.; Zhao, Z. J.; Lu, Z. P.; Chen, S.; Luo, R.; Zha, S.; Li, L. L.; Sun, G. D.; Pei, C. L.; Gong, J. L. Designing single-site alloy catalysts using a degree-of-isolation descriptor. Nat. Nanotechnol. 2023, 18, 611–616.
Marcinkowski, M. D.; Darby, M. T.; Liu, J. L.; Wimble, J. M.; Lucci, F. R.; Lee, S.; Michaelides, A.; Flytzani-Stephanopoulos, M.; Stamatakis, M.; Sykes, E. C. H. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat. Chem. 2018, 10, 325–332.
Sun, G. D.; Zhao, Z. J.; Mu, R. T.; Zha, S.; Li, L. L.; Chen, S.; Zang, K. T.; Luo, J.; Li, Z. L.; Purdy, S. C. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 2018, 9, 4454.
Cesar, L. G.; Yang, C.; Lu, Z.; Ren, Y.; Zhang, G. H.; Miller, J. T. Identification of a Pt3Co surface intermetallic alloy in Pt–Co propane dehydrogenation catalysts. ACS Catal. 2019, 9, 5231–5244.
Zhang, W. Q.; Zhang, X. B.; Wang, J. Y.; Ghosh, A.; Zhu, J.; LiBretto, N. J.; Zhang, G. H.; Datye, A. K.; Liu, W.; Miller, J. T. Bismuth-modulated surface structural evolution of Pd3Bi intermetallic alloy catalysts for selective propane dehydrogenation and acetylene semihydrogenation. ACS Catal. 2022, 12, 10531–10545.
Chen, S.; Chang, X.; Sun, G. D.; Zhang, T. T.; Xu, Y. Y.; Wang, Y.; Pei, C. L.; Gong, J. L. Propane dehydrogenation: Catalyst development, new chemistry, and emerging technologies. Chem. Soc. Rev. 2021, 50, 3315–3354.
Rochlitz, L.; Pessemesse, Q.; Fischer, J. W. A.; Klose, D.; Clark, A. H.; Plodinec, M.; Jeschke, G.; Payard, P. A.; Copéret, C. A robust and efficient propane dehydrogenation catalyst from unexpectedly segregated Pt2Mn nanoparticles. J. Am. Chem. Soc. 2022, 144, 13384–13393.
Xing, Z. H.; Li, J.; Wang, S.; Su, C. L.; Jin, H. L. Structure engineering of PtCu3/C catalyst from disordered to ordered intermetallic compound with heat-treatment for the methanol electrooxidation reaction. Nano Res. 2022, 15, 3866–3871.
Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.
Gong, M. X.; Xiao, D. D.; Deng, Z. P.; Zhang, R.; Xia, W. W.; Zhao, T. H.; Liu, X. P.; Shen, T.; Hu, Y. H.; Lu, Y. et al. Structure evolution of PtCu nanoframes from disordered to ordered for the oxygen reduction reaction. Appl. Catal. B: Environ. 2021, 282, 119617.
Tuo, Y. X.; Lu, Q.; Chen, C.; Liu, T. L.; Pan, Y.; Zhou, Y.; Zhang, J. The facile synthesis of core–shell PtCu nanoparticles with superior electrocatalytic activity and stability in the hydrogen evolution reaction. RSC Adv. 2021, 11, 26326–26335.
Zhang, X.; Cui, G. Q.; Feng, H. S.; Chen, L. F.; Wang, H.; Wang, B.; Zhang, X.; Zheng, L. P.; Hong, S.; Wei, M. Platinum-copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. Nat. Commun. 2019, 10, 5812.
Wang, H.; Qi, H. F.; Sun, X.; Jia, S. Y.; Li, X. Y.; Miao, T. J.; Xiong, L. Q.; Wang, S. H.; Zhang, X. L.; Liu, X. Y. et al. High quantum efficiency of hydrogen production from methanol aqueous solution with PtCu–TiO2 photocatalysts. Nat. Mater. 2023, 22, 619–626.
Timoshenko, J.; Bergmann, A.; Rettenmaier, C.; Herzog, A.; Arán-Ais, R. M.; Jeon, H. S.; Haase, F. T.; Hejral, U.; Grosse, P.; Kühl, S. et al. Steering the structure and selectivity of CO2 electroreduction catalysts by potential pulses. Nat. Catal. 2022, 5, 259–267.
Huang, F.; Peng, M.; Chen, Y. L.; Gao, Z. R.; Cai, X. B.; Xie, J. L.; Xiao, D. Q.; Jin, L.; Wang, G. Q.; Wen, X. D. et al. Insight into the activity of atomically dispersed Cu catalysts for semihydrogenation of acetylene: Impact of coordination environments. ACS Catal. 2022, 12, 48–57.
Xu, C. F.; Chen, G. X.; Zhao, Y.; Liu, P. X.; Duan, X. P.; Gu, L.; Fu, G.; Yuan, Y. Z.; Zheng, N. F. Interfacing with silica boosts the catalysis of copper. Nat. Commun. 2018, 9, 3367.
Huang, F.; Deng, Y. C.; Chen, Y. L.; Cai, X. B.; Peng, M.; Jia, Z. M.; Xie, J. L.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nat. Commun. 2019, 10, 4431.
Chen, Y. Z.; Zhao, X.; Yan, H. L.; Sun, L. Y.; Chen, S. L.; Zhang, S. M.; Zhang, J. J. Manipulating Pt-skin of porous network Pt–Cu alloy nanospheres toward efficient oxygen reduction. J. Colloid Interface Sci. 2023, 652, 1006–1015.
Tao, F.; Salmeron, M. In situ studies of chemistry and structure of materials in reactive environments. Science 2011, 331, 171–174.
Tao, F.; Salmeron, M. Surface restructuring and predictive design of heterogeneous catalysts. Science 2024, 386, eadq0102.
Zhang, T. J.; Walsh, A. G.; Yu, J. H.; Zhang, P. Single-atom alloy catalysts: Structural analysis, electronic properties and catalytic activities. Chem. Soc. Rev. 2021, 50, 569–588.
Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.
Zhu, Y. M.; Bu, L. Z.; Shao, Q.; Huang, X. Q. Structurally ordered Pt3Sn nanofibers with highlighted antipoisoning property as efficient ethanol oxidation electrocatalysts. ACS Catal. 2020, 10, 3455–3461.
Yang, T. X.; Zhong, Y.; Li, J. L.; Ma, R.; Yan, H.; Liu, Y. N.; He, Y. F.; Li, D. Q. Construction of a unique structure of Ru sites in the RuP structure for propane dehydrogenation. ACS Appl. Mater. Interfaces 2021, 13, 33045–33055.
Nakaya, Y.; Xing, F. L.; Ham, H.; Shimizu, K. I.; Furukawa, S. Doubly decorated platinum-gallium intermetallics as stable catalysts for propane dehydrogenation. Angew. Chem., Int. Ed. 2021, 60, 19715–19719.
Li, Y. N.; Guo, L. L.; Du, M.; Tian, C.; Zhao, G.; Liu, Z. W.; Liang, Z. Y.; Hou, K. M.; Chen, J. X.; Liu, X. et al. Unraveling distinct effects between CuO x and PtCu alloy sites in Pt−Cu bimetallic catalysts for CO oxidation at different temperatures. Nat. Commun. 2024, 15, 5598.
Zhou, S. Z.; Li, W. C.; He, B.W.; Xie, Y. D.; Wang, H. W.; Liu, X.; Chen, L. W.; Wei, J. K.; Lu, A. H. An active and regenerable nanometric high-entropy catalyst for efficient propane dehydrogenation. Angew. Chem., Int. Ed. 2024, 63, e202410835.
Lin, J. J.; Zhao, S. Q.; Yang, J.; Huang, W. H.; Chen, C. L.; Chen, T. Y.; Zhao, Y.; Chen, G. X.; Qiu, Y.; Gu, L. Hydrogen spillover induced PtCo/CoO x interfaces with enhanced catalytic activity for CO oxidation at low temperatures in humid conditions. Small 2024, 20, 2309181.
Asokan, C.; DeRita, L.; Christopher, P. Using probe molecule FTIR spectroscopy to identify and characterize Pt-group metal based single atom catalysts. Chin. J. Catal. 2017, 38, 1473–1480.
Zeng, L.; Cheng, K.; Sun, F. F.; Fan, Q. Y.; Li, L. Y.; Zhang, Q. H.; Wei, Y.; Zhou, W.; Kang, J. C.; Zhang, Q. et al. Stable anchoring of single rhodium atoms by indium in zeolite alkane dehydrogenation catalysts. Science 2024, 383, 998–1004.
Chen, S.; Xu, Y. Y.; Chang, X.; Pan, Y.; Sun, G. D.; Wang, X. H.; Fu, D. L.; Pei, C. L.; Zhao, Z. J.; Su, D. et al. Defective TiO x overlayers catalyze propane dehydrogenation promoted by base metals. Science 2024, 385, 295–300.
Childers, D. J.; Schweitzer, N. M.; Shahari, S. M. K.; Rioux, R. M.; Miller, J. T.; Meyer, R. J. Modifying structure-sensitive reactions by addition of Zn to Pd. J. Catal. 2014, 318, 75–84.
Hannagan, R. T.; Giannakakis, G.; Réocreux, R.; Schumann, J.; Finzel, J.; Wang, Y. C.; Michaelides, A.; Deshlahra, P.; Christopher, P.; Flytzani-Stephanopoulos, M. et al. First-principles design of a single-atom-alloy propane dehydrogenation catalyst. Science 2021, 372, 1444–1447.
Zhang, Y. C.; Yu, Y. C.; Dai, Y.; Zhang, Y. Y.; Liu, Q.; Xiong, D.; Bao, L. X.; Wu, Q.; Shi, D. X.; Chen, K. C. et al. Regulating the C–H bond activation pathway over ZrO2 via doping engineering for propane dehydrogenation. ACS Catal. 2023, 13, 6893–6904.
Sun, G. D.; Zhao, Z. J.; Li, L. L.; Pei, C. L.; Chang, X.; Chen, S.; Zhang, T. T.; Tian, K. G.; Sun, S. J.; Zheng, L. R. et al. Metastable gallium hydride mediates propane dehydrogenation on H2 co-feeding. Nat. Chem. 2024, 16, 575–583.
Rimaz, S.; Chen, L.W.; Monzón, A.; Kawi, S.; Borgna, A. Enhanced selectivity and stability of Pt–Ge/Al2O3 catalysts by Ca promotion in propane dehydrogenation. Chem. Eng. J. 2021, 405, 126656.
Zhang, W.; Wang, H. Z.; Jiang, J. W.; Sui, Z.; Zhu, Y.; Chen, D.; Zhou, X. G. Size dependence of Pt catalysts for propane dehydrogenation: From atomically dispersed to nanoparticles. ACS Catal. 2020, 10, 12932–12942.
Zheng, J. W.; Huang, L. L.; Cui, C. H.; Chen, Z. C.; Liu, X. F.; Duan, X. P.; Cao, X. Y.; Yang, T. Z.; Zhu, H. P.; Shi, K. et al. Ambient-pressure synthesis of ethylene glycol catalyzed by C60-buffered Cu/SiO2. Science 2022, 376, 288–292.
Liu, X. H.; Wang, X. H.; Zhen, S. Y.; Sun, G. D.; Pei, C. L.; Zhao, Z. J.; Gong, J. L. Support stabilized PtCu single-atom alloys for propane dehydrogenation. Chem. Sci. 2022, 13, 9537–9543.