PDF (17.8 MB)
Collect
Submit Manuscript
Research Article | Open Access

Spin-regulated Ni sites with optimal d-orbital occupancy unlocking unprecedented oxygen evolution activity

Bin Li1,§Yanming Yu1,§Yihao Wang1,§Ming Xu1 ()Guanjie Li1Si-Min Xu2Wei Wei3 ()Tingting Cui1 ()
College of Chemistry, Chemical Engineering and Resource Utilization, Center for Innovative Research in Synthetic Chemistry and Resource Utilization, Northeast Forestry University, Harbin 150040, China
College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China

§ Bin Li, Yanming Yu, and Yihao Wang contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
Low-spin state Ni2+ (dxz2dyz2dxy2dx2y22dz20) was successfully constructed in NiCoFe-layered double hydroxide (NiCoFe-LDH), denoted as LS-NCF, through oxygen defect engineering, which enhanced oxygen intermediates adsorption and electron transfer, thereby significantly accelerating oxygen evolution reaction (OER) kinetics.

Abstract

Nickel-based layered double hydroxides (LDHs) are widely recognized as promising substitutes for noble metal catalysts in the oxygen evolution reaction (OER). However, conventional Ni2+ sites exhibit a high-spin configuration (dxz2dyz2dxy2dx2y21dz21) with excessive frontier-orbital occupancy, resulting in weak binding strength toward oxygen intermediates, which dramatically limits their OER performance. Herein, we first report the successful construction of low-spin state Ni2+ (dxz2dyz2dxy2dx2y22dz20) in NiCoFe-LDH (LS-NCF) through oxygen defect engineering. LS-NCF exhibits a splendid OER activity with an ultra-low overpotential of 241 mV at the current density of 1 A·cm−2, which is 79 mV lower than that of the conventional NiCoFe-LDH with high-spin Ni2+ (HS-NCF), significantly outperforming previously reported transition metal-based catalysts. Comprehensive studies reveal that LS Ni2+ with reduced dz2 orbital occupancy effectively enhances oxygen intermediates adsorption through reinforcing the orbital hybridization between Ni 3d and O 2p. Moreover, the d-band center of LS Ni2+ is closer to the Fermi level compared to that of HS Ni2+, thus accelerating electron transfer. Consequently, the strengthened adsorption of *O intermediate and accelerated electron transfer in LS-NCF efficiently lower the reaction energy barrier of the rate-determining step (*O → *OOH), thereby greatly boosting its OER performance. This work provides valuable insights into designing high-performance Ni-based electrocatalysts via spintronic-level engineering.

Electronic Supplementary Material

Download File(s)
7361_ESM.pdf (3.3 MB)

References

[1]

Zhao, S.; Yan, L. T.; Luo, H. M.; Mustain, W.; Xu, H. Recent progress and perspectives of bifunctional oxygen reduction/evolution catalyst development for regenerative anion exchange membrane fuel cells. Nano Energy 2018, 47, 172–198.

[2]

Qin, Y. L.; Yu, K. D.; Wang, G.; Zhuang, Z. C.; Dou, Y. H.; Wang, D. S.; Chen, Z. B. Adjacent-ligand tuning of atomically precise Cu–Pd sites enables efficient methanol electrooxidation with a CO-free pathway. Angew. Chem., Int. Ed. 2025, 64, e202420817.

[3]

Zhuang, J. H.; Wang, D. S. Recent advances of single-atom alloy catalyst: Properties, synthetic methods and electrocatalytic applications. Mater. Today Catal. 2023, 2, 100009.

[4]

Deng, B. H.; Yu, G. Q.; Zhao, W.; Long, Y. Z.; Yang, C.; Du, P.; He, X.; Zhang, Z. T.; Huang, K.; Li, X. B.; Wu, H. A self-circulating pathway for the oxygen evolution reaction. Energy Environ. Sci. 2023, 16, 5210–5219.

[5]

Huang, C. J.; Xu, H. M.; Shuai, T. Y.; Zhan, Q. N.; Zhang, Z. J.; Li, G. R. A review of modulation strategies for improving catalytic performance of transition metal phosphides for oxygen evolution reaction. Appl. Catal. B: Environ. 2023, 325, 122313.

[6]

Gao, Y.; Yang, C. D.; Sun, F. L.; He, D. P.; Wang, X. Q.; Chen, J.; Zheng, X. B.; Liu, R. C.; Pan, H. G.; Wang, D. S. Ligand-tuning metallic sites in molecular complexes for efficient water oxidation. Angew. Chem., Int. Ed. 2025, 64, e202415755.

[7]

Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.

[8]

Li, Y. Y.; Yuan, M. W.; Yang, H.; Shi, K. F.; Sun, Z. M.; Li, H. F.; Nan, C. Y.; Sun, G. B. Quantitative decorating Ni-sites for water-oxidation with the synergy of electronegative sites and high-density spin state. Appl. Catal. B: Environ. 2023, 323, 122167.

[9]

Sun, Y. M.; Sun, S. N.; Yang, H. T.; Xi, S. B.; Gracia, J.; Xu, Z. J. Spin-related electron transfer and orbital interactions in oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003297.

[10]

Yu, M. Q.; Budiyanto, E.; Tüysüz, H. Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202103824.

[11]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[12]

Zhang, Z. M.; Jia, L.; Li, T.; Qian, J. M.; Liang, X. L.; Xue, D. S.; Gao, D. Q. In-situ magnetic field enhanced performances in ferromagnetic FeCo2O4 nanofibers-based rechargeable zinc-air batteries. J. Energy Chem. 2023, 78, 447–453.

[13]

Shen, Z. C.; Qu, M.; Shi, J. L.; Oropeza, F. E.; de la Peña O’Shea, V. A.; Gorni, G.; Tian, C. M.; Hofmann, J. P.; Cheng, J.; Li, J. et al. Correlating the electronic structure of perovskite La1− x Sr x CoO3 with activity for the oxygen evolution reaction: The critical role of Co 3d hole state. J. Energy Chem. 2022, 65, 637–645.

[14]

Ye, Y. T.; Xu, J. C.; Li, X. L.; Jian, Y. Q.; Xie, F. Y.; Chen, J.; Jin, Y. S.; Yu, X.; Lee, M. H.; Wang, N. et al. Orbital occupancy modulation to optimize intermediate absorption for efficient electrocatalysts in water electrolysis and zinc-ethanol-air battery. Adv. Mater. 2024, 36, 2312618.

[15]

Sun, Z. M.; Lin, L.; He, J. L.; Ding, D. J.; Wang, T. Y.; Li, J.; Li, M. X.; Liu, Y. C.; Li, Y. Y.; Yuan, M. W. et al. Regulating the spin state of FeIII enhances the magnetic effect of the molecular catalysis mechanism. J. Am. Chem. Soc. 2022, 144, 8204–8213.

[16]

Zhang, T.; Liu, Y. P.; Tong, L.; Yu, J.; Lin, S. W.; Li, Y.; Fan, H. J. Oxidation state engineering in octahedral Ni by anchored sulfate to boost intrinsic oxygen evolution activity. ACS Nano 2023, 17, 6770–6780.

[17]

Zhou, D. J.; Wang, S. Y.; Jia, Y.; Xiong, X. Y.; Yang, H. B.; Liu, S.; Tang, J. L.; Zhang, J. M.; Liu, D.; Zheng, L. R. et al. NiFe hydroxide lattice tensile strain: Enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis. Angew. Chem., Int. Ed. 2019, 58, 736–740.

[18]

Xu, H. M.; Huang, C. J.; Zhu, H. R.; Zhang, Z. J.; Shuai, T. Y.; Zhan, Q. N.; Fominski, V. Y.; Li, G. R. Amorphous P-CoO X promotes the formation of hypervalent Ni species in NiFe LDHs by amorphous/crystalline interfaces for excellent catalytic performance of oxygen evolution reaction. Small 2024, 20, 2400201.

[19]

Zhao, J. X.; Xue, Z.; Wang, Q.; Li, X. Y.; Liu, S. J.; Zhao, X. Retaining the self-released chalcogenate at reconstructed cobalt sites by self-transformed carbonate regulation for boosted oxygen evolution. J. Energy Chem. 2024, 97, 46–54.

[20]

Wang, S. H.; Liu, X. Y.; Chen, X.; Dastafkan, K.; Fu, Z. H.; Tan, X.; Zhang, Q.; Zhao, C. Super-exchange effect induced by early 3d metal doping on NiFe2O4 (001) surface for oxygen evolution reaction. J. Energy Chem. 2023, 78, 21–29.

[21]

Feng, J. R.; Lv, F.; Zhang, W. Y.; Li, P. H.; Wang, K.; Yang, C.; Wang, B.; Yang, Y.; Zhou, J. H.; Lin, F. et al. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis. Adv. Mater. 2017, 29, 1703798.

[22]

Meng, W. H.; Song, X. D.; Bao, L. R.; Chen, B. B.; Ma, Z.; Zhou, J.; Jiang, Q. K.; Wang, F. Y.; Liu, X.; Shi, C. et al. Synergistic doping and de-doping of Co3O4 catalyst for effortless formaldehyde oxidation. Chem. Eng. J. 2024, 494, 153028.

[23]

Li, L. F.; Zhang, X.; Humayun, M.; Xu, X. F.; Shang, Z. X.; Li, Z. S.; Yuen, M. F.; Hong, C. X.; Chen, Z. H.; Zeng, J. R. et al. Manipulation of electron spins with oxygen vacancy on amorphous/crystalline composite-type catalyst. ACS Nano 2024, 18, 1214–1225.

[24]

Yang, L. L.; He, R.; Botifoll, M.; Zhang, Y. C.; Ding, Y.; Di, C.; He, C. S.; Xu, Y.; Balcells, L.; Arbiol, J. et al. Enhanced oxygen evolution and zinc-air battery performance via electronic spin modulation in heterostructured catalysts. Adv. Mater. 2024, 36, 2400572.

[25]

Bi, X.; Du, G. H.; Kalam, A.; Sun, D. F.; Yu, Y.; Su, Q. M.; Xu, B. S.; Al-Sehemi, A. G. Tuning oxygen vacancy content in TiO2 nanoparticles to enhance the photocatalytic performance. Chem. Eng. Sci. 2021, 234, 116440.

[26]

Louie, M. W.; Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

[27]

Huang, L.; Chen, D. C.; Ding, Y.; Feng, S.; Wang, Z. L.; Liu, M. L. Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2013, 13, 3135–3139.

[28]

Sun, K. J.; Li, W. X.; Feng, Z. C.; Li, C. Resonance raman spectrum of Fe-AlPO4-5 zeolite. Acta Phys.-Chim. Sin. 2009, 25, 606–610.

[29]

Chen, K.; Cao, Y. H.; Yadav, S.; Kim, G. C.; Han, Z.; Wang, W. M.; Zhang, W. J.; Dao, V.; Lee, I. H. Electronic structure reconfiguration of nickel–cobalt layered double hydroxide nanoflakes via engineered heteroatom and oxygen-vacancies defect for efficient electrochemical water splitting. Chem. Eng. J. 2023, 463, 142396.

[30]

Chen, L.; Wang, Y. P.; Zhao, X.; Wang, Y. C.; Li, Q.; Wang, Q. C.; Tang, Y. G.; Lei, Y. P. Trimetallic oxyhydroxides as active sites for large-current-density alkaline oxygen evolution and overall water splitting. J. Mater. Sci. Technol. 2022, 110, 128–135.

[31]

Song, C. Y.; Liu, Y.; Wang, Y. C.; Tang, S. H.; Li, W. K.; Li, Q.; Zeng, J.; Chen, L.; Peng, H. C.; Lei, Y. P. Highly efficient oxygen evolution and stable water splitting by coupling NiFe LDH with metal phosphides. Sci. China Mater. 2021, 64, 1662–1670.

[32]

Frankcombe, T. J.; Liu, Y. Interpretation of oxygen 1s X-ray photoelectron spectroscopy of ZnO. Chem. Mater. 2023, 35, 5468–5474.

[33]

Idriss, H. Oxygen vacancies role in thermally driven and photon driven catalytic reactions. Chem Catalysis 2022, 2, 1549–1560.

[34]

Zhang, L.; Lu, C. J.; Ye, F.; Wu, Z. Y.; Wang, Y. N.; Jiang, L.; Zhang, L.; Cheng, C.; Sun, Z. M.; Hu, L. F. Vacancies boosting strategy enabling enhanced oxygen evolution activity in a library of novel amorphous selenite electrocatalysts. Appl. Catal. B: Environ. 2021, 284, 119758.

[35]

Drouilly, C.; Krafft, J. M.; Averseng, F.; Casale, S.; Bazer-Bachi, D.; Chizallet, C.; Lecocq, V.; Vezin, H.; Lauron-Pernot, H.; Costentin, G. ZnO oxygen vacancies formation and filling followed by in situ photoluminescence and in situ EPR. J. Phys. Chem. C 2012, 116, 21297–21307.

[36]

Liu, C.; Mao, S.; Shi, M. X.; Hong, X. Y.; Wang, D. T.; Wang, F. Y.; Xia, M. Z.; Chen, Q. Enhanced photocatalytic degradation performance of BiVO4/BiOBr through combining Fermi level alteration and oxygen defect engineering. Chem. Eng. J. 2022, 449, 137757.

[37]

Wang, Q. C.; Xue, X. X.; Lei, Y. P.; Wang, Y. C.; Feng, Y. X.; Xiong, X.; Wang, D. S.; Li, Y. D. Engineering of electronic states on Co3O4 ultrathin nanosheets by cation substitution and anion vacancies for oxygen evolution reaction. Small 2020, 16, 2001571.

[38]

Zheng, H. R.; Deng, D. N.; Zheng, X. R.; Chen, Y. B.; Bai, Y.; Liu, M. J.; Jiang, J. B.; Zheng, H. T.; Wang, Y. C.; Wang, J. X. et al. Highly reversible Zn-air batteries enabled by tuned valence electron and steric hindrance on atomic Fe–N4–C sites. Nano Lett. 2024, 24, 4672–4681.

[39]

Tkalych, A. J.; Zhuang, H. L.; Carter, E. A. A density functional + U assessment of oxygen evolution reaction mechanisms on β-NiOOH. ACS Catal. 2017, 7, 5329–5339.

[40]

Santos, J. R. D.; Raimundo, R. A.; Silva, T. R.; Silva, V. D.; Macedo, D. A.; Loureiro, F. J. A.; Torres, M. A. M.; Tonelli, D.; Gomes, U. U. Nanoparticles of mixed-valence oxides Mn X CO3− X O4 (0 ≤ X ≤ 1) obtained with agar-agar from red algae (Rhodophyta) for oxygen evolution reaction. Nanomaterials 2022, 12, 3170.

[41]

Arasu, K. A. S.; Raja, A. G.; Rajaram, R. Ni@Ag core–shell nanoparticles act as efficient photocatalyst for the degradation of sulphur dye in an effluent water and electrocatalyst for water splitting. Inorg. Chem. Commun. 2023, 151, 110620.

[42]

Krishnan, R. R.; Prasannakumar, A. T.; Chandran, S. R.; Prema, K. H. A novel approach for the fabrication of cobalt ferrite and nickel ferrite nanoparticles—Magnetic and electrocatalytic studies. J. Mater. Sci. Mater. Electron. 2022, 33, 17100–17112.

[43]

Pan, L.; Ai, M. H.; Huang, C. Y.; Yin, L.; Liu, X.; Zhang, R. R.; Wang, S. B.; Jiang, Z.; Zhang, X. W.; Zou, J. J. et al. Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nat. Commun. 2020, 11, 418.

[44]

Jing, Q.; Mei, Z. Y.; Sheng, X. L.; Zou, X. X.; Yang, Y. X.; Zhang, C. H.; Wang, L. L.; Sun, Y. J.; Duan, L. Y.; Guo, H. 3D orbital electron engineering in oxygen electrocatalyst for zinc-air batteries. Chem. Eng. J. 2023, 462, 142321.

[45]

Ren, Y. D.; Horiguchi, T.; Uchiyama, T.; Orikasa, Y.; Watanabe, T.; Yamamoto, K.; Takami, T.; Matsunaga, T.; Nishiki, Y.; Mitsushima, S. et al. Quantitative evaluation of the activity of low-spin tetravalent nickel ion sites for the oxygen evolution reaction. ACS Appl. Energy Mater. 2021, 4, 10731–10738.

[46]

Yang, W. L.; Devereaux, T. P. Anionic and cationic redox and interfaces in batteries: Advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. J. Power Sources 2018, 389, 188–197.

[47]

Kim, D.; Lim, W. G.; Kim, Y.; Oh, L. S.; Kim, S.; Park, J. H.; Jo, C.; Kim, H. J.; Kang, J.; Lee, S. et al. Amorphous antimony oxide as reaction pathway modulator toward electrocatalytic glycerol oxidation for selective dihydroxyacetone production. Appl. Catal. B: Environ. 2023, 339, 123104.

[48]

Liu, D. D.; Lu, M. F.; Liu, D. P.; Yan, S. C.; Zhou, W.; Zhang, L. Y.; Zou, Z. G. Heat-triggered ferri-to-paramagnetic transition accelerates redox couple-mediated electrocatalytic water oxidation. Adv. Funct. Mater. 2022, 32, 2111234.

[49]

Jia, H. N.; Yao, N.; Liao, Z. C.; Wu, L. Q.; Zhu, J.; Lao, Y. H.; Luo, W. Understanding the role of spin state in cobalt oxyhydroxides for water oxidation. Angew. Chem., Int. Ed. 2024, 63, e202408005.

[50]

Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876–3879.

[51]

Zhou, J.; Xu, L. L.; Gai, H. Y.; Xu, N.; Ren, Z. C.; Hou, X. B.; Chen, Z. K.; Han, Z. K.; Sarker, D.; Levchenko, S. V. et al. Interpretable data-driven descriptors for establishing the structure–activity relationship of metal–organic frameworks toward oxygen evolution reaction. Angew. Chem., Int. Ed. 2024, 63, e202409449.

[52]

Liu, J. F.; He, Q.; Zou, W. J.; Wu, M. W.; Rego, C. R. C.; Xia, C. X.; Xiong, Y.; Zhao, Y. Modulation of d-orbital interactions in dual-atom catalysts for enhanced polysulfide anchoring and kinetics in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2024, 16, 60180–60188.

[53]

Li, J. Y.; Liu, H. X.; Gou, W. Y.; Zhang, M. K.; Xia, Z. M.; Zhang, S.; Chang, C. R.; Ma, Y. Y.; Qu, Y. Q. Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover. Energy Environ. Sci. 2019, 12, 2298–2304.

[54]

Dhandapani, H. N.; Madhu, R.; De, A.; Salem, M. A.; Ramesh Babu, B.; Kundu, S. Tuning the surface electronic structure of amorphous NiWO4 by doping Fe as an electrocatalyst for OER. Inorg. Chem. 2023, 62, 11817–11828.

[55]

Zhang, Y.; Mu, X. Q.; Liu, Z. Y.; Zhao, H. Y.; Zhuang, Z. C.; Zhang, Y. F.; Mu, S. C.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Twin-distortion modulated ultra-low coordination PtRuNi-O x catalyst for enhanced hydrogen production from chemical wastewater. Nat. Commun. 2024, 15, 10149.

[56]

Mu, X. Q.; Yuan, Y. T.; Yu, M.; Hu, Y. J.; Zeng, W. H.; Peng, W.; Zhang, Y. F.; Liu, X. Y.; Liu, S. L.; Mu, S. C. Robust water/seawater-electrolysis hydrogen production at industrial-scale current densities by modulating built-in-outer electric field of catalytic substance. Nano Energy 2024, 131, 110216.

[57]

Liang, Z. J.; Shen, D.; Wei, Y.; Sun, F. F.; Xie, Y.; Wang, L.; Fu, H. G. Modulating the electronic structure of cobalt–vanadium bimetal catalysts for high-stable anion exchange membrane water electrolyzer. Adv. Mater. 2024, 36, 2408634.

[58]

Ji, W. C.; Shen, Z. M.; Tang, Q. L.; Yang, B. W.; Fan, M. H. A DFT study of Hg0 adsorption on Co3O4 (110) surface. Chem. Eng. J. 2016, 289, 349–355.

[59]

Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched Ru x Fe3− x O4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.

[60]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru–Co dual-single atoms overcome the Volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

Nano Research
Article number: 94907361
Cite this article:
Li B, Yu Y, Wang Y, et al. Spin-regulated Ni sites with optimal d-orbital occupancy unlocking unprecedented oxygen evolution activity. Nano Research, 2025, 18(5): 94907361. https://doi.org/10.26599/NR.2025.94907361
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return