Nickel-based layered double hydroxides (LDHs) are widely recognized as promising substitutes for noble metal catalysts in the oxygen evolution reaction (OER). However, conventional Ni2+ sites exhibit a high-spin configuration (
Zhao, S.; Yan, L. T.; Luo, H. M.; Mustain, W.; Xu, H. Recent progress and perspectives of bifunctional oxygen reduction/evolution catalyst development for regenerative anion exchange membrane fuel cells. Nano Energy 2018, 47, 172–198.
Qin, Y. L.; Yu, K. D.; Wang, G.; Zhuang, Z. C.; Dou, Y. H.; Wang, D. S.; Chen, Z. B. Adjacent-ligand tuning of atomically precise Cu–Pd sites enables efficient methanol electrooxidation with a CO-free pathway. Angew. Chem., Int. Ed. 2025, 64, e202420817.
Zhuang, J. H.; Wang, D. S. Recent advances of single-atom alloy catalyst: Properties, synthetic methods and electrocatalytic applications. Mater. Today Catal. 2023, 2, 100009.
Deng, B. H.; Yu, G. Q.; Zhao, W.; Long, Y. Z.; Yang, C.; Du, P.; He, X.; Zhang, Z. T.; Huang, K.; Li, X. B.; Wu, H. A self-circulating pathway for the oxygen evolution reaction. Energy Environ. Sci. 2023, 16, 5210–5219.
Huang, C. J.; Xu, H. M.; Shuai, T. Y.; Zhan, Q. N.; Zhang, Z. J.; Li, G. R. A review of modulation strategies for improving catalytic performance of transition metal phosphides for oxygen evolution reaction. Appl. Catal. B: Environ. 2023, 325, 122313.
Gao, Y.; Yang, C. D.; Sun, F. L.; He, D. P.; Wang, X. Q.; Chen, J.; Zheng, X. B.; Liu, R. C.; Pan, H. G.; Wang, D. S. Ligand-tuning metallic sites in molecular complexes for efficient water oxidation. Angew. Chem., Int. Ed. 2025, 64, e202415755.
Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.
Li, Y. Y.; Yuan, M. W.; Yang, H.; Shi, K. F.; Sun, Z. M.; Li, H. F.; Nan, C. Y.; Sun, G. B. Quantitative decorating Ni-sites for water-oxidation with the synergy of electronegative sites and high-density spin state. Appl. Catal. B: Environ. 2023, 323, 122167.
Sun, Y. M.; Sun, S. N.; Yang, H. T.; Xi, S. B.; Gracia, J.; Xu, Z. J. Spin-related electron transfer and orbital interactions in oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003297.
Yu, M. Q.; Budiyanto, E.; Tüysüz, H. Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202103824.
Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.
Zhang, Z. M.; Jia, L.; Li, T.; Qian, J. M.; Liang, X. L.; Xue, D. S.; Gao, D. Q. In-situ magnetic field enhanced performances in ferromagnetic FeCo2O4 nanofibers-based rechargeable zinc-air batteries. J. Energy Chem. 2023, 78, 447–453.
Shen, Z. C.; Qu, M.; Shi, J. L.; Oropeza, F. E.; de la Peña O’Shea, V. A.; Gorni, G.; Tian, C. M.; Hofmann, J. P.; Cheng, J.; Li, J. et al. Correlating the electronic structure of perovskite La1− x Sr x CoO3 with activity for the oxygen evolution reaction: The critical role of Co 3d hole state. J. Energy Chem. 2022, 65, 637–645.
Ye, Y. T.; Xu, J. C.; Li, X. L.; Jian, Y. Q.; Xie, F. Y.; Chen, J.; Jin, Y. S.; Yu, X.; Lee, M. H.; Wang, N. et al. Orbital occupancy modulation to optimize intermediate absorption for efficient electrocatalysts in water electrolysis and zinc-ethanol-air battery. Adv. Mater. 2024, 36, 2312618.
Sun, Z. M.; Lin, L.; He, J. L.; Ding, D. J.; Wang, T. Y.; Li, J.; Li, M. X.; Liu, Y. C.; Li, Y. Y.; Yuan, M. W. et al. Regulating the spin state of FeIII enhances the magnetic effect of the molecular catalysis mechanism. J. Am. Chem. Soc. 2022, 144, 8204–8213.
Zhang, T.; Liu, Y. P.; Tong, L.; Yu, J.; Lin, S. W.; Li, Y.; Fan, H. J. Oxidation state engineering in octahedral Ni by anchored sulfate to boost intrinsic oxygen evolution activity. ACS Nano 2023, 17, 6770–6780.
Zhou, D. J.; Wang, S. Y.; Jia, Y.; Xiong, X. Y.; Yang, H. B.; Liu, S.; Tang, J. L.; Zhang, J. M.; Liu, D.; Zheng, L. R. et al. NiFe hydroxide lattice tensile strain: Enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis. Angew. Chem., Int. Ed. 2019, 58, 736–740.
Xu, H. M.; Huang, C. J.; Zhu, H. R.; Zhang, Z. J.; Shuai, T. Y.; Zhan, Q. N.; Fominski, V. Y.; Li, G. R. Amorphous P-CoO X promotes the formation of hypervalent Ni species in NiFe LDHs by amorphous/crystalline interfaces for excellent catalytic performance of oxygen evolution reaction. Small 2024, 20, 2400201.
Zhao, J. X.; Xue, Z.; Wang, Q.; Li, X. Y.; Liu, S. J.; Zhao, X. Retaining the self-released chalcogenate at reconstructed cobalt sites by self-transformed carbonate regulation for boosted oxygen evolution. J. Energy Chem. 2024, 97, 46–54.
Wang, S. H.; Liu, X. Y.; Chen, X.; Dastafkan, K.; Fu, Z. H.; Tan, X.; Zhang, Q.; Zhao, C. Super-exchange effect induced by early 3d metal doping on NiFe2O4 (001) surface for oxygen evolution reaction. J. Energy Chem. 2023, 78, 21–29.
Feng, J. R.; Lv, F.; Zhang, W. Y.; Li, P. H.; Wang, K.; Yang, C.; Wang, B.; Yang, Y.; Zhou, J. H.; Lin, F. et al. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis. Adv. Mater. 2017, 29, 1703798.
Meng, W. H.; Song, X. D.; Bao, L. R.; Chen, B. B.; Ma, Z.; Zhou, J.; Jiang, Q. K.; Wang, F. Y.; Liu, X.; Shi, C. et al. Synergistic doping and de-doping of Co3O4 catalyst for effortless formaldehyde oxidation. Chem. Eng. J. 2024, 494, 153028.
Li, L. F.; Zhang, X.; Humayun, M.; Xu, X. F.; Shang, Z. X.; Li, Z. S.; Yuen, M. F.; Hong, C. X.; Chen, Z. H.; Zeng, J. R. et al. Manipulation of electron spins with oxygen vacancy on amorphous/crystalline composite-type catalyst. ACS Nano 2024, 18, 1214–1225.
Yang, L. L.; He, R.; Botifoll, M.; Zhang, Y. C.; Ding, Y.; Di, C.; He, C. S.; Xu, Y.; Balcells, L.; Arbiol, J. et al. Enhanced oxygen evolution and zinc-air battery performance via electronic spin modulation in heterostructured catalysts. Adv. Mater. 2024, 36, 2400572.
Bi, X.; Du, G. H.; Kalam, A.; Sun, D. F.; Yu, Y.; Su, Q. M.; Xu, B. S.; Al-Sehemi, A. G. Tuning oxygen vacancy content in TiO2 nanoparticles to enhance the photocatalytic performance. Chem. Eng. Sci. 2021, 234, 116440.
Louie, M. W.; Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.
Huang, L.; Chen, D. C.; Ding, Y.; Feng, S.; Wang, Z. L.; Liu, M. L. Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2013, 13, 3135–3139.
Sun, K. J.; Li, W. X.; Feng, Z. C.; Li, C. Resonance raman spectrum of Fe-AlPO4-5 zeolite. Acta Phys.-Chim. Sin. 2009, 25, 606–610.
Chen, K.; Cao, Y. H.; Yadav, S.; Kim, G. C.; Han, Z.; Wang, W. M.; Zhang, W. J.; Dao, V.; Lee, I. H. Electronic structure reconfiguration of nickel–cobalt layered double hydroxide nanoflakes via engineered heteroatom and oxygen-vacancies defect for efficient electrochemical water splitting. Chem. Eng. J. 2023, 463, 142396.
Chen, L.; Wang, Y. P.; Zhao, X.; Wang, Y. C.; Li, Q.; Wang, Q. C.; Tang, Y. G.; Lei, Y. P. Trimetallic oxyhydroxides as active sites for large-current-density alkaline oxygen evolution and overall water splitting. J. Mater. Sci. Technol. 2022, 110, 128–135.
Song, C. Y.; Liu, Y.; Wang, Y. C.; Tang, S. H.; Li, W. K.; Li, Q.; Zeng, J.; Chen, L.; Peng, H. C.; Lei, Y. P. Highly efficient oxygen evolution and stable water splitting by coupling NiFe LDH with metal phosphides. Sci. China Mater. 2021, 64, 1662–1670.
Frankcombe, T. J.; Liu, Y. Interpretation of oxygen 1s X-ray photoelectron spectroscopy of ZnO. Chem. Mater. 2023, 35, 5468–5474.
Idriss, H. Oxygen vacancies role in thermally driven and photon driven catalytic reactions. Chem Catalysis 2022, 2, 1549–1560.
Zhang, L.; Lu, C. J.; Ye, F.; Wu, Z. Y.; Wang, Y. N.; Jiang, L.; Zhang, L.; Cheng, C.; Sun, Z. M.; Hu, L. F. Vacancies boosting strategy enabling enhanced oxygen evolution activity in a library of novel amorphous selenite electrocatalysts. Appl. Catal. B: Environ. 2021, 284, 119758.
Drouilly, C.; Krafft, J. M.; Averseng, F.; Casale, S.; Bazer-Bachi, D.; Chizallet, C.; Lecocq, V.; Vezin, H.; Lauron-Pernot, H.; Costentin, G. ZnO oxygen vacancies formation and filling followed by in situ photoluminescence and in situ EPR. J. Phys. Chem. C 2012, 116, 21297–21307.
Liu, C.; Mao, S.; Shi, M. X.; Hong, X. Y.; Wang, D. T.; Wang, F. Y.; Xia, M. Z.; Chen, Q. Enhanced photocatalytic degradation performance of BiVO4/BiOBr through combining Fermi level alteration and oxygen defect engineering. Chem. Eng. J. 2022, 449, 137757.
Wang, Q. C.; Xue, X. X.; Lei, Y. P.; Wang, Y. C.; Feng, Y. X.; Xiong, X.; Wang, D. S.; Li, Y. D. Engineering of electronic states on Co3O4 ultrathin nanosheets by cation substitution and anion vacancies for oxygen evolution reaction. Small 2020, 16, 2001571.
Zheng, H. R.; Deng, D. N.; Zheng, X. R.; Chen, Y. B.; Bai, Y.; Liu, M. J.; Jiang, J. B.; Zheng, H. T.; Wang, Y. C.; Wang, J. X. et al. Highly reversible Zn-air batteries enabled by tuned valence electron and steric hindrance on atomic Fe–N4–C sites. Nano Lett. 2024, 24, 4672–4681.
Tkalych, A. J.; Zhuang, H. L.; Carter, E. A. A density functional + U assessment of oxygen evolution reaction mechanisms on β-NiOOH. ACS Catal. 2017, 7, 5329–5339.
Santos, J. R. D.; Raimundo, R. A.; Silva, T. R.; Silva, V. D.; Macedo, D. A.; Loureiro, F. J. A.; Torres, M. A. M.; Tonelli, D.; Gomes, U. U. Nanoparticles of mixed-valence oxides Mn X CO3− X O4 (0 ≤ X ≤ 1) obtained with agar-agar from red algae (Rhodophyta) for oxygen evolution reaction. Nanomaterials 2022, 12, 3170.
Arasu, K. A. S.; Raja, A. G.; Rajaram, R. Ni@Ag core–shell nanoparticles act as efficient photocatalyst for the degradation of sulphur dye in an effluent water and electrocatalyst for water splitting. Inorg. Chem. Commun. 2023, 151, 110620.
Krishnan, R. R.; Prasannakumar, A. T.; Chandran, S. R.; Prema, K. H. A novel approach for the fabrication of cobalt ferrite and nickel ferrite nanoparticles—Magnetic and electrocatalytic studies. J. Mater. Sci. Mater. Electron. 2022, 33, 17100–17112.
Pan, L.; Ai, M. H.; Huang, C. Y.; Yin, L.; Liu, X.; Zhang, R. R.; Wang, S. B.; Jiang, Z.; Zhang, X. W.; Zou, J. J. et al. Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nat. Commun. 2020, 11, 418.
Jing, Q.; Mei, Z. Y.; Sheng, X. L.; Zou, X. X.; Yang, Y. X.; Zhang, C. H.; Wang, L. L.; Sun, Y. J.; Duan, L. Y.; Guo, H. 3D orbital electron engineering in oxygen electrocatalyst for zinc-air batteries. Chem. Eng. J. 2023, 462, 142321.
Ren, Y. D.; Horiguchi, T.; Uchiyama, T.; Orikasa, Y.; Watanabe, T.; Yamamoto, K.; Takami, T.; Matsunaga, T.; Nishiki, Y.; Mitsushima, S. et al. Quantitative evaluation of the activity of low-spin tetravalent nickel ion sites for the oxygen evolution reaction. ACS Appl. Energy Mater. 2021, 4, 10731–10738.
Yang, W. L.; Devereaux, T. P. Anionic and cationic redox and interfaces in batteries: Advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. J. Power Sources 2018, 389, 188–197.
Kim, D.; Lim, W. G.; Kim, Y.; Oh, L. S.; Kim, S.; Park, J. H.; Jo, C.; Kim, H. J.; Kang, J.; Lee, S. et al. Amorphous antimony oxide as reaction pathway modulator toward electrocatalytic glycerol oxidation for selective dihydroxyacetone production. Appl. Catal. B: Environ. 2023, 339, 123104.
Liu, D. D.; Lu, M. F.; Liu, D. P.; Yan, S. C.; Zhou, W.; Zhang, L. Y.; Zou, Z. G. Heat-triggered ferri-to-paramagnetic transition accelerates redox couple-mediated electrocatalytic water oxidation. Adv. Funct. Mater. 2022, 32, 2111234.
Jia, H. N.; Yao, N.; Liao, Z. C.; Wu, L. Q.; Zhu, J.; Lao, Y. H.; Luo, W. Understanding the role of spin state in cobalt oxyhydroxides for water oxidation. Angew. Chem., Int. Ed. 2024, 63, e202408005.
Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876–3879.
Zhou, J.; Xu, L. L.; Gai, H. Y.; Xu, N.; Ren, Z. C.; Hou, X. B.; Chen, Z. K.; Han, Z. K.; Sarker, D.; Levchenko, S. V. et al. Interpretable data-driven descriptors for establishing the structure–activity relationship of metal–organic frameworks toward oxygen evolution reaction. Angew. Chem., Int. Ed. 2024, 63, e202409449.
Liu, J. F.; He, Q.; Zou, W. J.; Wu, M. W.; Rego, C. R. C.; Xia, C. X.; Xiong, Y.; Zhao, Y. Modulation of d-orbital interactions in dual-atom catalysts for enhanced polysulfide anchoring and kinetics in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2024, 16, 60180–60188.
Li, J. Y.; Liu, H. X.; Gou, W. Y.; Zhang, M. K.; Xia, Z. M.; Zhang, S.; Chang, C. R.; Ma, Y. Y.; Qu, Y. Q. Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover. Energy Environ. Sci. 2019, 12, 2298–2304.
Dhandapani, H. N.; Madhu, R.; De, A.; Salem, M. A.; Ramesh Babu, B.; Kundu, S. Tuning the surface electronic structure of amorphous NiWO4 by doping Fe as an electrocatalyst for OER. Inorg. Chem. 2023, 62, 11817–11828.
Zhang, Y.; Mu, X. Q.; Liu, Z. Y.; Zhao, H. Y.; Zhuang, Z. C.; Zhang, Y. F.; Mu, S. C.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Twin-distortion modulated ultra-low coordination PtRuNi-O x catalyst for enhanced hydrogen production from chemical wastewater. Nat. Commun. 2024, 15, 10149.
Mu, X. Q.; Yuan, Y. T.; Yu, M.; Hu, Y. J.; Zeng, W. H.; Peng, W.; Zhang, Y. F.; Liu, X. Y.; Liu, S. L.; Mu, S. C. Robust water/seawater-electrolysis hydrogen production at industrial-scale current densities by modulating built-in-outer electric field of catalytic substance. Nano Energy 2024, 131, 110216.
Liang, Z. J.; Shen, D.; Wei, Y.; Sun, F. F.; Xie, Y.; Wang, L.; Fu, H. G. Modulating the electronic structure of cobalt–vanadium bimetal catalysts for high-stable anion exchange membrane water electrolyzer. Adv. Mater. 2024, 36, 2408634.
Ji, W. C.; Shen, Z. M.; Tang, Q. L.; Yang, B. W.; Fan, M. H. A DFT study of Hg0 adsorption on Co3O4 (110) surface. Chem. Eng. J. 2016, 289, 349–355.
Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched Ru x Fe3− x O4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.
Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru–Co dual-single atoms overcome the Volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.