Active oxygen radicals (OH*/O*/OOH*) generated from oxygen evolution reaction (OER) play a crucial role in facilitating the electrooxidation of organic compounds into high value-added chemicals. However, constructing atomically precise active sites with a specific function to catalyze water-coupled electrooxidation reactions in a tandem system still confronts a great challenge. Herein, we propose a novel water-participating benzyl alcohol electrooxidation tandem process by constructing homogeneous isolated Fe–Pt dual-atom site catalysts on CoOOH nanosheet arrays (FePt DAC). The Fe and Pt dual atomic sites synergistically deliver excellent benzyl alcohol oxidation reaction activity with a high current density of 1500 mA·cm−2 at a low potential of 1.49 V (vs. reversible hydrogen electrode (RHE)) and remarkable long-term durability without obvious attenuation after 530 h operation. In-situ Fourier-transform infrared spectroscopy, isotopic tracing experiment, and detailed theoretical calculations further reveal the tandem mechanism, in which the in-situ generated O* species on the Fe site through OER process serve as key intermediates that bridge the subsequent electrochemical benzyl alcohol oxidation on neighboring Pt site. This coupled oxidation mechanism turns competitive OER process into mutual benefits and provides insights to achieve directional transformation of chemical bonds via construction of collaborative dual atomic sites.
Shih, A. J.; Monteiro, M. C. O.; Dattila, F.; Pavesi, D.; Philips, M.; da Silva, A. H. M.; Vos, R. E.; Ojha, K.; Park, S.; van der Heijden, O. et al. Water electrolysis. Nat. Rev. Methods Primers 2022, 2, 84.
Zhang, H. H.; Fu, Y.; Nguyen, H. T.; Fox, B.; Lee, J. H.; Lau, A. K. T.; Zheng, H.; Lin, H.; Ma, T. Y.; Jia, B. H. Material challenges in green hydrogen ecosystem. Coord. Chem. Rev. 2023, 494, 215272.
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
Wang, X. L.; Xiao, H.; Li, A.; Li, Z.; Liu, S. J.; Zhang, Q. H.; Gong, Y.; Zheng, L. R.; Zhu, Y. Q.; Chen, C. et al. Constructing NiCo/Fe3O4 heteroparticles within MOF-74 for efficient oxygen evolution reactions. J. Am. Chem. Soc. 2018, 140, 15336–15341.
Mu, X. Q.; Yuan, Y. T.; Yu, M.; Hu, Y. J.; Zeng, W. H.; Peng, W.; Zhang, Y. F.; Liu, X. Y.; Liu, S. L.; Mu, S. C. Robust water/seawater-electrolysis hydrogen production at industrial-scale current densities by modulating built-in-outer electric field of catalytic substance. Nano Energy 2024, 131, 110216.
Zhang, H. C.; Li, C. S.; Lu, Q.; Cheng, M. J.; Goddard III, W. A. Selective activation of propane using intermediates generated during water oxidation. J. Am. Chem. Soc. 2021, 143, 3967–3974.
Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.
Liu, F. L.; Gao, X. T.; Shi, R.; Guo, Z. X.; Tse, E. C. M.; Chen, Y. Concerted and selective electrooxidation of polyethylene-terephthalate-derived alcohol to glycolic acid at an industry-level current density over a Pd–Ni(OH)2 catalyst. Angew. Chem., Int. Ed. 2023, 62, e202300094.
Zhang, Y.; Mu, X. Q.; Liu, Z. Y.; Zhao, H. Y.; Zhuang, Z. C.; Zhang, Y. F.; Mu, S. C.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Twin-distortion modulated ultra-low coordination PtRuNi–O x catalyst for enhanced hydrogen production from chemical wastewater. Nat. Commun. 2024, 15, 10149.
Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched Ru x Fe3− x O4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.
Zhou, H.; Li, Z. H.; Xu, S. M.; Lu, L. L.; Xu, M.; Ji, K. Y.; Ge, R. X.; Yan, Y. F.; Ma, L. N.; Kong, X. G. et al. Selectively upgrading lignin derivatives to carboxylates through electrochemical oxidative C(OH)–C bond cleavage by a Mn-doped cobalt oxyhydroxide catalyst. Angew. Chem., Int. Ed. 2021, 60, 8976–8982.
Chen, Y. X.; Lavacchi, A.; Miller, H. A.; Bevilacqua, M.; Filippi, J.; Innocenti, M.; Marchionni, A.; Oberhauser, W.; Wang, L.; Vizza, F. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Nat. Commun. 2014, 5, 4036.
Zhao, Y. K.; Deng, C. Y.; Tang, D. J.; Ding, L. Y.; Zhang, Y. C.; Sheng, H.; Ji, H. W.; Song, W. J.; Ma, W. H.; Chen, C. C. et al. α-Fe2O3 as a versatile and efficient oxygen atom transfer catalyst in combination with H2O as the oxygen source. Nat. Catal. 2021, 4, 684–691.
Lu, Y. X.; Chen, M. Y.; Wang, Y. Q.; Yang, C. M.; Zou, Y. Q.; Wang, S. Y. Aqueous electrocatalytic small-molecule valorization trilogy. Chem 2024, 10, 1371–1390.
Liu, C. B.; Chen, F. P.; Zhao, B. H.; Wu, Y. M.; Zhang, B. Electrochemical hydrogenation and oxidation of organic species involving water. Nat. Rev. Chem. 2024, 8, 277–293.
Huang, H. L.; Yu, C.; Han, X. T.; Huang, H. W.; Wei, Q. B.; Guo, W.; Wang, Z.; Qiu, J. S. Ni, Co hydroxide triggers electrocatalytic production of high-purity benzoic acid over 400 mA·cm−2. Energy Environ. Sci. 2020, 13, 4990–4999.
Qin, Y. L.; Yu, K. D.; Wang, G.; Zhuang, Z. C.; Dou, Y. H.; Wang, D. S.; Chen, Z. B. Adjacent-ligand tuning of atomically precise Cu–Pd sites enables efficient methanol electrooxidation with a CO-free pathway. Angew. Chem., Int. Ed. 2025, 64, e202420817.
Li, Z. H.; Yan, Y. F.; Xu, S. M.; Zhou, H.; Xu, M.; Ma, L. N.; Shao, M. F.; Kong, X. G.; Wang, B.; Zheng, L. R. et al. Alcohols electrooxidation coupled with H2 production at high current densities promoted by a cooperative catalyst. Nat. Commun. 2022, 13, 147.
Yin, Z.; Zheng, Y. M.; Wang, H.; Li, J. X.; Zhu, Q. J.; Wang, Y.; Ma, N.; Hu, G.; He, B. Q.; Knop-Gericke, A. et al. Engineering interface with one-dimensional Co3O4 nanostructure in catalytic membrane electrode: Toward an advanced electrocatalyst for alcohol oxidation. ACS Nano 2017, 11, 12365–12377.
Chen, W.; Xie, C.; Wang, Y. Y.; Zou, Y. Q.; Dong, C. L.; Huang, Y. C.; Xiao, Z. H.; Wei, Z. X.; Du, S. Q.; Chen, C. et al. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem 2020, 6, 2974–2993.
Bender, M. T.; Lam, Y. C.; Hammes-Schiffer, S.; Choi, K. S. Unraveling two pathways for electrochemical alcohol and aldehyde oxidation on NiOOH. J. Am. Chem. Soc. 2020, 142, 21538–21547.
Li, Y. P.; Niu, S. W.; Liu, P. G.; Pan, R. R.; Zhang, H. K.; Ahmad, N.; Shi, Y.; Liang, X.; Cheng, M. Y.; Chen, S. H. et al. Ruthenium nanoclusters and single atoms on α-MoC/N-doped carbon achieves low-input/input-free hydrogen evolution via decoupled/coupled hydrazine oxidation. Angew. Chem., Int. Ed. 2024, 63, e202316755.
Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.
Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.
Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.
Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.
Zhuang, J. H.; Wang, D. S. Recent advances of single-atom alloy catalyst: Properties, synthetic methods and electrocatalytic applications. Mater. Today Catal. 2023, 2, 100009.
Ying, Y. R.; Luo, X.; Qiao, J. L.; Huang, H. T. “More is different:” Synergistic effect and structural engineering in double-atom catalysts. Adv. Funct. Mater. 2021, 31, 2007423.
Wang, X. L.; Fu, N. H.; Liu, J. C.; Yu, K.; Li, Z.; Xu, Z. F.; Liang, X.; Zhu, P.; Ye, C. L.; Zhou, A. et al. Atomic replacement of PtNi nanoalloys within Zn-ZIF-8 for the fabrication of a multisite CO2 reduction electrocatalyst. J. Am. Chem. Soc. 2022, 144, 23223–23229.
Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.
Wang, Y.; Ma, F. Y.; Zhang, G. Q.; Zhang, J. W.; Zhao, H.; Dong, Y. M.; Wang, D. S. Precise synthesis of dual atom sites for electrocatalysis. Nano Res. 2024, 17, 9397–9427.
Wang, L. G.; Su, H.; Tan, G. Y.; Xin, J. J.; Wang, X. G.; Zhang, Z.; Li, Y. P.; Qiu, Y.; Li, X. H.; Li, H. S. et al. Boosting efficient and sustainable alkaline water oxidation on a W-CoOOH-TT pair-sites catalyst synthesized via topochemical transformation. Adv. Mater. 2024, 36, 2302642.
Gao, Y.; Yang, C. D.; Sun, F. L.; He, D. P.; Wang, X. Q.; Chen, J.; Zheng, X. B.; Liu, R. C.; Pan, H. G.; Wang, D. S. Ligand-tuning metallic sites in molecular complexes for efficient water oxidation. Angew. Chem., Int. Ed. 2025, 64, e202415755.
Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru–Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.
Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.
Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.
Zhang, W. Y.; Chao, Y. G.; Zhang, W. S.; Zhou, J. H.; Lv, F.; Wang, K.; Lin, F. X.; Luo, H.; Li, J.; Tong, M. P. et al. Emerging dual-atomic-site catalysts for efficient energy catalysis. Adv. Mater. 2021, 33, 2102576.
Sun, M. Z.; Wong, H. H.; Wu, T.; Dougherty, A. W.; Huang, B. L. Stepping out of transition metals: Activating the dual atomic catalyst through main group elements. Adv. Energy Mater. 2021, 11, 2101404.
Zhu, P.; Xiong, X.; Wang, D. S.; Li, Y. D. Advances and regulation strategies of the active moiety in dual-atom site catalysts for efficient electrocatalysis. Adv. Energy Mater. 2023, 13, 2300884.
Wang, L. G.; Su, H.; Zhang, Z.; Xin, J. J.; Liu, H.; Wang, X. G.; Yang, C. Y.; Liang, X.; Wang, S. W.; Liu, H. et al. Co–Co dinuclear active sites dispersed on zirconium-doped heterostructured Co9S8/Co3O4 for high-current-density and durable acidic oxygen evolution. Angew. Chem., Int. Ed. 2023, 62, e202314185.
Wang, J.; Liu, W.; Luo, G.; Li, Z. J.; Zhao, C.; Zhang, H. R.; Zhu, M. Z.; Xu, Q.; Wang, X. Q.; Zhao, C. M. et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 2018, 11, 3375–3379.
Kim, U. B.; Jung, D. J.; Jeon, H. J.; Rathwell, K.; Lee, S. G. Synergistic dual transition metal catalysis. Chem. Rev. 2020, 120, 13382–13433.
Hu, Y. F.; Li, Z. S.; Li, B. L.; Yu, C. L. Recent progress of diatomic catalysts: General design fundamentals and diversified catalytic applications. Small 2022, 18, 2203589.
Li, Y. Z.; Wei, B.; Zhu, M. H.; Chen, J. C.; Jiang, Q. K.; Yang, B.; Hou, Y.; Lei, L. C.; Li, Z. J.; Zhang, R. F. et al. Synergistic effect of atomically dispersed Ni–Zn pair sites for enhanced CO2 electroreduction. Adv. Mater. 2021, 33, 2102212.
Sun, Y. F.; Sun, Z. H.; Gao, S.; Cheng, H.; Liu, Q. H.; Piao, J. Y.; Yao, T.; Wu, C. Z.; Hu, S. L.; Wei, S. Q. et al. Fabrication of flexible and freestanding zinc chalcogenide single layers. Nat. Commun. 2012, 3, 1057.
Feng, C.; Zhang, Z. R.; Wang, D. D.; Kong, Y.; Wei, J.; Wang, R. Y.; Ma, P. Y.; Li, H. L.; Geng, Z. G.; Zuo, M. et al. Tuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution. J. Am. Chem. Soc. 2022, 144, 9271–9279.
Moysiadou, A.; Lee, S.; Hsu, C. S.; Chen, H. M.; Hu, X. L. Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: Cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step. J. Am. Chem. Soc. 2020, 142, 11901–11914.
Zhang, T. Y.; Jiang, J. J.; Sun, W. M.; Gong, S. Y.; Liu, X. W.; Tian, Y.; Wang, D. S. Spatial configuration of Fe–Co dual-sites boosting catalytic intermediates coupling toward oxygen evolution reaction. Proc. Natl. Acad. Sci. USA 2024, 121, e2317247121.
Chen, W.; Wang, Y. Y.; Wu, B. B.; Shi, J. Q.; Li, Y. Y.; Xu, L. T.; Xie, C.; Zhou, W.; Huang, Y. C.; Wang, T. H. et al. Activated Ni–OH bonds in a catalyst facilitates the nucleophile oxidation reaction. Adv. Mater. 2022, 34, 2105320.
Qi, Y. B.; Zhang, Y.; Yang, L.; Zhao, Y. H.; Zhu, Y. H.; Jiang, H. L.; Li, C. Z. Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation. Nat. Commun. 2022, 13, 4602.
Wang, H. Y.; Hung, S. F.; Chen, H. Y.; Chan, T. S.; Chen, H. M.; Liu, B. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 2016, 138, 36–39.
Zheng, X. B.; Chen, Y. P.; Zheng, X. S.; Zhao, G. Q.; Rui, K.; Li, P.; Xu, X.; Cheng, Z. X.; Dou, S. X.; Sun, W. P. Electronic structure engineering of LiCoO2 toward enhanced oxygen electrocatalysis. Adv. Energy Mater. 2019, 9, 1803482.
Li, R. C.; Kuang, P. Y.; Wageh, S.; Al-Ghamdi, A. A.; Tang, H. L.; Yu, J. G. Potential-dependent reconstruction of Ni-based cuboid arrays for highly efficient hydrogen evolution coupled with electro-oxidation of organic compound. Chem. Eng. J. 2023, 453, 139797.
Huang, Y.; Wang, Z. Y.; Xiao, H.; Liu, Q. D.; Wang, X. Activating and stabilizing lattice oxygen via self-adaptive Zn–NiOOH sub-nanowires for oxygen evolution reaction. J. Am. Chem. Soc. 2024, 146, 29006–29016.
Zhu, K. Y.; Zhu, X. F.; Yang, W. S. Application of in-situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem., Int. Ed. 2019, 58, 1252–1265.
Hu, Y.; Zheng, Y.; Jin, J.; Wang, Y. T.; Peng, Y.; Yin, J.; Shen, W.; Hou, Y. C.; Zhu, L.; An, L. et al. Understanding the sulphur–oxygen exchange process of metal sulphides prior to oxygen evolution reaction. Nat. Commun. 2023, 14, 1949.
Sun, X.; Zhang, X. X.; Li, Y. L.; Xu, Y. Z.; Su, H.; Che, W.; He, J. F.; Zhang, H.; Liu, M. H.; Zhou, W. L. et al. In-situ construction of flexible V–Ni redox centers over Ni-based MOF nanosheet arrays for electrochemical water oxidation. Small Methods 2021, 5, 2100573.
Li, Y. L.; Cheng, W. R.; Su, H.; Zhao, X.; He, J. F.; Liu, Q. H. Operando infrared spectroscopic insights into the dynamic evolution of liquid–solid (photo)electrochemical interfaces. Nano Energy 2020, 77, 105121.
Liao, P. L.; Keith, J. A.; Carter, E. A. Water oxidation on pure and doped hematite (0001) surfaces: Prediction of Co and Ni as effective dopants for electrocatalysis. J. Am. Chem. Soc. 2012, 134, 13296–13309.
Viswanathan, V.; Hansen, H. A.; Nørskov, J. K. Selective electrochemical generation of hydrogen peroxide from water oxidation. J. Phys. Chem. Lett. 2015, 6, 4224–4228.
Xia, C.; Back, S.; Ringe, S.; Jiang, K.; Chen, F. H.; Sun, X. M.; Siahrostami, S.; Chan, K. R.; Wang, H. T. Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide. Nat. Catal. 2020, 3, 125–134.
Wang, K. P.; Huang, J. S.; Hu, J. G.; Wu, M.; Liao, Y. H.; Yang, S.; Li, H. Visible light-switchable lattice oxygen sites for selective C–H and C(O)–C bond electrooxidation. Angew. Chem., Int. Ed. 2024, 63, e202410555.
Luo, D. C.; Tang, Z. Y.; Yu, X. Y.; Zhang, T.; Chang, C. R.; Hu, Z. Revealing the ZrO2 crystal effect of Pd/ZrO2 catalyst for toluene combustion: A combined DRIFTS and DFT study. Appl. Catal. B Environ. 2023, 339, 123117.
Dang, K.; Dong, H. L.; Wang, L. G.; Jiang, M.; Jiang, S.; Sun, W. M.; Wang, D. S.; Tian, Y. Boosting electrochemical styrene transformation via tandem water oxidation over a single-atom Cr1/CoSe2 catalyst. Adv. Mater. 2022, 34, 2200302.