PDF (22.4 MB)
Collect
Submit Manuscript
Research Article | Open Access

Enhancement of active sites and stability by ion exchange in 3D ZIF-L for electrochemical energy storage

Xianlin Shi1Yibo Lu1Guangxun Zhang1Feng Xu1Zheng Liu1 ()Huan Pang1,2 ()
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China
Show Author Information

Graphical Abstract

View original image Download original image
The three-dimensional (3D) zeolitic imidazolate framework-L (ZIF-L) constructs a hollow structure through metal ion exchange, increasing the surface active sites and simultaneously significantly enhancing its electrochemical performance and stability.

Abstract

The practical application of metal–organic frameworks (MOFs) for energy storage is faced with great challenges, such as poor structural stability and limited active sites. Herein, we have co-designed a three-dimensional (3D) self-assembled hexagonal zeolitic imidazolate framework-L (ZIF-L) structure with a 3D conformation that greatly reduces the self-aggregation of two-dimensional (2D) layered materials. Due to the rational design of the specific morphology and atomically different coordination abilities of Ni2+ and Co2+ in the framework, the micro-nano electric field is constructed, and the structural stability and electrochemistry reaction activity of ZIF-L are obviously improved. Moreover, the consecutive hollow structure is also formed by regulating the Ni–Co ratio, which can significantly enhance the specific capacitance and cycling stability of the Ni-ZIF-L electrode through the formation of fast electrolyte ions transfer channels. Consequently, the Ni-ZIF-L-40 electrode exhibits a high specific capacity (568.9 F·g−1 at 0.5 A·g−1) and long cycle stability (89.5% retention after 5000 cycles at 5 A·g−1). In addition, the Ni-ZIF-L-40//activated carbon (AC) asymmetric supercapacitor assembled using AC also shows an excellent cycling stability (91.1% retention after 4000 cycles at 5 A·g−1). This study may open a new window for the practical application of intrinsic MOFs-based electrodes for energy storage and conversion.

Electronic Supplementary Material

Download File(s)
7379_ESM.pdf (5.8 MB)

References

[1]

Jo, Y. M.; Jo, Y. K.; Lee, J. H.; Jang, H. W.; Hwang, I. S.; Yoo, D. J. MOF-based chemiresistive gas sensors: Toward new functionalities. Adv. Mater. 2023, 35, 2206842.

[2]

Du, R.; Wu, Y. F.; Yang, Y. C.; Zhai, T. T.; Zhou, T.; Shang, Q. Y.; Zhu, L. H.; Shang, C. X.; Guo, Z. X. Porosity engineering of MOF-based materials for electrochemical energy storage. Adv. Energy Mater. 2021, 11, 2100154.

[3]

Yang, D. W.; Liang, Z. F.; Tang, P. Y.; Zhang, C. Q.; Tang, M. X.; Li, Q. Z.; Biendicho, J. J.; Li, J. S.; Heggen, M.; Dunin-Borkowski, R. E. et al. A high conductivity 1D π–d conjugated metal–organic framework with efficient polysulfide trapping-diffusion-catalysis in lithium–sulfur batteries. Adv. Mater. 2022, 34, 2108835.

[4]

Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal–organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.

[5]

Xu, H. Y.; Geng, P. B.; Feng, W. C.; Du, M.; Kang, D. J.; Pang, H. Recent advances in metal–organic frameworks for electrochemical performance of batteries. Nano Res. 2024, 17, 3472–3492.

[6]
Yang, H.; Zhang, G. X.; Sun, Y. Y.; Zhou, H. J.; Pang, H. Bimetallic zeolitic imidazolate framework derived hollow layered double hydroxide with tailorable interlayer spacing for nickel–zinc batteries. Chin. Chem. Lett., in press, DOI: 10.1016/j.cclet.2024.110016.
[7]

Li, K.; Zhao, Y. C.; Yang, J.; Gu, J. L. Nanoemulsion-directed growth of MOFs with versatile architectures for the heterogeneous regeneration of coenzymes. Nat. Commun. 2022, 13, 1879.

[8]

Bai, Y.; Liu, C. L.; Shan, Y. Y.; Chen, T. T.; Zhao, Y.; Yu, C.; Pang, H. Metal–organic frameworks nanocomposites with different dimensionalities for energy conversion and storage. Adv. Energy Mater. 2022, 12, 2100346.

[9]

Li, X. R.; Li, Y. P.; Wang, C. L.; Xue, H. G.; Pang, H.; Xu, Q. A 3D hierarchical electrocatalyst: Core–shell Cu@Cu(OH)2 nanorods/MOF octahedra supported on N-doped carbon for oxygen evolution reaction. Nano Res. 2023, 16, 8012–8017.

[10]

Bhattarai, R. M.; Chhetri, K.; Le, N.; Acharya, D.; Saud, S.; Nguyen, M. C. H. P. L.; Kim, S. J.; Mok, Y. S. Oxygen functionalization-assisted anionic exchange toward unique construction of flower-like transition metal chalcogenide embedded carbon fabric for ultra-long life flexible energy storage and conversion. Carbon Energy 2024, 6, e392.

[11]

Yun, R. R.; Xu, R. M.; Shi, C. S.; Zhang, B. B.; Li, T. H.; He, L.; Sheng, T.; Chen, Z. Post-modification of MOF to fabricate single-atom dispersed hollow nanocages catalysts for enhancing CO2 conversion. Nano Res. 2023, 16, 8970–8976.

[12]

Zheng, S. S.; Sun, Y.; Xue, H. G.; Braunstein, P.; Huang, W.; Pang, H. Dual-ligand and hard-soft-acid-base strategies to optimize metal–organic framework nanocrystals for stable electrochemical cycling performance. Natl. Sci. Rev. 2022, 9, nwab197.

[13]

Tahir, M. A.; Arshad, N.; Akram, M. Recent advances in metal organic framework (MOF) as electrode material for super capacitor: A mini review. J. Energy Storage 2022, 47, 103530.

[14]

Zhang, G. X.; Lu, Y. B.; Yang, Y.; Yang, H.; Yang, Z. L.; Wang, S. X.; Li, W. T.; Sun, Y. Y.; Huang, J. F.; Luo, Y. S. et al. Dynamic phase transformations of prussian blue analogue crystals in hydrotherms. J. Am. Chem. Soc. 2024, 146, 16659–16669.

[15]

Wei, T.; Zhou, Y. Y.; Sun, C.; Guo, X. T.; Xu, S. D.; Chen, D. F.; Tang, Y. F. An intermittent lithium deposition model based on CuMn-bimetallic MOF derivatives for composite lithium anode with ultrahigh areal capacity and current densities. Nano Res. 2024, 17, 2763–2769.

[16]

Mirqasemi, M. S.; Homayoonfal, M.; Rezakazemi, M. Zeolitic imidazolate framework membranes for gas and water purification. Environ. Chem. Lett. 2020, 18, 1–52.

[17]

Wang, Y.; Liu, B. R.; Shen, X. J.; Arandiyan, H.; Zhao, T. W.; Li, Y. B.; Garbrecht, M.; Su, Z.; Han, L.; Tricoli, A. et al. Engineering the activity and stability of MOF-nanocomposites for efficient water oxidation. Adv. Energy Mater. 2021, 11, 2003759.

[18]

Ye, Z. Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. J. Self-assembly of 0D–2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv. Mater. 2021, 33, 2101204.

[19]

Li, H. F.; Wu, P.; Xiao, Y. W.; Shao, M.; Shen, Y.; Fan, Y.; Chen, H. H.; Xie, R. J.; Zhang, W. L.; Li, S. et al. Metal–organic frameworks as metal ion precursors for the synthesis of nanocomposites for lithium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 4763–4769.

[20]

Liu, C. L.; Bai, Y.; Li, W. T.; Yang, F. Y.; Zhang, G. X.; Pang, H. In situ growth of three-dimensional MXene/metal–organic framework composites for high-performance supercapacitors. Angew. Chem. , Int. Ed. 2022, 61, e202116282.

[21]

Zhang, L. J.; Zhang, T. T.; Zhao, Y. L.; Dong, G. F.; Lv, S. K.; Ma, S. L.; Song, S. X.; Quintana, M. Doping engineering of lithium–aluminum layered double hydroxides for high-efficiency lithium extraction from salt lake brines. Nano Res. 2024, 17, 1646–1654.

[22]

Zhao, X.; Mao, C. Y.; Luong, K. T.; Lin, Q. P.; Zhai, Q. G.; Feng, P. Y.; Bu, X. H. Framework cationization by preemptive coordination of open metal sites for anion-exchange encapsulation of nucleotides and coenzymes. Angew. Chem., Int. Ed. 2016, 55, 2768–2772.

[23]

Nasi, H.; Chiara di Gregorio, M.; Wen, Q.; Shimon, L. J. W.; Kaplan-Ashiri, I.; Bendikov, T.; Leitus, G.; Kazes, M.; Oron, D.; Lahav, M. et al. Directing the morphology, packing, and properties of chiral metal–organic frameworks by cation exchange. Angew. Chem., Int. Ed. 2022, 61, e202205238.

[24]

Li, H. X.; Wen, Y. L.; Jiang, M.; Yao, Y.; Zhou, H. H.; Huang, Z. Y.; Li, J. W.; Jiao, S. Q.; Kuang, Y. F.; Luo, S. L. Understanding of neighboring Fe–N4–C and Co–N4–C dual active centers for oxygen reduction reaction. Adv. Funct. Mater. 2021, 31, 2011289.

[25]

Xiao, X.; Zou, L. L.; Pang, H.; Xu, Q. Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 2020, 49, 301–331.

[26]

Zhang, Y.; Zhou, Q. Y.; Ma, W. H.; Wang, C. H.; Wang, X. F.; Chen, J. J.; Yu, T. T.; Fan, S. Nanocellulose/nitrogen and fluorine co-doped graphene composite hydrogels for high-performance supercapacitors. Nano Res. 2023, 16, 9519–9529.

[27]

Stanley, P. M.; Sixt, F.; Warnan, J. Decoupled solar energy storage and dark photocatalysis in a 3D metal–organic framework. Adv. Mater. 2023, 35, 2207280.

[28]

Zhang, Z. C.; Chen, Y. F.; Xu, X. B.; Zhang, J. C.; Xiang, G. L.; He, W.; Wang, X. Well-defined metal–organic framework hollow nanocages. Angew. Chem., Int. Ed. 2014, 53, 429–433.

[29]

Wang, W. H.; Yan, H. W.; Anand, U.; Mirsaidov, U. Visualizing the conversion of metal–organic framework nanoparticles into hollow layered double hydroxide nanocages. J. Am. Chem. Soc. 2021, 143, 1854–1862.

[30]

Lu, Y. B.; Zhang, G. X.; Zhou, H. J.; Cao, S.; Zhang, Y.; Wang, S. L.; Pang, H. Enhanced active sites and stability in nano-MOFs for electrochemical energy storage through dual regulation by tannic acid. Angew. Chem., Int. Ed. 2023, 62, e202311075.

[31]

Zhu, X. W.; Lou, M. M.; Chen, J. C.; Fang, X. F.; Huang, S. H.; Li, F. MXene/ZIF-L co-stacking membranes with high water permeation for solute-tailored selectivity. Appl. Surf. Sci. 2023, 625, 157194.

[32]

Zhang, G. X.; Yang, H.; Zhou, H. J.; Huang, T. Y.; Yang, Y. F.; Zhu, G. Y.; Zhang, Y. Z.; Pang, H. MXene-mediated interfacial growth of 2D–2D heterostructured nanomaterials as cathodes for Zn-based aqueous batteries. Angew. Chem., Int. Ed. 2024, 63, e202401903.

[33]

Yao, Y. D.; Zhao, G. M.; Guo, X. Y.; Xiong, P.; Xu, Z. H.; Zhang, L. H.; Chen, C. S.; Xu, C.; Wu, T. S.; Soo, Y. L. et al. Facet-dependent surface restructuring on nickel (oxy)hydroxides: A self-activation process for enhanced oxygen evolution reaction. J. Am. Chem. Soc. 2024, 146, 15219–15229.

[34]

Zhou, H. J.; Zhu, G. Y.; Dong, S. Y.; Liu, P.; Lu, Y. Y.; Zhou, Z.; Cao, S.; Zhang, Y. Z.; Pang, H. Ethanol-induced Ni2+-intercalated cobalt organic frameworks on vanadium pentoxide for synergistically enhancing the performance of 3D-printed micro-supercapacitors. Adv. Mater. 2023, 35, 2211523.

[35]

Su, Y. C.; Yuan, G. Q.; Hu, J. L.; Zhang, G. X.; Tang, Y. J.; Chen, Y. H.; Tian, Y. L.; Wang, S. L.; Shakouri, M.; Pang, H. Thiosalicylic-acid-mediated coordination structure of nickel center via thermodynamic modulation for aqueous Ni–Zn batteries. Adv. Mater. 2024, 36, 2406094.

[36]

Cao, S.; Li, Y.; Tang, Y. J.; Sun, Y. Y.; Li, W. T.; Guo, X. T.; Yang, F. Y.; Zhang, G. X.; Zhou, H. J.; Liu, Z. et al. Space-confined metal ion strategy for carbon materials derived from cobalt benzimidazole frameworks with high desalination performance in simulated seawater. Adv. Mater. 2023, 35, 2301011.

[37]

Chen, H.; Liu, X. F.; Li, H. Y.; Peng, P.; Zang, S. Q. Rational designed isostructural MOF for the charge–discharge behavior study of super capacitors. Nano Res. 2022, 15, 6208–6212.

[38]

Zhou, H. J.; Gu, S. Y.; Lu, Y. B.; Zhang, G. X.; Li, B.; Dou, F.; Cao, S.; Li, Q.; Sun, Y. Y.; Shakouri, M. et al. Stabilizing Ni2+ in hollow nano MOF/polymetallic phosphides composites for enhanced electrochemical performance in 3D-printed micro-supercapacitors. Adv. Mater. 2024, 36, 2401856.

[39]

Li, X. R.; Li, H. P.; Fan, X. Q.; Shi, X. L.; Liang, J. J. 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv. Energy Mater. 2020, 10, 1903794.

[40]

Lv, T. T.; Zhu, G. Y.; Dong, S. Y.; Kong, Q. Q.; Peng, Y.; Jiang, S.; Zhang, G. X.; Yang, Z. L.; Yang, S. Y.; Dong, X. C. et al. Co-intercalation of dual charge carriers in metal-ion-confining layered vanadium oxide nanobelts for aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202216089.

[41]

Gu, J. L.; Sun, L.; Zhang, Y. X.; Zhang, Q. Y.; Li, X. W.; Si, H. C.; Shi, Y.; Sun, C.; Gong, Y.; Zhang, Y. H. MOF-derived Ni-doped CoP@C grown on CNTs for high-performance supercapacitors. Chem. Eng. J. 2020, 385, 123454.

[42]

Hang, X. X.; Zhao, J. W.; Xue, Y. D.; Yang, R.; Pang, H. Synergistic effect of Co/Ni bimetallic metal–organic nanostructures for enhanced electrochemical energy storage. J. Colloid Interface Sci. 2022, 628, 389–396.

[43]

Ehrnst, Y.; Ahmed, H.; Komljenovic, R.; Massahud, E.; Shepelin, N. A.; Sherrell, P. C.; Ellis, A. V.; Rezk, A. R.; Yeo, L. Y. Acoustotemplating: Rapid synthesis of freestanding quasi-2D MOF/graphene oxide heterostructures for supercapacitor applications. J. Mater. Chem. A 2022, 10, 7058–7072.

[44]

Wu, X. Y.; Jing, Q. L.; Sun, F. C.; Pang, H. The synthesis of zeolitic imidazolate framework/prussian blue analogue heterostructure composites and their application in supercapacitors. Inorg. Chem. Front. 2023, 10, 78–84.

[45]

Sun, F. C.; Li, Q.; Bai, Y.; Zhang, G. X.; Zheng, S. S.; Peng, M. Y.; Chen, X. D.; Lin, N.; Pang, H. A controllable preparation of two-dimensional cobalt oxalate-based nanostructured sheets for electrochemical energy storage. Chin. Chem. Lett. 2022, 33, 3249–3254.

[46]

Liu, C. L.; Feng, W. H.; Bai, Y.; Pang, H. Compositing MXenes with hierarchical ZIF-67/cobalt hydroxide via controllable in situ etching for a high-performance supercapacitor. Inorg. Chem. Front. 2022, 9, 5463–5468.

[47]

Wang, Y.; Zhang, Y. D.; Shao, R.; Guo, Q. R. FeSe and Fe3Se4 encapsulated in mesoporous carbon for flexible solid-state supercapacitor. Chem. Eng. J. 2022, 442, 136362.

[48]

Xu, P. F.; Luo, S.; Liang, J. Y.; Pan, D.; Zou, B. S.; Li, J. E. High-performance 2.2 V asymmetric supercapacitors achieved by appropriate charge matching between ultrahigh mass-loading Mn3O4 and sodium–jarosite derived FeOOH. Adv. Funct. Mater. 2024, 34, 2313927.

Nano Research
Article number: 94907379
Cite this article:
Shi X, Lu Y, Zhang G, et al. Enhancement of active sites and stability by ion exchange in 3D ZIF-L for electrochemical energy storage. Nano Research, 2025, 18(5): 94907379. https://doi.org/10.26599/NR.2025.94907379
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return