The practical application of metal–organic frameworks (MOFs) for energy storage is faced with great challenges, such as poor structural stability and limited active sites. Herein, we have co-designed a three-dimensional (3D) self-assembled hexagonal zeolitic imidazolate framework-L (ZIF-L) structure with a 3D conformation that greatly reduces the self-aggregation of two-dimensional (2D) layered materials. Due to the rational design of the specific morphology and atomically different coordination abilities of Ni2+ and Co2+ in the framework, the micro-nano electric field is constructed, and the structural stability and electrochemistry reaction activity of ZIF-L are obviously improved. Moreover, the consecutive hollow structure is also formed by regulating the Ni–Co ratio, which can significantly enhance the specific capacitance and cycling stability of the Ni-ZIF-L electrode through the formation of fast electrolyte ions transfer channels. Consequently, the Ni-ZIF-L-40 electrode exhibits a high specific capacity (568.9 F·g−1 at 0.5 A·g−1) and long cycle stability (89.5% retention after 5000 cycles at 5 A·g−1). In addition, the Ni-ZIF-L-40//activated carbon (AC) asymmetric supercapacitor assembled using AC also shows an excellent cycling stability (91.1% retention after 4000 cycles at 5 A·g−1). This study may open a new window for the practical application of intrinsic MOFs-based electrodes for energy storage and conversion.
Jo, Y. M.; Jo, Y. K.; Lee, J. H.; Jang, H. W.; Hwang, I. S.; Yoo, D. J. MOF-based chemiresistive gas sensors: Toward new functionalities. Adv. Mater. 2023, 35, 2206842.
Du, R.; Wu, Y. F.; Yang, Y. C.; Zhai, T. T.; Zhou, T.; Shang, Q. Y.; Zhu, L. H.; Shang, C. X.; Guo, Z. X. Porosity engineering of MOF-based materials for electrochemical energy storage. Adv. Energy Mater. 2021, 11, 2100154.
Yang, D. W.; Liang, Z. F.; Tang, P. Y.; Zhang, C. Q.; Tang, M. X.; Li, Q. Z.; Biendicho, J. J.; Li, J. S.; Heggen, M.; Dunin-Borkowski, R. E. et al. A high conductivity 1D π–d conjugated metal–organic framework with efficient polysulfide trapping-diffusion-catalysis in lithium–sulfur batteries. Adv. Mater. 2022, 34, 2108835.
Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal–organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.
Xu, H. Y.; Geng, P. B.; Feng, W. C.; Du, M.; Kang, D. J.; Pang, H. Recent advances in metal–organic frameworks for electrochemical performance of batteries. Nano Res. 2024, 17, 3472–3492.
Li, K.; Zhao, Y. C.; Yang, J.; Gu, J. L. Nanoemulsion-directed growth of MOFs with versatile architectures for the heterogeneous regeneration of coenzymes. Nat. Commun. 2022, 13, 1879.
Bai, Y.; Liu, C. L.; Shan, Y. Y.; Chen, T. T.; Zhao, Y.; Yu, C.; Pang, H. Metal–organic frameworks nanocomposites with different dimensionalities for energy conversion and storage. Adv. Energy Mater. 2022, 12, 2100346.
Li, X. R.; Li, Y. P.; Wang, C. L.; Xue, H. G.; Pang, H.; Xu, Q. A 3D hierarchical electrocatalyst: Core–shell Cu@Cu(OH)2 nanorods/MOF octahedra supported on N-doped carbon for oxygen evolution reaction. Nano Res. 2023, 16, 8012–8017.
Bhattarai, R. M.; Chhetri, K.; Le, N.; Acharya, D.; Saud, S.; Nguyen, M. C. H. P. L.; Kim, S. J.; Mok, Y. S. Oxygen functionalization-assisted anionic exchange toward unique construction of flower-like transition metal chalcogenide embedded carbon fabric for ultra-long life flexible energy storage and conversion. Carbon Energy 2024, 6, e392.
Yun, R. R.; Xu, R. M.; Shi, C. S.; Zhang, B. B.; Li, T. H.; He, L.; Sheng, T.; Chen, Z. Post-modification of MOF to fabricate single-atom dispersed hollow nanocages catalysts for enhancing CO2 conversion. Nano Res. 2023, 16, 8970–8976.
Zheng, S. S.; Sun, Y.; Xue, H. G.; Braunstein, P.; Huang, W.; Pang, H. Dual-ligand and hard-soft-acid-base strategies to optimize metal–organic framework nanocrystals for stable electrochemical cycling performance. Natl. Sci. Rev. 2022, 9, nwab197.
Tahir, M. A.; Arshad, N.; Akram, M. Recent advances in metal organic framework (MOF) as electrode material for super capacitor: A mini review. J. Energy Storage 2022, 47, 103530.
Zhang, G. X.; Lu, Y. B.; Yang, Y.; Yang, H.; Yang, Z. L.; Wang, S. X.; Li, W. T.; Sun, Y. Y.; Huang, J. F.; Luo, Y. S. et al. Dynamic phase transformations of prussian blue analogue crystals in hydrotherms. J. Am. Chem. Soc. 2024, 146, 16659–16669.
Wei, T.; Zhou, Y. Y.; Sun, C.; Guo, X. T.; Xu, S. D.; Chen, D. F.; Tang, Y. F. An intermittent lithium deposition model based on CuMn-bimetallic MOF derivatives for composite lithium anode with ultrahigh areal capacity and current densities. Nano Res. 2024, 17, 2763–2769.
Mirqasemi, M. S.; Homayoonfal, M.; Rezakazemi, M. Zeolitic imidazolate framework membranes for gas and water purification. Environ. Chem. Lett. 2020, 18, 1–52.
Wang, Y.; Liu, B. R.; Shen, X. J.; Arandiyan, H.; Zhao, T. W.; Li, Y. B.; Garbrecht, M.; Su, Z.; Han, L.; Tricoli, A. et al. Engineering the activity and stability of MOF-nanocomposites for efficient water oxidation. Adv. Energy Mater. 2021, 11, 2003759.
Ye, Z. Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. J. Self-assembly of 0D–2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv. Mater. 2021, 33, 2101204.
Li, H. F.; Wu, P.; Xiao, Y. W.; Shao, M.; Shen, Y.; Fan, Y.; Chen, H. H.; Xie, R. J.; Zhang, W. L.; Li, S. et al. Metal–organic frameworks as metal ion precursors for the synthesis of nanocomposites for lithium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 4763–4769.
Liu, C. L.; Bai, Y.; Li, W. T.; Yang, F. Y.; Zhang, G. X.; Pang, H. In situ growth of three-dimensional MXene/metal–organic framework composites for high-performance supercapacitors. Angew. Chem. , Int. Ed. 2022, 61, e202116282.
Zhang, L. J.; Zhang, T. T.; Zhao, Y. L.; Dong, G. F.; Lv, S. K.; Ma, S. L.; Song, S. X.; Quintana, M. Doping engineering of lithium–aluminum layered double hydroxides for high-efficiency lithium extraction from salt lake brines. Nano Res. 2024, 17, 1646–1654.
Zhao, X.; Mao, C. Y.; Luong, K. T.; Lin, Q. P.; Zhai, Q. G.; Feng, P. Y.; Bu, X. H. Framework cationization by preemptive coordination of open metal sites for anion-exchange encapsulation of nucleotides and coenzymes. Angew. Chem., Int. Ed. 2016, 55, 2768–2772.
Nasi, H.; Chiara di Gregorio, M.; Wen, Q.; Shimon, L. J. W.; Kaplan-Ashiri, I.; Bendikov, T.; Leitus, G.; Kazes, M.; Oron, D.; Lahav, M. et al. Directing the morphology, packing, and properties of chiral metal–organic frameworks by cation exchange. Angew. Chem., Int. Ed. 2022, 61, e202205238.
Li, H. X.; Wen, Y. L.; Jiang, M.; Yao, Y.; Zhou, H. H.; Huang, Z. Y.; Li, J. W.; Jiao, S. Q.; Kuang, Y. F.; Luo, S. L. Understanding of neighboring Fe–N4–C and Co–N4–C dual active centers for oxygen reduction reaction. Adv. Funct. Mater. 2021, 31, 2011289.
Xiao, X.; Zou, L. L.; Pang, H.; Xu, Q. Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 2020, 49, 301–331.
Zhang, Y.; Zhou, Q. Y.; Ma, W. H.; Wang, C. H.; Wang, X. F.; Chen, J. J.; Yu, T. T.; Fan, S. Nanocellulose/nitrogen and fluorine co-doped graphene composite hydrogels for high-performance supercapacitors. Nano Res. 2023, 16, 9519–9529.
Stanley, P. M.; Sixt, F.; Warnan, J. Decoupled solar energy storage and dark photocatalysis in a 3D metal–organic framework. Adv. Mater. 2023, 35, 2207280.
Zhang, Z. C.; Chen, Y. F.; Xu, X. B.; Zhang, J. C.; Xiang, G. L.; He, W.; Wang, X. Well-defined metal–organic framework hollow nanocages. Angew. Chem., Int. Ed. 2014, 53, 429–433.
Wang, W. H.; Yan, H. W.; Anand, U.; Mirsaidov, U. Visualizing the conversion of metal–organic framework nanoparticles into hollow layered double hydroxide nanocages. J. Am. Chem. Soc. 2021, 143, 1854–1862.
Lu, Y. B.; Zhang, G. X.; Zhou, H. J.; Cao, S.; Zhang, Y.; Wang, S. L.; Pang, H. Enhanced active sites and stability in nano-MOFs for electrochemical energy storage through dual regulation by tannic acid. Angew. Chem., Int. Ed. 2023, 62, e202311075.
Zhu, X. W.; Lou, M. M.; Chen, J. C.; Fang, X. F.; Huang, S. H.; Li, F. MXene/ZIF-L co-stacking membranes with high water permeation for solute-tailored selectivity. Appl. Surf. Sci. 2023, 625, 157194.
Zhang, G. X.; Yang, H.; Zhou, H. J.; Huang, T. Y.; Yang, Y. F.; Zhu, G. Y.; Zhang, Y. Z.; Pang, H. MXene-mediated interfacial growth of 2D–2D heterostructured nanomaterials as cathodes for Zn-based aqueous batteries. Angew. Chem., Int. Ed. 2024, 63, e202401903.
Yao, Y. D.; Zhao, G. M.; Guo, X. Y.; Xiong, P.; Xu, Z. H.; Zhang, L. H.; Chen, C. S.; Xu, C.; Wu, T. S.; Soo, Y. L. et al. Facet-dependent surface restructuring on nickel (oxy)hydroxides: A self-activation process for enhanced oxygen evolution reaction. J. Am. Chem. Soc. 2024, 146, 15219–15229.
Zhou, H. J.; Zhu, G. Y.; Dong, S. Y.; Liu, P.; Lu, Y. Y.; Zhou, Z.; Cao, S.; Zhang, Y. Z.; Pang, H. Ethanol-induced Ni2+-intercalated cobalt organic frameworks on vanadium pentoxide for synergistically enhancing the performance of 3D-printed micro-supercapacitors. Adv. Mater. 2023, 35, 2211523.
Su, Y. C.; Yuan, G. Q.; Hu, J. L.; Zhang, G. X.; Tang, Y. J.; Chen, Y. H.; Tian, Y. L.; Wang, S. L.; Shakouri, M.; Pang, H. Thiosalicylic-acid-mediated coordination structure of nickel center via thermodynamic modulation for aqueous Ni–Zn batteries. Adv. Mater. 2024, 36, 2406094.
Cao, S.; Li, Y.; Tang, Y. J.; Sun, Y. Y.; Li, W. T.; Guo, X. T.; Yang, F. Y.; Zhang, G. X.; Zhou, H. J.; Liu, Z. et al. Space-confined metal ion strategy for carbon materials derived from cobalt benzimidazole frameworks with high desalination performance in simulated seawater. Adv. Mater. 2023, 35, 2301011.
Chen, H.; Liu, X. F.; Li, H. Y.; Peng, P.; Zang, S. Q. Rational designed isostructural MOF for the charge–discharge behavior study of super capacitors. Nano Res. 2022, 15, 6208–6212.
Zhou, H. J.; Gu, S. Y.; Lu, Y. B.; Zhang, G. X.; Li, B.; Dou, F.; Cao, S.; Li, Q.; Sun, Y. Y.; Shakouri, M. et al. Stabilizing Ni2+ in hollow nano MOF/polymetallic phosphides composites for enhanced electrochemical performance in 3D-printed micro-supercapacitors. Adv. Mater. 2024, 36, 2401856.
Li, X. R.; Li, H. P.; Fan, X. Q.; Shi, X. L.; Liang, J. J. 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv. Energy Mater. 2020, 10, 1903794.
Lv, T. T.; Zhu, G. Y.; Dong, S. Y.; Kong, Q. Q.; Peng, Y.; Jiang, S.; Zhang, G. X.; Yang, Z. L.; Yang, S. Y.; Dong, X. C. et al. Co-intercalation of dual charge carriers in metal-ion-confining layered vanadium oxide nanobelts for aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202216089.
Gu, J. L.; Sun, L.; Zhang, Y. X.; Zhang, Q. Y.; Li, X. W.; Si, H. C.; Shi, Y.; Sun, C.; Gong, Y.; Zhang, Y. H. MOF-derived Ni-doped CoP@C grown on CNTs for high-performance supercapacitors. Chem. Eng. J. 2020, 385, 123454.
Hang, X. X.; Zhao, J. W.; Xue, Y. D.; Yang, R.; Pang, H. Synergistic effect of Co/Ni bimetallic metal–organic nanostructures for enhanced electrochemical energy storage. J. Colloid Interface Sci. 2022, 628, 389–396.
Ehrnst, Y.; Ahmed, H.; Komljenovic, R.; Massahud, E.; Shepelin, N. A.; Sherrell, P. C.; Ellis, A. V.; Rezk, A. R.; Yeo, L. Y. Acoustotemplating: Rapid synthesis of freestanding quasi-2D MOF/graphene oxide heterostructures for supercapacitor applications. J. Mater. Chem. A 2022, 10, 7058–7072.
Wu, X. Y.; Jing, Q. L.; Sun, F. C.; Pang, H. The synthesis of zeolitic imidazolate framework/prussian blue analogue heterostructure composites and their application in supercapacitors. Inorg. Chem. Front. 2023, 10, 78–84.
Sun, F. C.; Li, Q.; Bai, Y.; Zhang, G. X.; Zheng, S. S.; Peng, M. Y.; Chen, X. D.; Lin, N.; Pang, H. A controllable preparation of two-dimensional cobalt oxalate-based nanostructured sheets for electrochemical energy storage. Chin. Chem. Lett. 2022, 33, 3249–3254.
Liu, C. L.; Feng, W. H.; Bai, Y.; Pang, H. Compositing MXenes with hierarchical ZIF-67/cobalt hydroxide via controllable in situ etching for a high-performance supercapacitor. Inorg. Chem. Front. 2022, 9, 5463–5468.
Wang, Y.; Zhang, Y. D.; Shao, R.; Guo, Q. R. FeSe and Fe3Se4 encapsulated in mesoporous carbon for flexible solid-state supercapacitor. Chem. Eng. J. 2022, 442, 136362.
Xu, P. F.; Luo, S.; Liang, J. Y.; Pan, D.; Zou, B. S.; Li, J. E. High-performance 2.2 V asymmetric supercapacitors achieved by appropriate charge matching between ultrahigh mass-loading Mn3O4 and sodium–jarosite derived FeOOH. Adv. Funct. Mater. 2024, 34, 2313927.