PDF (18 MB)
Collect
Submit Manuscript
Research Article | Open Access

Invisible to visible: Novel hydrophilic rare earth fluorescent composite inks for security applications

Tao Shen1,2,3Huanyu Zheng1Ruotong Liao1Bin Li1,2,3Juefei Wu1Zhengye Jiang1Xiaoyu Meng1Cong Cao1,2,3()
School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
State Key Laboratory of Bio-based Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shaoxing 312400, China
Show Author Information

Graphical Abstract

View original image Download original image
The fluorescent composite inks can be loaded into cartridges for printing custom graphics on copy papers. The information is hidden under normal light, while the details and information are revealed under specific excitation light.

Abstract

Rare earth nanomaterials exhibit remarkable characteristics, including real-time responsiveness, luminescence stability, and multicolor emission capabilities. Herein, NaYbF4: x%Tb,y%Eu@NaYF4 core–shell structured nanoparticles (CSNP) were synthesized with distinct fluorescence under both ultraviolet (UV) and near-infrared (NIR) excitation. It can be uniformly mixed with a transparent ink solution and loaded into ink cartridges to print customized graphics on copy papers. The graphics cannot be recognized under normal visible light, and the concealed information with high resolution can only be exposed under specific excitation light. Combining with cryptography, it facilitates the implementation of advanced information encryption techniques. Consequently, the innovative fluorescent ink materials hold significant promise for enhancing anti-counterfeiting and information encryption.

Electronic Supplementary Material

Download File(s)
7380_ESM.pdf (2.2 MB)

References

[1]

Ren, G. H.; Zhu, Z. J.; Zhang, J. B.; Zhao, H. W.; Li, Y. F.; Han, J. G. Broadband terahertz spectroscopy of paper and banknotes. Opt. Commun. 2020, 475, 126267.

[2]

Chen, G. N.; Wei, W.; Li, S.; Zhou, X. P.; Li, Z. A.; Peng, H. Y.; Xie, X. L. Liquid crystal-assisted manufacturing of flexible holographic polymer nanocomposites for high-security level anticounterfeiting. Mater. Chem. Front. 2022, 6, 3531–3542.

[3]

Ju, L.; Gao, W. B.; Zhang, J. Y.; Qin, T. Y.; Du, Z.; Sheng, L.; Zhang, S. X. A. A new absorption/fluorescence dual-mode hydrochromic dye for water-jet printing and anti-counterfeiting applications. J. Mater. Chem. C 2020, 8, 2806–2811.

[4]

Cheung, H. H.; Choi, S. H. Implementation issues in RFID-based anti-counterfeiting systems. Comput. Ind. 2011, 62, 708–718.

[5]

Liu, S. Q.; Wang, J.; Tang, F.; Wang, N.; Li, L.; Yao, C.; Li, L. D. Aqueous systems with tunable fluorescence including white-light emission for anti-counterfeiting fluorescent inks and hydrogels. ACS Appl. Mater. Interfaces 2020, 12, 55269–55277.

[6]

Abdollahi, A.; Roghani-Mamaqani, H.; Razavi, B.; Salami-Kalajahi, M. Photoluminescent and chromic nanomaterials for anticounterfeiting technologies: Recent advances and future challenges. ACS Nano 2020, 14, 14417–14492.

[7]

Zhang, J.; Cao, C.; Wang, J. S.; Li, S. W.; Xie, Y. NaYF4:Yb,Er@NaYF4:Yb,Tm and NaYF4:Yb,Tm@NaYF4:Yb,Er core@shell upconversion nanoparticles embedded in acrylamide hydrogels for anti-counterfeiting and information encryption. ACS Appl. Nano Mater. 2022, 5, 16642–16654.

[8]

Zhang, J. C.; Pan, C.; Zhu, Y. F.; Zhao, L. Z.; He, H. W.; Liu, X. F.; Qiu, J. R. Achieving thermo-mechano-opto-responsive bitemporal colorful luminescence via multiplexing of dual lanthanides in piezoelectric particles and its multidimensional anticounterfeiting. Adv. Mater. 2018, 30, 1804644.

[9]

Zhang, C. Y.; Yin, Q. X.; Ge, S. K.; Qi, J. X.; Han, Q. Y.; Gao, W.; Wang, Y. K.; Zhang, M. D.; Dong, J. Optical anti-counterfeiting and information storage based on rare-earth-doped luminescent materials. Mater. Res. Bull. 2024, 176, 112801.

[10]

Wen, Y. H.; Sheng, T. L.; Zhu, X. Q.; Zhuo, C.; Su, S. D.; Li, H. R.; Hu, S. M.; Zhu, Q. L.; Wu, X. T. Introduction of red-green-blue fluorescent dyes into a metal-organic framework for tunable white light emission. Adv. Mater. 2017, 29, 1700778.

[11]

Yu, Y. T.; Ma, T. Y.; Huang, H. W. Semiconducting quantum dots for energy conversion and storage. Adv. Funct. Mater. 2023, 33, 2213770.

[12]

Yuan, Y.; Bao, X. M.; Wu, L. L.; Zhou, M.; Yu, Y. Y.; Wang, Q.; Wang, P. Solvent-regulated synthesis of full-color fluorescent nitrogen/sulfur co-doped carbon quantum dots for anti-counterfeiting textiles. Chem. Eng. J. 2024, 493, 152488.

[13]

Gao, Y. Y.; Yang, Y. H.; Wei, Y. H.; Li, Y. Q.; Cai, H. T.; Wu, C. H. Manipulating dynamic fluorescent emissions by introducing SP molecule into functionalized HOFs and application in time-resolved information encryption. Adv. Funct. Mater. 2025, 35, 2416025.

[14]

Wei, Y. H.; Zhu, J. K.; Gao, Y. Y.; Cai, H. T.; Wu, C. H.; Yang, Y. H.; Zhu, G. C.; Khabibulla, P.; Kayumov, J. Novel core–shell materials SiO2@Tb-MOF for the incorporation of spiropyran molecules and its application in dynamic advanced information encryption. J. Colloid. Interface. Sci. 2025, 680, 224–234.

[15]

Suo, H.; Zhu, Q.; Zhang, X.; Chen, B.; Chen, J. K.; Wang, F. High-security anti-counterfeiting through upconversion luminescence. Mater. Today Phys. 2021, 21, 100520.

[16]

Mokhtar, O. M.; Attia, Y. A.; Wassel, A. R.; Khattab, T. A. Production of photochromic nanocomposite film via spray-coating of rare-earth strontium aluminate for anti-counterfeit applications. Luminescence 2021, 36, 1933–1944.

[17]

Cao, T. M. D.; Le, T. T. G.; Turrell, S.; Ferrari, M.; Lam, Q. V.; Tran, T. T. V. Luminescent ink based on upconversion of NaYF4:Er,Yb@MA Nanoparticles: Environmental friendly synthesis and structural and spectroscopic assessment. Molecules 2021, 26, 1041.

[18]

Kanika; Kumar, P.; Singh, S.; Gupta, B. K. A novel approach to synthesise a dual-mode luminescent composite pigment for uncloneable high-security codes to combat counterfeiting. Chem. —Eur. J. 2017, 23, 17144–17151.

[19]

Li, M. X.; Yao, W. J.; Liu, J.; Tian, Q. Y.; Liu, L.; Ding, J.; Xue, Q. W.; Lu, Q.; Wu, W. Facile synthesis and screen printing of dual-mode luminescent NaYF4:Er,Yb (Tm)/carbon dots for anti-counterfeiting applications. J. Mater. Chem. C 2017, 5, 6512–6520.

[20]

Zhou, S.; Wang, Y.; Hu, P.; Zhong, W.; Jia, H.; Qiu, J. R.; Fu, J. J. Cascaded photon confinement-mediated orthogonal RGB-switchable NaErF4-cored upconversion nanoarchitectures for logicalized information encryption and multimodal luminescent anti-counterfeiting. Laser Photon. Rev. 2023, 17, 2200531.

[21]

Liu, W. J.; Zhang, W. J.; Liu, R. X.; Li, G. J. Up-conversion of lanthanide ions and down-conversion defect luminescence in BaGdF5:Yb,Er/Tm for application in anti-counterfeiting. New J. Chem. 2021, 45, 17377–17383.

[22]

Liu, Y. S.; Tu, D. T.; Zhu, H. M.; Li, R. F.; Luo, W. Q.; Chen, X. Y. A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv. Mater. 2010, 22, 3266–3271.

[23]

Ding, Y. D.; Wu, F.; Zhang, Y. L.; Liu, X. M.; de Jong, E. M. L. D.; Gregorkiewicz, T.; Hong, X.; Liu, Y.; Aalders, M. C. G.; Buma, W. J. et al. Interplay between static and dynamic energy transfer in biofunctional upconversion nanoplatforms. J. Phys. Chem. Lett. 2015, 6, 2518–2523.

[24]

Zhou, B.; Yang, W. F.; Han, S. Y.; Sun, Q.; Liu, X. G. Photon upconversion through Tb3+-mediated interfacial energy transfer. Adv. Mater. 2015, 27, 6208–6212.

[25]

Yan, L.; Zhou, B.; Song, N.; Liu, X. L.; Huang, J. S.; Wang, T.; Tao, L. L.; Zhang, Q. Y. Self-sensitization induced upconversion of Er3+ in core–shell nanoparticles. Nanoscale 2018, 10, 17949–17957.

[26]

Chen, Q. S.; Xie, X. J.; Huang, B. L.; Liang, L. L.; Han, S. Y.; Yi, Z. G.; Wang, Y.; Li, Y.; Fan, D. Y.; Huang, L. et al. Confining excitation energy in Er3+-sensitized upconversion nanocrystals through Tm3+-mediated transient energy trapping. Angew. Chem., Int. Ed. 2017, 56, 7605–7609.

[27]

Wang, Y. The role of an inert shell in improving energy utilization in lanthanide-doped upconversion nanoparticles. Nanoscale 2019, 11, 10852–10858.

[28]

Adusumalli, V. N. K. B.; Lee, S. Y.; Gupta, A.; Park, Y. I. Upconversion and ligand-sensitized downshifting from active inert shell in Ln-doped core–shell nanocrystals for anticounterfeiting applications. Mater. Today Chem. 2023, 34, 101793.

[29]

Jia, H.; Teng, Y. Y.; Li, N.; Li, D. G.; Dong, Y. H.; Zhang, D.; Liu, Z. H.; Zhao, D.; Guo, X. Y.; Di, W. H. et al. Dual stimuli-responsive inks based on orthogonal upconversion three-primary-color luminescence for advanced anticounterfeiting applications. ACS Mater. Lett. 2022, 4, 1306–1313.

[30]

Li, X. M.; Guo, Z. Z.; Zhao, T. C.; Lu, Y.; Zhou, L.; Zhao, D. Y.; Zhang, F. Filtration shell mediated power density independent orthogonal excitations-emissions upconversion luminescence. Angew. Chem., Int. Ed. 2016, 55, 2464–2469.

[31]

Prorok, K.; Bednarkiewicz, A.; Cichy, B.; Gnach, A.; Misiak, M.; Sobczyk, M.; Strek, W. The impact of shell host (NaYF4/CaF2) and shell deposition methods on the up-conversion enhancement in Tb3+, Yb3+ codoped colloidal α-NaYF4 core-shell nanoparticles. Nanoscale 2014, 6, 1855–1864.

[32]

Qian, H. S.; Zhang, Y. Synthesis of hexagonal-phase core–shell NaYF4 nanocrystals with tunable upconversion fluorescence. Langmuir 2008, 24, 12123–12125.

[33]

Sotiriou, G. A.; Schneider, M.; Pratsinis, S. E. Color-tunable nanophosphors by co-doping flame-made Y2O3 with Tb and Eu. J. Phys. Chem. C 2011, 115, 1084–1089.

[34]

Li, N. N.; Wen, X. Y.; Liu, J.; Wang, B. J.; Zhan, Q. Q.; He, S. L. Yb3+-enhanced UCNP@SiO2 nanocomposites for consecutive imaging, photothermal-controlled drug delivery and cancer therapy. Opt. Mater. Express 2016, 6, 1161–1171.

[35]

Homann, C.; Krukewitt, L.; Frenzel, F.; Grauel, B.; Würth, C.; Resch-Genger, U.; Haase, M. NaYF4:Yb,Er/NaYF4 core/shell nanocrystals with high upconversion luminescence quantum yield. Angew. Chem., Int. Ed. 2018, 57, 8765–8769.

[36]

Damasco, J. A.; Chen, G. Y.; Shao, W.; Ågren, H.; Huang, H. Y.; Song, W. T.; Lovell, J. F.; Prasad, P. N. Size-tunable and monodisperse Tm3+/Gd3+-doped hexagonal NaYbF4 nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging. ACS Appl. Mater. Interfaces 2014, 6, 13884–13893.

[37]

Fujii, M.; Nakano, T.; Imakita, K.; Hayashi, S. Upconversion Luminescence of Er and Yb Codoped NaYF4 Nanoparticles with Metal Shells. J. Phys. Chem. C 2013, 117, 1113–1120.

[38]

Xie, S. W.; Tong, C.; Tan, H. H.; Li, N.; Gong, L.; Xu, J. X.; Xu, L. J.; Zhang, C. F. Hydrothermal synthesis and inkjet printing of hexagonal-phase NaYF4: Ln3+ upconversion hollow microtubes for smart anti-counterfeiting encryption. Mater. Chem. Front. 2018, 2, 1997–2005.

[39]

Wu, W. N.; Liu, H. Z.; Yuan, J.; Zhang, Z.; Wang, L.; Dong, S. L.; Hao, J. C. Nanoemulsion fluorescent inks for anti-counterfeiting encryption with dual-mode, full-color, and long-term stability. Chem. Commun. 2021, 57, 4894–4897.

[40]

Xie, S. W.; Gong, G.; Song, Y.; Tan, H. H.; Zhang, C. F.; Li, N.; Zhang, Y. X.; Xu, L. J.; Xu, J. X.; Zheng, J. Design of novel lanthanide-doped core-shell nanocrystals with dual up-conversion and down-conversion luminescence for anti-counterfeiting printing. Dalton Trans. 2019, 48, 6971–6983.

Nano Research
Article number: 94907380
Cite this article:
Shen T, Zheng H, Liao R, et al. Invisible to visible: Novel hydrophilic rare earth fluorescent composite inks for security applications. Nano Research, 2025, 18(5): 94907380. https://doi.org/10.26599/NR.2025.94907380
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return