PDF (20.2 MB)
Collect
Submit Manuscript
Research Article | Open Access

Scalable fabrication of ultrahigh-conductivity SWCNT films via aredispersion method for photovoltaic/thermoelectric coupling systems

Xiaoyang Yuan1,2Dehua Yang1,2,3 ()Xiaofei Yang1,2Xuan Chang1,2Donghui Zhang1,2Aiai Wang1,2Yiming Xu1,2Xueliang Yang1Jingxin Chen3Xuejian Li3Shuai Ma3Qing Gao1,2,3Shufang Wang2Huaping Liu4Jianhui Chen1,2,3 ()
Advanced Passivation Technology Lab, College of Physics Science andTechnology, Hebei University, Baoding 071002, China
Province-Ministry Co-Construction Collaborative Innovation Centerof Hebei Photovoltaic Technology, College of Physics Science and Technology, HebeiUniversity, Baoding 071002, China
State Key Laboratory of Photovoltaic Materials and Cells, YingliGroup Co., Ltd, Baoding 071051, China
Beijing National Laboratory for Condensed Matter Physics, Instituteof Physics, Chinese Academy of Sciences, Beijing 100190, China
Show Author Information

Graphical Abstract

View original image Download original image
This study presents a scalable method for producing large-area, highly conductivenematic single-walled carbon nanotube (SWCNT) films using an improvedredispersion technique that enables uniform drying and nematic phase formationin polymer-dispersed SWCNTs, achieving A4-sized films with a conductivity of1.97 MS/m. The films also exhibit a thermoelectric power factor of 654 μW/(m·K2), demonstrating potential for hybrid photovoltaic/thermoelectricapplications.

Abstract

Photovoltaic/thermoelectric (PV/TE) coupling systems simultaneously cool solarcells and recover waste heat. Single-wall carbon nanotubes (SWCNTs) films areexpected to simultaneously exhibit their electrical conductivity, thermalconductivity, and thermoelectric properties in this application. FabricatingSWCNTs films with polymer-dispersed SWCNTs are simple, safe, and scalable.However, the difficulty in simultaneously enhancing both dispersion quality andSWCNT concentration significantly limit the electrical conductivity of thesefilms. Herein, we develop a SWCNT redispersion method in Nafion ethanol systemto achieve well-dispersion at high SWCNT concentrations. Using this dispersion,A4-sized films were readily prepared, achieving remarkable electricalconductivity of 1.97 MS/m. The large-area film exhibits a high power factor(654.37 μW/(m·K2)) and apparent thermal conductivity (529 W/(m·K)),and is integrated into a 330 cm2 thermoelectric/photovoltaic couplingsystem. The PV output power increases by 220 mW. An additional 70 mVthermoelectric voltage is generated. Moreover, the investigation of the dryingprocess unravels how polymer, solvent and SWCNT concentration collectivelydominate the film uniformity. This work significantly enhances the electricalconductivity of polymer-dispersed SWCNTs and explores an application directionthat simultaneously utilizes their high thermoelectric performance and thermalconductivity, highlighting their great application potential in PV/TE systems.

Electronic Supplementary Material

Download File(s)
7383_ESM.pdf (3.8 MB)

References

[1]

Lijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605.

[2]

Wang, H.; Sun, X.; Wang, Y. Z.; Li, K. C.; Wang, J.; Dai, X.; Chen, B.;Chong, D. T.; Zhang, L. Y.; Yan, J. J. Acid enhanced zipping effect todensify MWCNT packing for multifunctional MWCNT films with ultra-highelectrical conductivity. Nat.Commun. 2023, 14, 380.

[3]

Hong, C. T.; Lee, W.; Kang, Y. H.; Yoo, Y.; Ryu, J.; Cho, S. Y.; Jang, K.S. Effective doping by spin-coating and enhanced thermoelectric powerfactors in SWCNT/P3HT hybrid films. J. Mater. Chem.A 2015, 3, 12314–12319.

[4]

Liang, L. R.; Gao, C. Y.; Chen, G. M.; Guo, C. Y. Large-area,stretchable, super flexible and mechanically stable thermoelectric filmsof polymer/carbon nanotube composites. J. Mater. Chem.C 2016, 4, 526–532.

[5]

Yao, Q.; Chen, L. D.; Zhang, W. Q.; Liufu, S. C.; Chen, X. H. Enhancedthermoelectric performance of single-walled carbon nanotubes/polyanilinehybrid nanocomposites. ACS Nano 2010, 4, 2445–2451.

[6]

Liang, L. R.; Wang, X. D.; Wang, M. M.; Liu, Z. X.; Chen, G. M.; Sun, G.X. Flexible poly(3,4-ethylenedioxythiophene)-tosylate/SWCNT compositefilms with ultrahigh electrical conductivity for thermoelectric energyharvesting. Compos.Commun. 2021, 25, 100701.

[7]

Avery, A. D.; Zhou, B. H.; Lee, J.; Lee, E. S.; Miller, E. M.; Ihly, R.;Wesenberg, D.; Mistry, K. S.; Guillot, S. L.; Zink, B. L. et al.Tailored semiconducting carbon nanotube networks with enhancedthermoelectric properties. Nat. Energy 2016, 1, 16033.

[8]

Blackburn, J. L.; Ferguson, A. J.; Cho, C.; Grunlan, J. C.Carbon-nanotube-based thermoelectric materials and devices. Adv. Mater. 2018, 30, 1704386.

[9]

Liu, Y. M.; Shi, X. L.; Wu, T.; Wu, H.; Mao, Y. Q.; Cao, T. Y.; Wang, D.Z.; Liu, W. D.; Li, M.; Liu, Q. F. et al. Boosting thermoelectricperformance of single-walled carbon nanotubes-based films throughrational triple treatments. Nat.Commun. 2024, 15, 3426.

[10]

Zhang, L.; Zhang, G.; Liu, C. H.; Fan, S. S. High-density carbon nanotubebuckypapers with superior transport and mechanical properties. Nano Lett. 2012, 12, 4848–4852.

[11]

Zeng, Z. H.; Wang, G.; Wolan, B. F.; Wu, N.; Wang, C. X.; Zhao, S. Y.;Yue, S. Y.; Li, B.; He, W. D.; Liu, J. R. et al. Printable alignedsingle-walled carbon nanotube film with outstanding thermal conductivityand electromagnetic interference shielding performance. Nano-MicroLett. 2022, 14, 179.

[12]

Zhou, W. B.; Fan, Q. X.; Zhang, Q.; Li, K. W.; Cai, L.; Gu, X. G.; Yang,F.; Zhang, N.; Xiao, Z. J.; Chen, H. L. et al. Ultrahigh-power-factorcarbon nanotubes and an ingenious strategy for thermoelectricperformance evaluation. Small 2016, 12, 3407–3414.

[13]

Green, M. A.; Bremner, S. P. Energy conversion approaches and materialsfor high-efficiency photovoltaics. Nat. Mater. 2017, 16, 23–34.

[14]

Jošt, M.; Lipovšek, B.; Glažar, B.; Al-Ashouri, A.; Brecl, K.; Matič, G.;Magomedov, A.; Getautis, V.; Topič, M.; Albrecht, S. Perovskite solarcells go outdoors: Field testing and temperature effects on energyyield. Adv. EnergyMater. 2020, 10, 2000454.

[15]

Shittu, S.; Li, G. Q.; Akhlaghi, Y. G.; Ma, X. L.; Zhao, X. D.; Ayodele,E. Advancements in thermoelectric generators for enhanced hybridphotovoltaic system performance. Renew.Sustain. Energy Rev. 2019, 109, 24–54.

[16]

Hou, P. X.; Zhang, F.; Zhang, L. L.; Liu, C.; Cheng, H. M. Synthesis ofcarbon nanotubes by floating catalyst chemical vapor deposition andtheir applications. Adv. Funct.Mater. 2022, 32, 2108541.

[17]

Wu, Y. Z.; Zhao, X. W.; Shang, Y. Y.; Chang, S. L.; Dai, L. X.; Cao, A.Y. Application-driven carbon nanotube functional materials. ACS Nano 2021, 15, 7946–7974.

[18]

Ilatovskii, D. A.; Gilshtein, E. P.; Glukhova, O. E.; Nasibulin, A. G.Transparent conducting films based on carbon nanotubes: Rational designtoward the theoretical limit. Adv. Sci. 2022, 9, 2201673.

[19]

Zhang, Q.; Zhou, W. Y.; Xia, X. G.; Li, K. W.; Zhang, N.; Wang, Y. C.;Xiao, Z. J.; Fan, Q. X.; Kauppinen, E. I.; Xie, S. S. Transparent andfreestanding single-walled carbon nanotube films synthesized directlyand continuously via a blown aerosol technique. Adv. Mater. 2020, 32, 2004277.

[20]

Yue, Y.; Zhang, D.; Wang, P. Y.; Xia, X. G.; Wu, X.; Zhang, Y. J.; Mei,J.; Li, S. Q.; Li, M. M.; Wang, Y. C. et al. Large-area flexible carbonnanofilms with synergistically enhanced transmittance and conductivityprepared by reorganizing single-walled carbon nanotube networks. Adv. Mater. 2024, 36, 2313971.

[21]

Hecht, D. S.; Thomas, D.; Hu, L. B.; Ladous, C.; Lam, T.; Park, Y.;Irvin, G.; Drzaic, P. Carbon-nanotube film on plastic as transparentelectrode for resistive touch screens. J. Soc. Inf.Display 2009, 17, 941–946.

[22]

Jiang, S.; Hou, P. X.; Chen, M. L.; Wang, B. W.; Sun, D. M.; Tang, D. M.;Jin, Q.; Guo, Q. X.; Zhang, D. D.; Du, J. H. et al.Ultrahigh-performance transparent conductive films of carbon-weldedisolated single-wall carbon nanotubes. Sci. Adv. 2018, 4, eaap9264.

[23]

Zhang, Q.; Nam, J. S.; Han, J. Y.; Datta, S.; Wei, N.; Ding, E. X.;Hussain, A.; Ahmad, S.; Skakalova, V.; Khan, A. T. et al. Large-diametercarbon nanotube transparent conductor overcoming performance-yieldtradeoff. Adv. Funct.Mater. 2022, 32, 2103397.

[24]

Nirmalraj, P. N.; Lyons, P. E.; De, S.; Coleman, J. N.; Boland, J. J.Electrical connectivity in single-walled carbon nanotube networks. Nano Lett. 2009, 9, 3890–3895.

[25]

Headrick, R. J.; Williams, S. M.; Owens, C. E.; Taylor, L. W.; Dewey, O.S.; Ginestra, C. J.; Liberman, L.; Ya’akobi, A. M.; Talmon, Y.;Maruyama, B. et al. Versatile acid solvents for pristine carbon nanotubeassembly. Sci. Adv. 2022, 8, eabm3285.

[26]

Yang, D. H.; Li, L. H.; Li, X.; Xi, W.; Zhang, Y. J.; Liu, Y. M.; Wei, X.J.; Zhou, W. Y.; Wei, F.; Xie, S. S. et al. Preparing high-concentrationindividualized carbon nanotubes for industrial separation of multiplesingle-chirality species. Nat.Commun. 2023, 14, 2491.

[27]

Canselier, J. P.; Delmas, H.; Wilhelm, A. M.; Abismaïl, B. Ultrasoundemulsification—An overview. J.Dispers. Sci. Technol. 2002, 23, 333–349.

[28]

Zhang, X.; De Volder, M.; Zhou, W. B.; Issman, L.; Wei, X. J.; Kaniyoor,A.; Terrones Portas, J.; Smail, F.; Wang, Z. B.; Wang, Y. C. et al.Simultaneously enhanced tenacity, rupture work, and thermal conductivityof carbon nanotube fibers by raising effective tube portion. Sci. Adv. 2022, 8, eabq3515.

[29]

Dan, B.; Irvin, G. C.; Pasquali, M. Continuous and scalable fabricationof transparent conducting carbon nanotube films. ACS Nano 2009, 3, 835–843.

[30]

Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.;Witten, T. A. Capillary flow as the cause of ring stains from driedliquid drops. Nature 1997, 389, 827–829.

[31]

Cui, L. Y.; Zhang, J. H.; Zhang, X. M.; Huang, L.; Wang, Z. H.; Li, Y.F.; Gao, H. N.; Zhu, S. J.; Wang, T. Q.; Yang, B. Suppression of thecoffee ring effect by hydrosoluble polymer additives. ACS Appl. Mater.Interfaces 2012, 4, 2775–2780.

[32]

Mukherjee, R.; Sharma, A. Instability, self-organization and patternformation in thin soft films. Soft Matter 2015, 11, 8717–8740.

[33]

Bulmer, J. S.; Kaniyoor, A.; Elliott, J. A. A meta-analysis of conductiveand strong carbon nanotube materials. Adv. Mater. 2021, 33, 2008432.

[34]

Choi, Y.; Kim, Y.; Park, S. G.; Kim, Y. G.; Sung, B. J.; Jang, S. Y.;Kim, W. Effect of the carbon nanotube type on the thermoelectricproperties of CNT/Nafion nanocomposites. Org.Electron. 2011, 12, 2120–2125.

[35]

Wang, L. M.; Yao, Q.; Xiao, J. X.; Zeng, K. Y.; Qu, S. Y.; Shi, W.;Wang,Q.; Chen, L. D. Engineered molecular chain ordering in singlewalledcarbon nanotubes/polyaniline composite films for highperformance organicthermoelectric materials. Chem. AsianJ. 2016, 11, 1804–1810.

[36]

Meng, C.; Liu, C.; Fan, S. A. Promising approach to enhancedthermoelectric properties using carbon nanotube networks. Adv. Mater. 2010, 22, 535–539.

[37]

Wang, Y. Z.; Li, Q.; Wang, J.; Li, Z. C.; Li, K. C.; Dai, X.; Pan, J. H.;Wang, H. Understanding the solvent effects on polarity switching andthermoelectric properties changing of solution-processable n-typesingle-walled carbon nanotube films. NanoEnergy 2022, 93, 106804.

[38]

Luo, C.; Zuo, X. L.; Wang, L.; Wang, E. G.; Song, S. P.; Wang, J.; Wang,J.; Fan, C. H.; Cao, Y. Flexible carbon nanotube-polymer composite filmswith high conductivity and superhydrophobicity made by solution process. Nano Lett. 2008, 8, 4454–4458.

[39]

Xi, W.; Xia, X. G.; Zhu, J. C.; Yang, D. H.; Xie, S. S. Enhancingelectrochemical capacity and interfacial stability of lithium-ionbatteries through side reaction modulation with ultrathin carbonnanotube film and optimized lithium cobalt oxide particle size. Nano Res. 2024, 17, 7230–7241.

[40]

Zhou, W. B.; Fan, Q. X.; Zhang, Q.; Cai, L.; Li, K. W.; Gu, X. G.; Yang,F.; Zhang, N.; Wang, Y. C.; Liu, H. P. et al. High-performance andcompact-designed flexible thermoelectric modules enabled by a reticulatecarbon nanotube architecture. Nat. Commun. 2017, 8, 14886.

[41]

Jiao, X. Y.; Xu, L. L.; Sun, X. Y.; Shi, C.; Hou, P. X.; Liu, C.; Cheng,H. M. Single-wall carbon nanotube fiber non-woven fabrics with a highelectrothermal heating response. Nano Res. 2024, 17, 5621–5628.

[42]

Wang, J.; Musameh, M.; Lin, Y. H. Solubilization of carbon nanotubes byNafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc. 2003, 125, 2408–2409.

[43]

Gao, C. Q.; Guo, M. Y.; Liu, Y. K.; Zhang, D. Y.; Gao, F.; Sun, L.; Li,J. S.; Chen, X. C.; Terrones, M.; Wang, Y. Q. Surface modificationmethods and mechanisms in carbon nanotubes dispersion. Carbon 2023, 212, 118133.

[44]

Prabhakar, R.; Hossain, S.; Zheng, W.; Athikam, P. K.; Zhang, Y.; Hsieh,Y. Y.; Skafidas, E.; Wu, Y.; Shanov, V.; Bahk, J. H. Tunneling-limitedthermoelectric transport in carbon nanotube networks embedded inpoly(dimethylsiloxane) elastomer. ACS Appl.Energy Mater. 2019, 2, 2419–2426.

[45]

Zhu, J.; Shim, B. S.; Di Prima, M.; Kotov, N. A. Transparent conductorsfrom carbon nanotubes LBL-assembled with polymer dopant with π-πelectron transfer. J. Am. Chem. Soc. 2011, 133, 7450–7460.

[46]

Huang, Y. Y.; Terentjev, E. M. Dispersion and rheology of carbonnanotubes in polymers. Int. J.Mater. Form. 2008, 1, 63–74.

[47]

Lee, H. W.; You, W.; Barman, S.; Hellstrom, S.; LeMieux, M. C.; Oh, J.H.; Liu, S. H.; Fujiwara, T.; Wang, W. M.; Chen, B. et al. Lyotropicliquid-crystalline solutions of high-concentration dispersions ofsingle-walled carbon nanotubes with conjugated polymers. Small 2009, 5, 1019–1024.

[48]

Huang, Y. Y.; Ahir, S. V.; Terentjev, E. M. Dispersion rheology of carbonnanotubes in a polymer matrix. Phys.Rev. B 2006, 73, 125422.

[49]

Dumée, L.; Sears, K.; Schütz, J.; Finn, N.; Duke, M.; Gray, S. Influenceof the sonication temperature on the debundling kinetics of carbonnanotubes in propan-2-ol. Nanomaterials 2013, 3, 70–85.

[50]

Chatterjee, T.; Krishnamoorti, R. Rheology of polymercarbon nanotubescomposites. Soft Matter 2013, 9, 9515–9529.

[51]

Keinänen, P.; Siljander, S.; Koivula, M.; Sethi, J.; Sarlin, E.;Vuorinen, J.; Kanerva, M. Optimized dispersion quality of aqueous carbonnanotube colloids as a function of sonochemical yield and surfactant/CNTratio. Heliyon 2018, 4, e00787.

[52]

Yu, C.; Choi, K.; Yin, L.; Grunlan, J. C. Light-weight flexible carbonnanotube based organic composites with large thermoelectric powerfactors. ACS Nano 2011, 5, 7885–7892.

[53]

Wei, S. S.; Huang, X.; Deng, L.; Yan, Z. C.; Chen, G. M. Facilepreparations of layer-like and honeycomb-like films ofpoly(3,4-ethylenedioxythiophene)/carbon nanotube composites forthermoelectric application. Compos.Sci. Technol. 2021, 208, 108759.

[54]

Li, H.; Liu, Y. L.; Li, P. C.; Liu, S. Q.; Du, F. P.; He, C. B. Enhancedthermoelectric performance of carbon nanotubes/polyaniline composites bymultiple interface engineering. ACS Appl.Mater. Interfaces 2021, 13, 6650–6658.

[55]

Chen, J. H.; Wan, L.; Li, H.; Yan, J.; Ma, J. K.; Sun, B.; Li, F.;Flavel, B. S. A polymer/carbon-nanotube ink as aboron-dopant/inorganic-passivation free carrier selective contact forsilicon solar cells with over 21% efficiency. Adv. Funct.Mater. 2020, 30, 2004476.

[56]

Sun, D. M.; Timmermans, M. Y.; Tian, Y.; Nasibulin, A. G.; Kauppinen, E.I.; Kishimoto, S.; Mizutani, T.; Ohno, Y. Flexible high-performancecarbon nanotube integrated circuits. Nat.Nanotechnol. 2011, 6, 156–161.

[57]

Vroege, G. J.; Odijk, T. Induced chain rigidity, splay modulus and otherproperties of nematic polymer liquid crystals. Macromolecules 1988, 21, 2848–2858.

[58]

Yang, C.; Souchay, D.; Kneiß, M.; Bogner, M.; Wei, H. M.; Lorenz, M.;Oeckler, O.; Benstetter, G.; Fu, Y. Q.; Grundmann, M. Transparentflexible thermoelectric material based on non-toxic earth-abundantp-type copper iodide thin film. Nat. Commun. 2017, 8, 16076.

[59]

He, X. W.; Gao, W. L.; Xie, L. J.; Li, B.; Zhang, Q.; Lei, S. D.;Robinson, J. M.; Hároz, E. H.; Doorn, S. K.; Wang, W. P. et al.Wafer-scale monodomain films of spontaneously aligned single-walledcarbon nanotubes. Nat.Nanotechnol. 2016, 11, 633–638.

[60]

Gu, C.; Jia, A. B.; Zhang, Y. M.; Zhang, S. X. A. Emerging electrochromicmaterials and devices for future displays. Chem.Rev. 2022, 122, 14679–14721.

[61]

Su, W.; Yang, D. H.; Cui, J. M.; Wang, F. T.; Wei, X. J.; Zhou, W. Y.;Kataura, H.; Xie, S. S.; Liu, H. P. Ultrafast wafer-scale assembly ofuniform and highly dense semiconducting carbon nanotube films foroptoelectronics. Carbon 2020, 163, 370–378.

[62]

Geng, H. Z.; Kim, K. K.; So, K. P.; Lee, Y. S.; Chang, Y.; Lee, Y. H.Effect of acid treatment on carbon nanotube-based flexible transparentconducting films. J. Am. Chem. Soc. 2007, 129, 7758–7759.

[63]

Engel, M.; Small, J. P.; Steiner, M.; Freitag, M.; Green, A. A.; Hersam,M. C.; Avouris, P. Thin film nanotube transistors based onself-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano 2008, 2, 2445–2452.

[64]

Redon, C.; Brochard-Wyart, F.; Rondelez, F. Dynamics of dewetting. Phys.Rev. Lett. 1991, 66, 715–718.

[65]

Akbari, A.; Sheath, P.; Martin, S. T.; Shinde, D. B.; Shaibani, M.;Banerjee, P. C.; Tkacz, R.; Bhattacharyya, D.; Majumder, M. Large-areagraphene-based nanofiltration membranes by shear alignment of discoticnematic liquid crystals of graphene oxide. Nat. Commun. 2016, 7, 10891.

[66]

Zitzenbacher, G.; Dirnberger, H.; Längauer, M.; Holzer, C. Calculation ofthe contact angle of polymer melts on tool surfaces from viscosityparameters. Polymers 2017, 10, 38.

[67]

Li, Y. A.; Yang, Q.; Li, M. Z.; Song, Y. L. Rate-dependent interfacecapture beyond the coffee-ring effect. Sci. Rep. 2016, 6, 24628.

[68]

Kojima, K.; Aizawa, M.; Yamamoto, T.; Muroga, S.; Kobashi, K.; Okazaki,T. Liquid crystalline behaviors of single-walled carbon nanotubes in anaqueous sodium cholate dispersion. Langmuir 2022, 38, 8899–8905.

[69]

Paul, D. K.; Karan, K.; Docoslis, A.; Giorgi, J. B.; Pearce, J.Characteristics of self-assembled ultrathin Nafion films. Macromolecules 2013, 46, 3461–3475.

Nano Research
Article number: 94907383
Cite this article:
Yuan X, Yang D, Yang X, et al. Scalable fabrication of ultrahigh-conductivity SWCNT films via aredispersion method for photovoltaic/thermoelectric coupling systems. Nano Research, 2025, 18(5): 94907383. https://doi.org/10.26599/NR.2025.94907383
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return