PDF (12.3 MB)
Collect
Submit Manuscript
Show Outline
Figures (5)

Research Article | Open Access

Electrochemical co-upgrading CO2 and glycerol for selective formate production with 190% overall Faradaic efficiency

Dingwen Chen1,§Siheng Yang1,§Jing Gao2,§Xuan Zheng1Jiawei Mao3Qinyuan Hu4Xiaohan Sun5Li Ji6Xueli Zheng1Haiyan Fu1Weichao Xue1Hua Chen1Shuang Li7Chong Cheng7Jing Peng8Xingchen Jiao4Ruixiang Li1 ()Michael Grätzel2 ()Jiaqi Xu1,2 ()
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Sichuan Institute of Product Quality Supervision and Inspection, Chengdu 610100, China
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
Sichuan Research Institute of Chemical Quality and Safety Testing, Chengdu 610031, China
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

§ Dingwen Chen, Siheng Yang, and Jing Gao contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
To reduce energy consumption and enhance the economic viability of carbon dioxide (CO2) electrolysis systems, replacing the anodic oxygen evolution reaction (OER) with the glycerol oxidation reaction (GOR) has emerged as a promising approach. To this end, an efficient GOR//CO2 reduction reaction (CO2RR) paired electrolysis system has been developed using NiOOH@Ni3S2/ nickel foam (NF) and defect-rich bismuth nanosheets as catalysts, achieving a state-of-the-art total formate Faradaic efficiency of ca. 190% at 160 mA·cm−2 and offering a novel strategy for the co-upgrading of CO2 and biomass.

Abstract

The overall energy efficiency (EE) is critical for commercializing promising electrochemical technologies, such as the carbon dioxide reduction reaction (CO2RR). Despite the rapid development of advanced catalysts and reactors for CO2RR, its commercial potential is still hindered by the sluggish oxygen evolution reaction (OER), which causes high cell voltages and low EEs. Herein, we developed a NiOOH@Ni3S2 catalyst on the surface of nickel foam (NF) via an electrochemical surface reconstruction strategy. We observed that the oxidation of glycerol (GLY) to formate (FA) is more thermodynamically favorable than the OER on the developed NiOOH@Ni3S2/NF catalysts. The Ni2+/Ni3+ redox couples within the NiOOH@Ni3S2 heterojunction enhance the charge transfer kinetics between the active sites and adsorbed reaction intermediates, facilitating the highly selective and active generation of FA from GLY oxidation reaction (GOR), with a remarkable Faradaic efficiency (FE) of 94% achieved at 100 mA·cm−2. Comprehensive mechanistic studies identified that the reaction pathway towards FA generation starts from glyceraldehyde intermediates, and glycolate was considered as the key species. Moreover, benefiting from the efficient conversion of CO2 to FA on bismuth nanosheets, the GOR//CO2RR paired electrolysis system realizes a remarkable overall FE of ca. 190% for FA co-production at 160 mA·cm−2 (cathodic FE: 91.25% and anodic FE: 98.70%). This proceeds at a cell voltage of ca. 2.32 V, which is ca. 0.85 V lower than that of OER-assisted CO2RR system at the same current density. This work provides new insights for co-upgrading CO2 and biomass to value-added chemicals.

Electronic Supplementary Material

Download File(s)
7399_ESM.pdf (7.3 MB)

References

[1]

Das, P.; Mathur, J.; Bhakar, R.; Kanudia, A. Implications of short-term renewable energy resource intermittency in long-term power system planning. Energy Strategy Rev. 2018, 22, 1–15.

[2]

Li, M. Q.; Ma, Q. Y.; Shan, R.; Abdulla, A.; Virguez, E.; Gao, S.; Patiño-Echeverri, D. Renewable energy quality trilemma and coincident wind and solar droughts. Commun. Earth Environ. 2024, 5, 661.

[3]

Delgado, S.; del Carmen Arévalo, M.; Pastor, E.; García, G. Electrochemical reduction of carbon dioxide on graphene-based catalysts. Molecules 2021, 26, 572.

[4]

Zhao, X.; Du, L. J.; You, B.; Sun, Y. J. Integrated design for electrocatalytic carbon dioxide reduction. Catal. Sci. Technol. 2020, 10, 2711–2720.

[5]

Wang, J.; Zang, N.; Xuan, C. J.; Jia, B. H.; Jin, W.; Ma, T. Y. Self-supporting electrodes for gas-involved key energy reactions. Adv. Funct. Mater. 2021, 31, 2104620.

[6]

Xu, F. F.; Feng, B.; Shen, Z.; Chen, Y. Q.; Jiao, L.; Zhang, Y.; Tian, J. Y.; Zhang, J. R.; Wang, X. Z.; Yang, L. J. et al. Oxygen-bridged Cu binuclear sites for efficient electrocatalytic CO2 reduction to ethanol at ultralow overpotential. J. Am. Chem. Soc. 2024, 146, 9365–9374.

[7]

She, X. J.; Zhai, L. L.; Wang, Y. F.; Xiong, P.; Li, M. M. J.; Wu, T. S.; Wong, M. C.; Guo, X. Y.; Xu, Z. H.; Li, H. M. et al. Pure-water-fed, electrocatalytic CO2 reduction to ethylene beyond 1, 000 h stability at 10 A. Nat. Energy 2024, 9, 81–91.

[8]

Zhang, C.; Hao, X. B.; Wang, J. T.; Ding, X. Y.; Zhong, Y.; Jiang, Y. W.; Wu, M. C.; Long, R.; Gong, W. B.; Liang, C. H. et al. Concentrated formic acid from CO2 electrolysis for directly driving fuel cell. Angew. Chem., Int. Ed. 2024, 63, e202317628.

[9]

Yin, J.; Jin, J.; Yin, Z. Y.; Zhu, L.; Du, X.; Peng, Y.; Xi, P. X.; Yan, C. H.; Sun, S. H. The built-in electric field across FeN/Fe3N interface for efficient electrochemical reduction of CO2 to CO. Nat. Commun. 2023, 14, 1724.

[10]
Zhu, J. Y.; Zhou, G. R.; Tong, Y.; Chen, L.; Chen, P. Z. Vanadium oxide clusters mediated bismuth-tin alloy for accelerated dynamics of electrocatalytic CO2 conversion. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202420177.
[11]

Xi, W. L.; Yang, P.; Jiang, M. K.; Wang, X. L.; Zhou, H. X.; Duan, J. Y.; Ratova, M.; Wu, D. Electrochemical CO2 reduction coupled with alternative oxidation reactions: Electrocatalysts, electrolytes, and electrolyzers. Appl. Catal. B: Environ. 2024, 341, 123291.

[12]

Andrei, V.; Roh, I.; Lin, J. A.; Lee, J.; Shan, Y.; Lin, C. K.; Shelton, S.; Reisner, E.; Yang, P. D. Perovskite-driven solar C2 hydrocarbon synthesis from CO2. Nat. Catal. 2025, 8, 137–146.

[13]

Kormányos, A.; Szirmai, A.; Endrődi, B.; Janáky, C. Stable operation of paired CO2 reduction/glycerol oxidation at high current density. ACS Catal. 2024, 14, 6503–6512.

[14]

Wei, X. F.; Li, Y.; Chen, L. S.; Shi, J. L. Formic acid electro-synthesis by concurrent cathodic CO2 reduction and anodic CH3OH oxidation. Angew. Chem., Int. Ed. 2021, 60, 3148–3155.

[15]

Zhang, Q. X.; Gao, J.; Wang, X. J.; Zeng, J. R.; Li, J.; Wang, Z. K.; He, H.; Luo, J. S.; Zhao, Y.; Zhang, L. J. et al. Phase-stable indium sulfide achieves an energy conversion efficiency of 14.3% for solar-assisted carbon dioxide reduction to formate. Joule 2024, 8, 1501–1519.

[16]
Wang, J. C.; Bui, H. T. D.; Hu, H. S.; Kong, S. Y.; Wang, X. L.; Zhu, H. B.; Ma, J. Q.; Xu, J. T.; Liu, Y. H.; Liu, L. J. et al. Industrial-current ammonia synthesis by polarized cuprous cyanamide coupled to valorization of glycerol at 4, 000 mA·cm−2. Adv. Mater., in press, DOI: 10.1002/adma.202418451.
[17]

Huang, X.; Wang, M. C.; Zhong, H. X.; Li, X. D.; Wang, H. P.; Lu, Y.; Zhang, G. P.; Liu, Y. N.; Zhang, P. P.; Zou, R. Q. et al. Metal-phthalocyanine-based two-dimensional conjugated metal–organic frameworks for electrochemical glycerol oxidation reaction. Angew. Chem., Int. Ed. 2025, 64, e202416178.

[18]

Wang, Z.; Li, J. H.; Zhang, Q.; Wu, C.; Meng, H. Y.; Tang, Y.; Zou, A. Q.; Zhang, Y. M.; Ma, R.; Lv, X. et al. Facilitating formate selectivity via optimizing eg* band broadening in NiMn hydroxides for ethylene glycol electro-oxidation. Angew. Chem., Int. Ed. 2024, 63, e202411517.

[19]

Bi, J. H.; Zhu, Q. G.; Guo, W. W.; Li, P. S.; Jia, S. Q.; Liu, J. Y.; Ma, J.; Zhang, J. L.; Liu, Z. M.; Han, B. X. Simultaneous CO2 reduction and 5-hydroxymethylfurfural oxidation to value-added products by electrocatalysis. ACS Sustain. Chem. Eng. 2022, 10, 8043–8050.

[20]

van den Bosch, B.; Rawls, B.; Brands, M. B.; Koopman, C.; Phillips, M. F.; Figueiredo, M. C.; Gruter, G. J. M. Formate over-oxidation limits industrialization of glycerol oxidation paired with carbon dioxide reduction to formate. ChemPlusChem 2023, 88, e202300112.

[21]

Junqueira, J. R. C.; Das, D.; Cathrin Brix, A.; Dieckhöfer, S.; Weidner, J.; Wang, X.; Shi, J. L.; Schuhmann, W. Simultaneous anodic and cathodic formate production in a paired electrolyzer by CO2 reduction and glycerol oxidation. ChemSusChem 2023, 16, e202202349.

[22]

Fernández-Caso, K.; Peña-Rodríguez, A.; Solla-Gullón, J.; Montiel, V.; Díaz-Sainz, G.; Alvarez-Guerra, M.; Irabien, A. Continuous carbon dioxide electroreduction to formate coupled with the single-pass glycerol oxidation to high value-added products. J. CO2 Util. 2023, 70, 102431.

[23]

Verma, S.; Lu, S.; Kenis, P. J. A. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat. Energy 2019, 4, 466–474.

[24]

Wang, G. X.; Chen, J. X.; Li, K. K.; Huang, J. H.; Huang, Y. C.; Liu, Y. J.; Hu, X.; Zhao, B. S.; Yi, L. C.; Jones, T. W. et al. Cost-effective and durable electrocatalysts for Co-electrolysis of CO2 conversion and glycerol upgrading. Nano Energy 2022, 92, 106751.

[25]

Guo, X. Y.; Xu, S. M.; Zhou, H.; Ren, Y.; Ge, R. X.; Xu, M.; Zheng, L. R.; Kong, X. G.; Shao, M. F.; Li, Z. H. et al. Engineering hydrogen generation sites to promote electrocatalytic CO2 reduction to formate. ACS Catal. 2022, 12, 10551–10559.

[26]

Vehrenberg, J.; Baessler, J.; Decker, A.; Keller, R.; Wessling, M. Paired electrochemical synthesis of formate via oxidation of glycerol and reduction of CO2 in a flow cell reactor. Electrochem. Commun. 2023, 151, 107497.

[27]

Houache, M. S. E.; Safari, R.; Nwabara, U. O.; Rafaïdeen, T.; Botton, G. A.; Kenis, P. J. A.; Baranton, S.; Coutanceau, C.; Baranova, E. A. Selective electrooxidation of glycerol to formic acid over carbon supported Ni1−xMx (M = Bi, Pd, and Au) nanocatalysts and coelectrolysis of CO2. ACS Appl. Energy Mater. 2020, 3, 8725–8738.

[28]

Pei, Y. H.; Pi, Z. F.; Zhong, H.; Cheng, J.; Jin, F. M. Glycerol oxidation-assisted electrochemical CO2 reduction for the dual production of formate. J. Mater. Chem. A 2022, 10, 1309–1319.

[29]

Wang, Y. Z.; Wu, J. J. Thermochemical conversion of biomass: Potential future prospects. Renew. Sustain. Energy Rev. 2023, 187, 113754.

[30]

Yang, X. P.; Zhang, Y. J.; Sun, P. L.; Peng, C. A review on renewable energy: Conversion and utilization of biomass. Smart Mol. 2024, 2, e20240019.

[31]

Dodekatos, G.; Schünemann, S.; Tüysüz, H. Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation. ACS Catal. 2018, 8, 6301–6333.

[32]

Hu, X. Y.; Lu, J.; Liu, Y.; Chen, L.; Zhang, X. W.; Wang, H. T. Sustainable catalytic oxidation of glycerol: A review. Environ. Chem. Lett. 2023, 21, 2825–2861.

[33]

Vargas, K. S.; Zaffran, J.; Araque, M.; Sadakane, M.; Katryniok, B. Deoxydehydration of glycerol to allyl alcohol catalysed by ceria-supported rhenium oxide. Mol. Catal. 2023, 535, 112856.

[34]

Nabil, S. K.; Muzibur Raghuman, M. A.; Kannimuthu, K.; Rashid, M.; Shiran, H. S.; Kibria, M. G.; Khan, M. A. Acid-base chemistry and the economic implication of electrocatalytic carboxylate production in alkaline electrolytes. Nat. Catal. 2024, 7, 330–337.

[35]

Fan, L. F.; Liu, B. W.; Liu, X.; Senthilkumar, N.; Wang, G. X.; Wen, Z. H. Recent progress in electrocatalytic glycerol oxidation. Energy Technol. 2021, 9, 2000804.

[36]

Wu, J. X.; Yang, X. J.; Gong, M. Recent advances in glycerol valorization via electrooxidation: Catalyst, mechanism and device. Chin. J. Catal. 2022, 43, 2966–2986.

[37]

Liu, C.; Hirohara, M.; Maekawa, T.; Chang, R.; Hayashi, T.; Chiang, C. Y. Selective electro-oxidation of glycerol to dihydroxyacetone by a non-precious electrocatalyst-CuO. Appl. Catal. B: Environ. 2020, 265, 118543.

[38]

Yan, W. R.; Zhang, J.; Lu, S. F.; Jiang, S. P.; Xiang, Y. Tuning dehydrogenation behavior of formic acid on boosting cell performance of formic acid fuel cell at elevated temperatures. J. Power Sources 2022, 544, 231877.

[39]

Calabrese, M.; Russo, D.; di Benedetto, A.; Marotta, R.; Andreozzi, R. Formate/bicarbonate interconversion for safe hydrogen storage: A review. Renew. Sustain. Energy Rev. 2023, 173, 113102.

[40]

Younas, M.; Rezakazemi, M.; Arbab, M. S.; Shah, J.; Rehman, W. U. Green hydrogen storage and delivery: Utilizing highly active homogeneous and heterogeneous catalysts for formic acid dehydrogenation. Int. J. Hydrogen Energy 2022, 47, 11694–11724.

[41]
Technavio. Formic acid market analysis, size, and forecast 2025–2029: APAC (Australia, China, India, Japan, South Korea), North America (US and Canada), Europe (Germany, UK), Middle East and Africa (South Africa), and South America [Online]. https://www.technavio.com/report/formic-acid-market-industry-analysis (accessed Mar 19, 2025).
[42]

Zhang, Q.; Zhang, X. J.; Liu, B. C.; Jing, P.; Xu, X.; Hao, H. G.; Gao, R.; Zhang, J. Active hydroxyl-mediated preferential cleavage of carbon–carbon bonds in electrocatalytic glycerol oxidation. Angew. Chem., Int. Ed. 2025, 64, e202420942.

[43]
Chen, H. Y.; Gao, R. T.; Su, K. R.; Li, Z. L.; Wu, L. M.; Wang, L. Re and Ru Co-doped transition metal alloy as a bifunctional catalyst for electrooxidation of glycerol to formate coupled with H2 production. Angew. Chem., Int. Ed. 2025, in press, DOI: 10.1002/anie.202501766.
[44]

Garcia, A. C.; Birdja, Y. Y.; Tremiliosi-Filho, G.; Koper, M. T. M. Glycerol electro-oxidation on bismuth-modified platinum single crystals. J. Catal. 2017, 346, 117–124.

[45]

Yang, F.; Ye, J. Y.; Yuan, Q.; Yang, X. T.; Xie, Z. X.; Zhao, F. L.; Zhou, Z. Y.; Gu, L.; Wang, X. Ultrasmall Pd–Cu–Pt trimetallic twin icosahedrons boost the electrocatalytic performance of glycerol oxidation at the operating temperature of fuel cells. Adv. Funct. Mater. 2020, 30, 1908235.

[46]

Gomes, J. F.; de Paula, F. B. C.; Gasparotto, L. H. S.; Tremiliosi-Filho, G. The influence of the Pt crystalline surface orientation on the glycerol electro-oxidation in acidic media. Electrochim. Acta 2012, 76, 88–93.

[47]

Sun, Y.; Wang, J.; Qi, Y. F.; Li, W. J.; Wang, C. Efficient electrooxidation of 5-hydroxymethylfurfural using Co-doped Ni3S2 catalyst: Promising for H2 production under industrial-level current density. Adv. Sci. 2022, 9, 2200957.

[48]

Xu, J. Q.; Yang, S. H.; Ji, L.; Mao, J. W.; Zhang, W.; Zheng, X. L.; Fu, H. Y.; Yuan, M. L.; Yang, C. K.; Chen, H. et al. High current CO2 reduction realized by edge/defect-rich bismuth nanosheets. Nano Res. 2023, 16, 53–61.

[49]

Xu, J. Q.; Li, X. D.; Liu, W.; Sun, Y. F.; Ju, Z. Y.; Yao, T.; Wang, C. M.; Ju, H. X.; Zhu, J. F.; Wei, S. Q. et al. Carbon dioxide electroreduction into syngas boosted by a partially delocalized charge in molybdenum sulfide selenide alloy monolayers. Angew. Chem., Int. Ed. 2017, 56, 9121–9125.

[50]

Cheng, Y.; Zhang, L. F.; Wang, S.; Wang, M. F.; Deng, C. W.; Sun, Y.; Yan, C. L.; Qian, T. 2 A·cm−2 level large-scale production of hydrogen enabled by constructing higher capacity of interface “electron pocket”. ACS Nano 2023, 17, 15504–15515.

[51]

Zhuo, X. Y.; Jiang, W. J.; Qian, G. F.; Chen, J. L.; Yu, T. Q.; Luo, L.; Lu, L. H.; Chen, Y. L.; Yin, S. B. Ni3S2/Ni heterostructure nanobelt arrays as bifunctional catalysts for urea-rich wastewater degradation. ACS Appl. Mater. Interfaces 2021, 13, 35709–35718.

[52]

Dupin, J. C.; Gonbeau, D.; Martin-Litas, I.; Vinatier, P.; Levasseur, A. Amorphous oxysulfide thin films MOySz (M = W, Mo, Ti) XPS characterization: Structural and electronic pecularities. Appl. Surf. Sci. 2001, 173, 140–150.

[53]

Zhao, C. X.; Liu, J. N.; Wang, C. D.; Wang, J.; Song, L.; Li, B. Q.; Zhang, Q. An anionic regulation mechanism for the structural reconstruction of sulfide electrocatalysts under oxygen evolution conditions. Energy Environ. Sci. 2022, 15, 3257–3264.

[54]

Martinez, H.; Benayad, A.; Gonbeau, D.; Vinatier, P.; Pecquenard, B.; Levasseur, A. Influence of the cation nature of high sulfur content oxysulfide thin films MOySz (M = W, Ti) studied by XPS. Appl. Surf. Sci. 2004, 236, 377–386.

[55]

Martin, I.; Vinatier, P.; Levasseur, A.; Dupin, J. C.; Gonbeau, D. XPS analysis of the lithium intercalation in amorphous tungsten oxysulfide thin films. J. Power Sources 1999, 81–82, 306–311.

[56]

Benoist, L.; Gonbeau, D.; Pfister-Guillouzo, G.; Schmidt, E.; Meunier, G.; Levasseur, A. X-ray photoelectron spectroscopy characterization of amorphous molybdenum oxysulfide thin films. Thin Solid Films 1995, 258, 110–114.

[57]

Qin, H. Y.; Zhang, B.; Pan, Y. P.; Wang, X. X.; Diao, L. C.; Chen, J.; Wu, J. L.; Liu, E. Z.; Sha, J. W.; Ma, L. Y. et al. Accelerating water dissociation kinetics on Ni3S2 nanosheets by P-induced electronic modulation. J. Catal. 2020, 381, 493–500.

[58]

Cheng, Z.; Abernathy, H.; Liu, M. L. Raman spectroscopy of nickel sulfide Ni3S2. J. Phys. Chem. C 2007, 111, 17997–18000.

[59]

Feng, N.; Hu, D. K.; Wang, P.; Sun, X. L.; Li, X. W.; He, D. Y. Growth of nanostructured nickel sulfide films on Ni foam as high-performance cathodes for lithium ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 9924–9930.

[60]

Guo, Z. Y.; Li, C. X.; Gao, M.; Han, X.; Zhang, Y. J.; Zhang, W. J.; Li, W. W. Mn–O covalency governs the intrinsic activity of Co–Mn spinel oxides for boosted peroxymonosulfate activation. Angew. Chem., Int. Ed. 2021, 60, 274–280.

[61]

Huang, X. H.; Li, J. F.; Wang, J.; Li, Z. Q.; Xu, J. Y. Catalytic combustion of methane over a highly active and stable NiO/CeO2 catalyst. Front. Chem. Sci. Eng. 2020, 14, 534–545.

[62]

Sun, L. Z.; Zhou, Z. Y.; Xie, Y. N.; Zheng, J. G.; Pan, X.; Li, L. N.; Zhao, G. H. Surface self-reconstruction of Fe–Ni3S2 electrocatalyst for value-generating nitrile evolution reaction to drive efficient hydrogen production. Adv. Funct. Mater. 2023, 33, 2301884.

[63]

Yan, P.; Liu, Q.; Zhang, H.; Qiu, L. C.; Wu, H. B.; Yu, X. Y. Deeply reconstructed hierarchical and defective NiOOH/FeOOH nanoboxes with accelerated kinetics for the oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 15586–15594.

[64]

Wu, J. X.; Liu, X.; Hao, Y. M.; Wang, S. Y.; Wang, R.; Du, W.; Cha, S. S.; Ma, X. Y.; Yang, X. J.; Gong, M. Ligand hybridization for electro-reforming waste glycerol into isolable oxalate and hydrogen. Angew. Chem., Int. Ed. 2023, 62, e202216083.

[65]

Qian, Q. Z.; He, X. Y.; Li, Z. Y.; Chen, Y. X.; Feng, Y. F.; Cheng, M. Y.; Zhang, H. K.; Wang, W. T.; Xiao, C.; Zhang, G. Q. et al. Electrochemical biomass upgrading coupled with hydrogen production under industrial-level current density. Adv. Mater. 2023, 35, 2300935.

[66]

Deng, Y. L.; Lai, W.; Ge, L. H.; Yang, H.; Bao, J.; Ouyang, B.; Li, H. M. Densifying crystalline-amorphous Ni3S2/NiOOH interfacial sites to boost electrocatalytic O2 production. Inorg. Chem. 2023, 62, 3976–3985.

[67]

Li, W.; Xiong, D. H.; Gao, X. F.; Liu, L. F. The oxygen evolution reaction enabled by transition metal phosphide and chalcogenide pre-catalysts with dynamic changes. Chem. Commun. 2019, 55, 8744–8763.

[68]

Jiao, X. C.; Li, X. D.; Jin, X. Y.; Sun, Y. F.; Xu, J. Q.; Liang, L.; Ju, H. X.; Zhu, J. F.; Pan, Y.; Yan, W. S. et al. Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 18044–18051.

[69]

Wu, J. J.; Peng, J.; Zhou, Y.; Lin, Y.; Wen, X. L.; Wu, J. C.; Zhao, Y. C.; Guo, Y. Q.; Wu, C. Z.; Xie, Y. Solution processing for lateral transition-metal dichalcogenides homojunction from polymorphic crystal. J. Am. Chem. Soc. 2019, 141, 592–598.

[70]

Jia, Y. S.; Chen, Z.; Gao, B. X.; Liu, Z. Y.; Yan, T. L.; Gui, Z. X.; Liao, X. P.; Zhang, W. B.; Gao, Q. S.; Zhang, Y. H. et al. Directional electrosynthesis of adipic acid and cyclohexanone by controlling the active sites on NiOOH. J. Am. Chem. Soc. 2024, 146, 1282–1293.

[71]

Yan, Y. D.; Zhong, J. Y.; Wang, R. Y.; Yan, S. C.; Zou, Z. G. Trivalent nickel-catalyzing electroconversion of alcohols to carboxylic acids. J. Am. Chem. Soc. 2024, 146, 4814–4821.

[72]

Chen, W.; Shi, J. Q.; Wu, Y. D.; Jiang, Y. M.; Huang, Y. C.; Zhou, W.; Liu, J. L.; Dong, C. L.; Zou, Y. Q.; Wang, S. Y. Vacancy-induced catalytic mechanism for alcohol electrooxidation on nickel-based electrocatalyst. Angew. Chem., Int. Ed. 2024, 63, e202316449.

[73]

Zheng, W. R.; Liu, M. J.; Lee, L. Y. S. Best practices in using foam-type electrodes for electrocatalytic performance benchmark. ACS Energy Lett. 2020, 5, 3260–3264.

[74]

Huang, C.; Chu, P. K. Recommended practices and benchmarking of foam electrodes in water splitting. Trends Chem. 2022, 4, 1065–1077.

[75]

Sha, L. N.; Liu, T. F.; Ye, K.; Zhu, K.; Yan, J.; Yin, J. L.; Wang, G. L.; Cao, D. X. A heterogeneous interface on NiS@Ni3S2/NiMoO4 heterostructures for efficient urea electrolysis. J. Mater. Chem. A 2020, 8, 18055–18063.

[76]

Wen, D. F.; Ye, M.; Xia, Y.; Mai, W.; Zhang, Z. Q.; Zhang, W. T.; Peng, W. D.; Hu, W.; Tian, L. H. CoP nanoplates dotted with porous Ni3S2 nanospheres for the collaborative enhancement of hydrogen production via urea-water electrolysis. Appl. Surf. Sci. 2022, 586, 152736.

[77]

Huang, Y.; Chong, X. D.; Liu, C. B.; Liang, Y.; Zhang, B. Boosting hydrogen production by anodic oxidation of primary amines over a NiSe nanorod electrode. Angew. Chem., Int. Ed. 2018, 57, 13163–13166.

[78]

Ghosh, S.; Bagchi, D.; Mondal, I.; Sontheimer, T.; Jagadeesh, R. V.; Menezes, P. W. Deciphering the role of nickel in electrochemical organic oxidation reactions. Adv. Energy Mater. 2024, 14, 2400696.

[79]

Chen, W.; Xie, C.; Wang, Y. Y.; Zou, Y. Q.; Dong, C. L.; Huang, Y. C.; Xiao, Z. H.; Wei, Z. X.; Du, S. Q.; Chen, C. et al. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem 2020, 6, 2974–2993.

[80]

Wang, S.; Yan, Y.; Du, Y. P.; Zhao, Y. G.; Li, T. X.; Wang, D.; Schaaf, P.; Wang, X. Y. Inhibiting the deep reconstruction of Ni-based interface by coordination of chalcogen anions for efficient and stable glycerol electrooxidation. Adv. Funct. Mater. 2024, 34, 2404290.

[81]

Lyu, N.; Chen, Y. S.; Guan, A. X.; Wei, R. L.; Yang, C.; Huang, Y. H.; Lv, X. M.; Hu, C. J.; Kuang, M.; Zheng, G. F. Electrocatalytic glycerol upgrading into glyceric acid on Ni3Sn intermetallic compound. Small 2024, 20, 2401872.

[82]

Luo, X.; Ji, P. X.; Wang, P. Y.; Tan, X.; Chen, L.; Mu, S. C. Spherical Ni3S2/Fe–NiPx magic cube with ultrahigh water/seawater oxidation efficiency. Adv. Sci. 2022, 9, 2104846.

[83]
Li, J. J.; Zhang, Y. Z.; Zhang, L. Y.; Zhou, Q.; Yang, J. R.; Fu, Y.; Yu, L.; Sun, Y. M.; Li, Z. H.; Qin, Y. C. et al. Facilitating OH* generation on atomic Pd–Cu dual sites towards efficient glycerol electrooxidation to formate. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.202425006.
[84]

Santiago, P. V. B.; Lima, C. C.; Bott-Neto, J. L.; Fernández, P. S.; Angelucci, C. A.; Souza-Garcia, J. Perovskite oxides as electrocatalyst for glycerol oxidation. J. Electroanal. Chem. 2021, 896, 115198.

[85]

Ito, K.; Bernstein, H. J. The vibrational spectra of the formate, acetate, and oxalate ions. Can. J. Chem. 1956, 34, 170–178.

[86]

Li, Y.; Wei, X. F.; Han, S. H.; Chen, L. S.; Shi, J. L. MnO2 electrocatalysts coordinating alcohol oxidation for ultra-durable hydrogen and chemical productions in acidic solutions. Angew. Chem., Int. Ed. 2021, 60, 21464–21472.

[87]

Yan, H.; Zhao, M. Y.; Feng, X.; Zhao, S. M.; Zhou, X.; Li, S. F.; Zha, M.; Meng, F. Y.; Chen, X. B.; Liu, Y. B. et al. PO43− coordinated robust single-atom platinum catalyst for selective polyol oxidation. Angew. Chem. 2022, 134, e202116059.

[88]

He, Z. Y.; Hwang, J.; Gong, Z. H.; Zhou, M. Z.; Zhang, N.; Kang, X. W.; Han, J. W.; Chen, Y. Promoting biomass electrooxidation via modulating proton and oxygen anion deintercalation in hydroxide. Nat. Commun. 2022, 13, 3777.

[89]

Wu, J. X.; Li, J. L.; Li, Y. F.; Ma, X. Y.; Zhang, W. Y.; Hao, Y. M.; Cai, W. B.; Liu, Z. P.; Gong, M. Steering the glycerol electro-reforming selectivity via cation-intermediate interactions. Angew. Chem., Int. Ed. 2022, 61, e202113362.

[90]

Sheng, H. Y.; Janes, A. N.; Ross, R. D.; Hofstetter, H.; Lee, K.; Schmidt, J. R.; Jin, S. Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton process using a stable NiSe2 cathode. Nat. Catal. 2022, 5, 716–725.

[91]

Dai, C. C.; Sun, L. B.; Liao, H. B.; Khezri, B.; Webster, R. D.; Fisher, A. C.; Xu, Z. J. Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles. J. Catal. 2017, 356, 14–21.

[92]

Zavrazhnov, S. A.; Esipovich, A. L.; Danov, S. M.; Zlobin, S. Y.; Belousov, A. S. Catalytic conversion of glycerol to lactic acid: State of the art and prospects. Kinet. Catal. 2018, 59, 459–471.

[93]

Chen, W.; Zhang, L.; Xu, L. T.; He, Y. Q.; Pang, H.; Wang, S. Y.; Zou, Y. Q. Pulse potential mediated selectivity for the electrocatalytic oxidation of glycerol to glyceric acid. Nat. Commun. 2024, 15, 2420.

[94]

Yang, G. Y.; Ke, Y. H.; Ren, H. F.; Liu, C. L.; Yang, R. Z.; Dong, W. S. The conversion of glycerol to lactic acid catalyzed by ZrO2-supported CuO catalysts. Chem. Eng. J. 2016, 283, 759–767.

[95]

Fernández-Caso, K.; Molera, M.; Andreu, T.; Solla-Gullón, J.; Montiel, V.; Díaz-Sainz, G.; Álvarez-Guerra, M.; Irabien, A. Coupling glycerol oxidation reaction using Ni–Co foam anodes to CO2 electroreduction in gas-phase for continuous co-valorization. Chem. Eng. J. 2024, 480, 147908.

[96]

Peña-Rodríguez, A.; Fernández-Caso, K.; Díaz-Sainz, G.; Álvarez-Guerra, M.; Montiel, V.; Solla-Gullón, J. Single-pass electrooxidation of glycerol on bismuth-modified platinum electrodes as an anodic process coupled to the continuous CO2 electroreduction toward formate. ACS Sustain. Chem. Eng. 2024, 12, 3671–3679.

[97]

Fang, W. S.; Guo, W.; Lu, R. H.; Yan, Y.; Liu, X. K.; Wu, D.; Li, F. M.; Zhou, Y. S.; He, C. H.; Xia, C. F. et al. Durable CO2 conversion in the proton-exchange membrane system. Nature 2024, 626, 86–91.

[98]

Jiang, Z. N.; Ren, S.; Cao, X.; Fan, Q. K.; Yu, R.; Yang, J.; Mao, J. J. pH-universal electrocatalytic CO2 reduction with Ampere-level current density on doping-engineered bismuth sulfide. Angew. Chem., Int. Ed. 2024, 63, e202408412.

[99]

Wang, B. W.; Song, L.; Peng, C.; Lv, X. M.; Zheng, G. F. Pd-induced polarized Cu0–Cu+ sites for electrocatalytic CO2-to-C2+ conversion in acidic medium. J. Colloid Interface Sci. 2024, 671, 184–191.

[100]

Tateno, H.; Chen, S. Y.; Miseki, Y.; Nakajima, T.; Mochizuki, T.; Sayama, K. Photoelectrochemical oxidation of glycerol to dihydroxyacetone over an acid-resistant Ta: BiVO4 photoanode. ACS Sustain. Chem. Eng. 2022, 10, 7586–7594.

[101]

Li, J. J.; Zhang, Z. C. K+-enhanced electrocatalytic CO2 reduction to multicarbon products in strong acid. Rare Met. 2022, 41, 723–725.

Nano Research
Article number: 94907399
Cite this article:
Chen D, Yang S, Gao J, et al. Electrochemical co-upgrading CO2 and glycerol for selective formate production with 190% overall Faradaic efficiency. Nano Research, 2025, 18(5): 94907399. https://doi.org/10.26599/NR.2025.94907399
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return